Dynamic pressure device for oil drill systems

Information

  • Patent Grant
  • 6367323
  • Patent Number
    6,367,323
  • Date Filed
    Thursday, August 17, 2000
    24 years ago
  • Date Issued
    Tuesday, April 9, 2002
    22 years ago
Abstract
A drill string section for use in making up a drill string for oil and gas drilling carries instrumentation for measurement and logging while drilling. The instrumentation includes a dynamic pressure device for measuring drill string bore pressure of incoming pressurized fluid and drill string annular pressure of returned pressurized fluid. The drill string section comprises a length of drill string pipe having a bore defined by an inner surface of a wall which has an outer surface. The instrumentation is provided in an elongate cylindrical tool shell. The outer surface of the tool shell has spaced apart seals which engage the inside surface of a cylindrical landing sleeve in the pipe bore. The seals are located in the sleeve on either side of communicating port(s) in the drill pipe wall, forming a leak tight annular region that eventually communicates through appropriate ports to a pressure transducer.
Description




FIELD OF THE INVENTION




Petroleum exploration activities occasionally require specialized drilling techniques to optimise production from certain types of reservoir stratum. One such drilling technique is known as “underbalanced” drilling, which employs singly or a combination of nitrogen, carbon dioxide or other inert gasses, and drilling mud as the primary composite drilling fluid. In this situation, down hole pressure of the composite drilling fluid is monitored within the drill string bore and the well annulus, with the goal of preventing formation fracture due to overly high gas pressures. Another goal of underbalanced drilling is to minimise loss of the composite drilling fluid to the formation, which can be re-circulated until drilling is complete. Clearly, a specialized drilling device is needed to measure the drill string and well bore pressures to make underbalanced drilling possible.




BACKGROUND OF THE INVENTION




Although there are a variety of devices for measuring downhole drilling fluid pressure, some of the devices require a temporary cessation of drilling operations, which in some cases incur cost and time delays unacceptable to drilling operators in the competitive exploration market. Such a system is described in Canadian Patent 607,352. Other types of systems allow downhole pressure measurement while drilling, generally making use of electronic pressure measurement tools rigidly fixed to the lower portion of the drill string, near the drill bit. While satisfactory for this service, such devices are irrecoverable in the event that this section of the drill string becomes stuck downhole, and consequently abandoned if efforts to free it are unsuccessful. Typically the drill string above the stuck section is disconnected in some fashion and brought to the surface, leaving behind the drill motor, drill bit, pressure measurement tools and the lower section of the drill string. Examples of such systems are described in U.S. Pat. Nos. 4,297,880 and 4,805,449, which are capable of sensing drill bore and annulus pressure, but as mentioned are irrecoverable in the event of drill string abandonment due to their mechanical design.




There is a significant need for an electronic downhole system that measures pressure in the drill string bore and the well annulus (the area between the collar OD and the well bore), that is retrievable and re-seatable, and reports pressure measurements to the surface in a timely fashion. Such a system permits drillers to make real-time decisions on how to proceed with the drilling operation based upon this and other information. The value of such a device is greatly enhanced by providing retrieval and reseating capabilities. Retrieval permits the recovery of the device in situations where the drill string becomes stuck and must be abandoned. However, certain situations arise where the tool must be recovered temporarily and then returned to the end of the drill string so that the drilling job may be continued. This is known as re-seating, and offers a level of operational flexibility not observed in the general market for similar devices.




SUMMARY OF THE INVENTION




The Dynamic Pressure Device (DPD), in accordance with an aspect of this invention measures pressure in the drill string bore and the well annulus (the area between the collar OD and the well bore) and reports the measurement to a transmitter located within the tool string. The transmitter communicates this information to the surface, where drillers make decisions on how to proceed with the drilling operation based upon this and other information.




In accordance with another aspect of the invention a drill string section for use in making up a drill string for oil and gas drilling is provided. The drill section carries instrumentation for Measurement While Drilling and Logging While Drilling operations, said instrumentation including a Dynamic Pressure Device for measuring drill string bore pressure of incoming pressurized drilling fluid, and drill string annular pressure of returned pressurized drilling fluid, said instrumentation being retrievable from said drill string when said drill string section is stuck or otherwise abandoned downhole, or otherwise reseatable into said drill string as required when drill string is deemed operational and fit for continued drilling. The drill string section comprises:




i) a length of drill string pipe having a bore defined by an inner surface of a pipe wall which has an outer surface,




ii) a cylindrical landing sleeve and a support for centering said sleeve in said pipe bore,




iii) communicating ports extending through said drill pipe wall from said outer pipe surface to said inner surface and through said support to an inside surface of said landing sleeve,




iv) said instrumentation being provided in an elongate cylindrical tool shell, spaced apart seals which engage said inside surface of said landing sleeve and the outer surface of said tool shell, means for locating said communicating ports between said spaced-apart seals,




v) said instrumentation in said tool shell having a first terminated passageway in said tool shell between said seals which communicates with a pressure sensor within said shell to sense thereby said drill string annular pressure,




vi) said instrumentation having a second terminated passageway in said tool shell in communication with said drill string bore and in communication with a pressure sensor within said shell whereby said drill string bore pressure is sensed.











BRIEF DESCRIPTION OF THE DRAWINGS




Preferred embodiments of the invention are described with respect to the drawings wherein.





FIG. 1

is a schematic of the abandonment of a downhole drill string.





FIG. 2

is a section through the drill string of this invention.





FIG. 3

is an exploded view of the drill section FIG.


2


.





FIGS. 4

,


5


,


6


and


7


show embodiments of the invention where the pressure sensor system and related electronics can be withdrawn from the drill string when it is necessary to abandon the drill string, or alternately re-seated when required.





FIG. 8

is an exploded view of an alternative embodiment for the mounting of the pressure measurement system in the drill string.





FIG. 9

is a section through the assembly of FIG.


8


.





FIG. 10

shows yet another alternative embodiment for the mounting of the pressure measurement device within the drill string.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A representative drilling system is shown in FIG.


1


. The above ground drilling structure


10


has the usual tower


12


with drill string assembly and drive components


14


. The drill string


16


is made up of individual drill string sections


18


, the lower most of which includes a drill bit


20


. For a variety of reasons it may be necessary to abandon the downhole drill string particularly the drill string adjacent the drill bit due to the drill bit becoming stuck or otherwise seized in the formation. The abandonment of the lower most drill string can be costly because of the value of the electronic components in the tool sub-assembly which are used to provide for “measurement while drilling and logging while drilling operations”. In other cases, the tool itself may fail and requires replacement. In these situations, the replaced tool must be lowered down the drill string and re-seated at its original location so that drilling operations may resume. It is understood of course that when the drill bit


20


is abandoned the operator may commence redrilling of the bore and provide for an alternate route around the abandoned drill section as indicated by the dotted lines


22


. A number of contemporary systems provide for retrieval or re-seating of the electronics in circumstances of drill string abandonment or tool replacement, however such systems are not intended or otherwise designed for measuring drill string bore pressure and drill string annular pressure.




In accordance with this invention, the system shown in

FIG. 2

provides for pressure measurements and at the same time allows retrieval and re-seating of the electronic components from, and into, the downhole drill section. The upper female connector


24


of the drill string section is connected to a male threaded connector


26


of an upper drill string section. Correspondingly the male section


28


is threaded into a female section


30


of the lower drill string


18


. The electronic components for measurement while drilling and logging while drilling are housed in an elongate cylindrical tool shell


32


.




The cylindrical tool shell is positioned within a landing sleeve


34


. The cylindrical tool shell may be removed from, or installed into, the landing sleeve in the manner discussed with respect to

FIGS. 4 through 7

by grasping a connector stub


36


which is secured to the cylindrical tool shell. A suitable latching mechanism


37


is provided in the drill string to releasably secure the tool shell in the drill string and locate it in the drill string. Although there are a multitude of electrical opponents within the cylindrical tool shell, the specific components of interest in respect to the invention are the devices for measuring drilling fluid pressure in the bore


38


of the tool string and drill string annular pressure in annulus


40


. The annulus


40


is defined between the earth formation


42


and the exterior


44


of the drill string section. Pressure transducer


46


is provided to measure the pressure of a circulating drilling fluid in the drill string bore


38


. A port


48


in the cylindrical tool shell communicates with a passageway


50


, and terminates at the sensor


46


. Drill string annular pressure is measured by pressure transducer


52


. Pressure sensor


52


is in communication with passageway


54


, which in turn communicates through an annular passage formed between the tool barrel and the inside diameter of landing sleeve


34


and ultimately through passageway


56


. Passageway


56


communicates with annular space


40


, noted as the drill string annular region that conveys returned drilling fluid to the surface.




Further details of the system are shown in the exploded view of FIG.


3


. The elongate cylindrical tool shell


32


has the respective ports


48


and


58


on the periphery


60


of the shell


32


. Port


48


is in communication with the pressurized fluid within the bore of the drill string section. Port


58


is located between seals generally designated


62


and


64


. The cylindrical tool shell


32


is of a dimension that readily slides through the bore of landing sleeve


34


. Seals


62


and


64


project slightly from the periphery


60


of the tool shell and form an interference fit with the interior surface


63


of the landing sleeve, the resulting seal deformation providing a liquid tight seal with the interior of the landing sleeve. Although in accordance with this embodiment, the seals are provided in the tool shell, it is appreciated that the seals may be provided in the interior surface


62


of the landing sleeve to provide a sealed space when the tool shell is inserted into the landing sleeve. The landing sleeve


34


includes supports in the form of legs


65


, in accordance with this embodiment, to space the outer periphery


66


of the landing sleeve from the interior surface


68


of the drill string section


18


. This allows the drilling fluid to flow through the spaces defined between the periphery of the landing sleeve and the interior of the drill string section. The landing sleeve


34


is secured within the drill string section in accordance with the embodiments to be discussed with respect to

FIGS. 4 through 7

. In addition the leg


65


includes a port


70


which extends through the leg and the wall section


72


of the landing sleeve. The port


70


is in communication with a port


74


defined within removable plug


76


. The landing sleeve is of course fitted to the drill string section before the drill string section is put into use. When the tool shell is inserted in the landing sleeve, a suitable stop, such as the latch


37


, is provided to locate the seals


62


and


64


on opposite sides of the port


70


so that the pressurized fluid in the annulus outside of the drill string section may flow through ports


74


,


70


and


58


and through passageway


54


to the pressure transducer


52


. Seals


62


and


64


also prevent the fluid from the drill string bore, which is at a higher pressure than the annulus fluid, from leaking into the annular space


92


formed between the seals, tool barrel


32


and landing sleeve bore.





FIGS. 4

,


5


and


6


demonstrate the manner in which the cylindrical tool shell may be extracted from the drill string section


18


. On the interior surface


68


of the drill string, cams


78


are mounted on drill string interior to guide insertion of the cylindrical tool shell into the landing sleeve


34


during a seating or re-seating operation. The landing sleeve


34


has its leg portions


65


secured in the drill string wall


82


by way of bolts


84


which are threaded into the respective legs


65


in threaded bores


86


. The pressurized drilling fluid in the drill string bore flows over the tubular sleeve by way of a space defined between the interior


68


and the exterior


66


of the landing sleeve.




The extraction tool


80


is shown in

FIG. 5

as having clamped onto the connector stub


36


. Extraction device


80


is connected to a wire line or the like


88


. With the extraction device clipped on to the stub


36


, the tool shell


32


may be pulled from the landing sleeve in the manner shown in

FIG. 6

where the tubular shell is moving in the direction of arrow


90


. In this manner, the valuable electronic components in the cylindrical tool shell may be recovered before the drill string and drill bit are abandoned. Similarly, the cylindrical tool shell may be re-installed if the drill string and drill bit are restored to service or the electronics require servicing.




With reference to

FIG. 7

the relative relationship of the exterior bore


74


to the interior bore


58


is shown. The exterior bore


74


extends through the wall


82


of the drill string section. The bore


74


communicates with bore


70


which extends through the leg


65


of the landing sleeve


34


. The bore opens up into the space defined between the exterior surface


60


of the cylindrical tool shell and the interior surface


63


of the landing sleeve. As previously explained there is a slight gap between the cylindrical tool shell and the interior of the landing sleeve to permit insertion and retraction of the cylindrical tool shell. This space is sealed off to each side of the port


70


by seals


62


and


64


. This ensures that all pressurized fluids passing through bores


74


and


70


are contained within the annular space


92


. Port


58


is in communication with the annular space


92


so that any pressurized fluid in space


92


enters port


58


and along passage


54


thereby the pressure of such fluid is sensed by the pressure transducer


52


. In this manner a reliable economical system is provided which permits measurement of drill string annular pressure while at the same time permitting extraction of the cylindrical tool shell.




An alternative embodiment for the drill string section is shown in FIG.


8


. The construction of the cylindrical tool shell


32


is essentially the same with the spaced apart seals


62


and


64


. A slight recess


94


is provided for port


58


. The landing sleeve


34


is replaced with an alternative embodiment


96


which is fixed on the interior surface


68


of the drill string section


18


by use of clip rings to be described in more detail with respect to FIG.


9


. The port


70


in the landing sleeve


96


is longitudinally aligned with the port


74


of plug


76


which can be achieved during assembly, however radial orientation of port


70


with respect to port


74


is unimportant. With reference to

FIG. 9

the landing sleeve


96


is secured inside the tubular string wall


82


by way of C-clips


98


which engage the faces


93


and


95


of landing sleeve


96


. The C-clips interconnect with groves


100


and


102


in the drill string section wall. This arrangement permits the installation of the C-clips so that they can bear up against the upstream and downstream faces


93


and


95


of landing sleeve


96


.




In accordance with this preferred embodiment the cylindrical tool shell


32


has a ledge


104


which defines a stop and which abuts the upstream face


93


of the landing sleeve. Alternatively, the tool shell


32


may be located by other mechanical stops incorporated on the tool similar to other embodiments of the invention. The landing sleeve includes seals


104


to seal the exterior of the landing sleeve within the interior


68


of the drill string section. In addition to or as a replacement for the preferred embodiment showing seals


62


and


64


on the cylindrical tool shell, the landing sleeve may include seals


106


which seal to the exterior


108


of the cylindrical tool shell to ensure a leak tight connection. The port


74


which extends through the wall of the drill string section is aligned longitudinally, but not necessarily radially, with port


70


and leads into annular space


110


. Port


58


leads from pressure transducer


52


and opens into annular space


110


, permitting a reading of drilling fluid annular pressure to be made. Multiple arcuate apertures


112


provide open channels for the flow of drilling fluid along the drill string bore. In a manner discussed with respect to

FIG. 2

, pressure transducer


46


communicates with port


48


through passageway


50


permitting a pressure measurement of the drill string bore fluid to be made.




With reference to

FIG. 10

, an alternative embodiment for the landing sleeve is shown. In this embodiment the landing sleeve is integral with the drill string section


18


and its wall section


82


. The landing sleeve


114


is machined as part of the drill string bore during the fabrication process. The landing sleeve wall


116


is spaced from the interior wall


118


of the drill string by circumferentially arranged legs


120


. The landing sleeve


114


has arcuate shaped channels


122


which extend through the landing sleeve


114


and provide the necessary flow paths for the pressurized drilling fluid. The landing sleeve


114


has the port


124


extending from the exterior of the drill string section through the wall


82


through the leg


120


and through the wall


116


of the sleeve. The cylindrical tool shell


32


may be constructed in the same manner as that of

FIG. 3

so that the seals


62


and


64


are positioned to each side of the port


124


. This provides, as discussed with respect to the prior embodiments, for the usual communication of pressurized drilling fluid on the exterior of the drill section to within the system for measurement by the pressure transducer


52


.




Accordingly, various embodiments are provided which demonstrate the effectiveness of a landing sleeve in providing for annular pressure measurements of drilling fluid, and at the same time providing for a retraction or re-seating of the cylindrical tool shell while the drill string is down hole.




Although preferred embodiments of the invention have been described herein in detail, it will be understood by those skilled in the art that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.



Claims
  • 1. A drill string section for use in making up a drill string for oil and gas drilling, said drill string section carrying instrumentation for Measurement While Drilling and Logging While Drilling operations, said instrumentation including a Dynamic Pressure Device for measuring drill string bore pressure of incoming pressurized fluid and drill string annular pressure of returned pressurized fluid, said instrumentation being retrievable from said drill string when said drill string section is stuck or otherwise abandoned downhole, said drill string section comprising:i) a length of drill string pipe having a bore defined by an inner surface of a pipe wall which has an outer surface, ii) a cylindrical landing sleeve and a support for centering said sleeve in said pipe bore, iii) communicating ports extending through said drill pipe wall from said outer pipe surface to said inner surface and through said support to an inside surface of said landing sleeve, iv) said instrumentation being provided in an elongate cylindrical tool shell, spaced apart seals which engage said inside surface of said landing sleeve and the outer surface of said tool shell, means for locating said communicating ports between said spaced-apart seals, v) said instrumentation in said tool shell having a first terminated passageway in said tool shell between said seals which communicates with a pressure sensor within said shell to sense thereby said drill string annular pressure, vi) said instrumentation having a second terminated passageway in said tool shell in communication with said drill string bore and in communication with a pressure sensor within said shell whereby said drill string bore pressure is sensed.
  • 2. A drill string of claim 1 wherein said landing sleeve comprises a hollow cylinder with said support being support legs extending in a length direction along said cylinder, said legs being adapted for securement to said inner diameter of said drill pipe and fasteners for securing said legs to said drill pipe.
  • 3. A drill string of claim 1 wherein said landing sleeve comprises a hollow cylinder with support legs extending in a length direction along said cylinder, said support legs and said hollow cylinder being integral with said drill pipe section.
  • 4. A drill string of claim 1 wherein said landing sleeve comprises a hollow cylinder with support legs extending in a length direction along said hollow cylinder, said support legs and said hollow cylinder being integral, said landing sleeve being positioned in said drill string by C-clips engaging said drill string and located on each side of said cylinder.
  • 5. A drill string of claim 1 wherein each of said seals for said cylindrical tool shell, each seal is a ring seal of compressible material which permits said cylindrical shell to slide within said landing sleeve.
  • 6. A drill string of claim 1 wherein each of said seals is provided on said inside surface of said landing sleeve.
  • 7. A drill string of claim 1 wherein said cylindrical shell has at its upstream end, a coupling component for connection to an instrumentation retrieval device to permit withdrawal of said instrumentation from stuck or other abandoned drill string section.
  • 8. A drill string of claim 2 wherein two or more opposing support legs are provided on said hollow cylinder, each support leg being of a thickness to provide an annulus of sufficient cross-section to accommodate typical flow rates of drilling fluid along said drill pipe bore.
  • 9. A drill string of claim 8 wherein each of said legs have a plurality of threaded bores which are aligned with apertures in said drill pipe wall, said fasteners extending through said apertures and being threaded into said threaded bores to secure said legs to said inner surface.
  • 10. A drill string of claim 2, wherein said legs are releasable from said fasteners to be removable from said hollow cylinder, said communicating ports extending through one of said legs.
  • 11. A drill string of claim 1 wherein said pressure sensors are pressure transducers secured in said cylindrical tool shell.
  • 12. A drill string of claim 1 wherein an annular space is provided in said cylindrical tool shell, said annular space being formed between said spaced apart seals and communicating with said first terminated passageway in said cylindrical tool shell, and said annular space aligned with said communicating ports to complete communication between outside said drill string pipe to said pressure sensor regardless of radial orientation about a longitudinal axis of said cylindrical tool shell.
  • 13. A drill string of claim 1 wherein said drill pipe includes on said inner diameter and upstream of said landing sleeve a guide for guiding insertion of said cylindrical tool shell into said landing sleeve.
US Referenced Citations (4)
Number Name Date Kind
4297880 Berger Nov 1981 A
4805449 Das Feb 1989 A
4919454 Caulfield et al. Apr 1990 A
6220355 French Apr 2001 B1
Foreign Referenced Citations (1)
Number Date Country
607352 Oct 1960 CA