Dynamic PSK for hotspots

Information

  • Patent Grant
  • 8756668
  • Patent Number
    8,756,668
  • Date Filed
    Thursday, February 9, 2012
    12 years ago
  • Date Issued
    Tuesday, June 17, 2014
    10 years ago
Abstract
Systems and methods for providing secured network access are provided. A user device located within range of a hotspot initiates a request sent via an open communication network associated with the hotspot. The request concerns secured network access at the hotspot by the user device. A unique pre-shared key is generated for the user device based on information in the received request and transmitted over the open communication network for display on a webpage accessible to the user device. The unique pre-shared key is stored in association with information regarding the user device. The user device may then use the unique pre-shared key in subsequent requests for secured network access.
Description
BACKGROUND

1. Field of the Invention


The present invention generally relates to wireless hotspots. More specifically, the present invention relates to dynamic pre-shared key (PSK) for wireless hotspots.


2. Description of the Related Art


An increasing number of individuals and businesses rely on wireless services to carry out various transactions and enable communication from remote locations. Many businesses such as hotels and coffee houses have sought to capitalize on this trend and offer free wireless access to attract and retain customers. A business offering such wireless access may do by creating a “hotspot”—a location that offers Internet access over a wireless local area network through the use of a router connected to a link to an Internet service provider.


Many hotspots only offer open and unsecured communications. Some users, however, may wish to engage in communications or transactions that involve personal, sensitive, or proprietary information that is not necessarily suited for an open and unsecured communications network. As such, users may wish for such transactions be conducted in a secure manner, such that such information may not be exposed or stolen.


Implementing security features is complicated, difficult to maintain, and requires a high level of technical knowledge. An additional complication is that users at a hotspot may be continually changing. Authentication relying on 802.1x/EAP is not a practical option as hotspot users may vary widely in security needs. Setting up a RADIUS server on a network backend may likewise be complicated and unwieldy.


Pre-shared key (PSK)-based security systems require that a secret be manually entered onto all user devices using the network. A PSK-based system relies on a secret shared between and stored at both the client station and the access point. The secret may be, for example, a long bit stream, such as a passphrase, a password, a hexadecimal string, or the like. Used by a client station and the access point to authenticate each other, the secret may also be used to generate an encryption key set.


A disadvantage to PSK-based systems is that once the shared secret becomes known to unauthorized personnel, the security of the entire network is compromised. This may pose a problem where network access is provided to an ever-changing set of numerous, diverse, and transient mobile users. Generally, to maintain the security of a PSK-based system, the secret must be changed on all client stations whenever a person with knowledge of the secret departs from the organization or is no longer authorized to access the network. As a result, many commercial organizations (e.g., small- and medium-sized businesses or enterprises with a high degree of turn over) have been unable to deploy security measures around their hotspots, because of their lack of expertise and/or full-time professional technical support.


There is, therefore, a need in the art for improved systems and methods for providing secure network access at hotspots


SUMMARY OF THE CLAIMED INVENTION

Embodiments of the present invention include systems and methods for providing secured network access at a hotspot. A user device located within range of the hotspot initiates a request to be sent via an open communication network associated with the hotspot. The request concerns secured network access at the hotspot by the user device. In response, a unique pre-shared key is generated for the user device based on information in the received request and transmitted over the open communication network for display on a webpage accessible to the user device. The unique pre-shared key is also stored in association with information regarding the user device. The user device may then use the unique pre-shared key in subsequent requests for secured network access.


Various embodiments of the present invention include methods for providing secured network access at a hotspot. Such methods may include receiving a request initiated by a user device located within a range of a hotspot. The request is sent via an open communication network associated with the hotspot and concerning secured network access at the hotspot by the user device. Methods may further include generating a unique pre-shared key for the user device based on information in the received request, transmitting the unique pre-shared key over the open communication network for display on a webpage accessible to the user device, and storing the unique pre-shared key in association with information regarding the user device. The user device may then the unique pre-shared key in a subsequent request for secured network access.


Additional embodiments include apparatuses for providing secured network access at a hotspot. Such apparatuses may include an interface for receiving an incoming requests initiated by a user device located within a range of a hotspot concerning secured network access at the hotspot by the user device, a processor for executing instructions stored in memory to generates a unique pre-shared key for the user device based on information in the received request, and a database in memory for storing the unique pre-shared key in association with information regarding the user device. The unique pre-shared key is transmitted over the open communication network for display on a webpage accessible to the user device. The user device may then the unique pre-shared key in a subsequent request for secured network access.


Embodiments of the present invention may further include systems for providing secured network access at a hotspot. Such systems may include an access point associated with a hotspot and providing both open access over an open communication network and secured network access based on a pre-shared key. Systems may further include a hotspot controller for receiving an incoming request initiated by a user device concerning secured network access at the hotspot, generating a unique pre-shared key for the user device based on information in the received request, storing the unique pre-shared key in association with information regarding the user device, and transmitting the unique pre-shared key over the open communication network for display on a webpage accessible to the user device. The user device may then the unique pre-shared key in a subsequent request for secured network access.


Other embodiments of the present invention include non-transitory computer-readable storage media on which is embodied instructions executable to providing secured network access at a hotspot in general accordance with the method previously set forth above.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a network environment in which a system for providing secured network access at a hotspot may be implemented.



FIG. 2 illustrates a method for providing secured network access at a hotspot.





DETAILED DESCRIPTION

Embodiments of the present invention provide systems and methods for secured network access at a hotspot. A user device located within range of the hotspot initiates a request to be sent via an open communication network associated with the hotspot. The request concerns secured network access at the hotspot by the user device. In response, a unique pre-shared key is generated for the user device based on information in the received request and transmitted over the open communication network for display on a webpage accessible to the user device. The unique pre-shared key is also stored in association with information regarding the user device. The user device may then use the unique pre-shared key in subsequent requests for secured network access.



FIG. 1 illustrates a network environment 100 in which a system for secured network access at a hotspot may be implemented. Network environment 100 may include a user devices 110 and a ‘hotspot’ including access point 130 and that provides open communication network 120A and secured communication network 120B. The network environment 100 may further include web portal server 140 and a hotspot controller 150.


Users may use any number of different wireless user devices 110 such as notebook, netbook, and tablet computers with WiFi capability, smartphones with WiFi capability, or any other type of wireless computing device capable of communicating over communication networks 120. User device 110 may also be configured to access data from other storage media, such as memory cards or disk drives as may be appropriate in the case of downloaded services. User device 110 may include standard hardware computing components such as network (e.g., wireless) and media interfaces, non-transitory computer-readable storage (memory), and processors for executing instructions that may be stored in memory.


Communication networks 120A-B may convey various kinds of information to user devices, such as user device 110. Communication networks 120A-B may be a local, proprietary network (e.g., an intranet) and/or may be a part of a larger wide-area network. The communications network 110 may be a local area network (LAN), which may be communicatively coupled to a wide area network (WAN) such as the Internet. The Internet is a broad network of interconnected computers and servers allowing for the transmission and exchange of Internet Protocol (IP) data between users connected through a network service provider. Examples of network service providers are the public switched telephone network, a cable service provider, a provider of digital subscriber line (DSL) services, or a satellite service provider. Communications networks 120A-B allow a connecting device (e.g., user device 110 to access the Internet. Open communication network 120A is open and unsecured. As such, any user device 110 may be able to connect to the open communication network 120A without (much) restriction. In contrast, secured communication network 120B may involve various security policies and protocols so that communications to and from user device 110 may remain secure.


Communication networks 120A-B are provided by a hotspot access point 130, which can transmit various electromagnetic waves. Examples of wireless protocols that might be used by hotspot access point 130 include IEEE 802.11 (Wi-Fi or Wireless LAN), IEEE 802.16 (WiMAX), or IEEE 802.16c network. Hotspot may be inclusive or a number of wireless transceivers distributed over an area.


Access point 130 includes, at the least, an antenna system, radio, memory, and processor. The antenna system wirelessly receives and transmits data packets. For example, the antenna system can receive packet data such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) packet data using the IEEE 802.11 wireless protocol. Radio converts data into the requisite wireless protocols. Various instructions governing the control of the access point 130 are stored in memory and executed by processor.


One or more wireless or wired connections may be created to allow for data transmission between access point 130 and user device 110 (via communication networks 120A-B) as well as web portal server 140, hotspot controller 150, and various other access points in network environment 100. The antenna may further include selectable antenna elements like those disclosed in U.S. Pat. No. 7,292,198 for a “System and Method for an Omnidirectional Planar Antenna Apparatus,” the disclosure of which is incorporated herein by reference. Hotspot access point 130 may also utilize various transmission parameter controls like those disclosed in U.S. Pat. No. 7,889,497 for a “System and Method for Transmission Parameter Control for an Antenna Apparatus with Selectable Elements,” the disclosure of which is incorporated herein by reference.


Web portal server 140 may include any type of server or other computing device as is known in the art for providing access to the Internet (web). Web portal server 140 may include standard hardware computing components such as network and media interfaces, non-transitory computer-readable storage (memory), and processors for executing instructions or accessing information that may be stored in memory. The functionalities of multiple servers may be integrated into a single server. Any of the aforementioned servers (or an integrated server) may take on certain client-side, cache, or proxy server characteristics. These characteristics may depend on the particular network placement of the server or certain configurations of the server. When a user device 110 requests secure network access, the request may be redirected to web portal server 140, which may convey the request to hotspot controller 150.


Hotspot controller 150 manages the one or more hotspot access points 130 in network environment 100. As such, the hotspot controller 150 intelligently manages the hotspot wireless services, including deployment, RF assignments, traffic/load balancing, and security. In terms of security, for example, the hotspot controller 150 may receive a request that a user device 110 be allowed to use the secured communication network 120B. Hotspot controller 150 dynamically generates a unique pre-shared key for the requesting user device 110 and return the key to web portal server 140, which in turns generates a web page displaying the unique pre-shared key to the user device 110. User device 110 may then use the pre-shared key in a request to access secure communication network 120B.



FIG. 2 illustrates a method 200 for providing secure network access at a hotspot. The method 200 of FIG. 2 may be embodied as executable instructions in a non-transitory computer readable storage medium including but not limited to a CD, DVD, or non-volatile memory such as a hard drive. The instructions of the storage medium may be executed by a processor (or processors) to cause various hardware components of a computing device hosting or otherwise accessing the storage medium to effectuate the method. The steps identified in FIG. 2 (and the order thereof) are exemplary and may include various alternatives, equivalents, or derivations thereof including but not limited to the order of execution of the same.


In method 200 of FIG. 2, a user device connects to an open communication network hosted by a hotspot access point. The request is redirected to a web portal server, which requests a pre-shared key from a hotspot controller. The hotspot controller may generate and return the unique pre-shared key to the web portal server, which generates a webpage displaying the unique pre-shared key to the user device. The user device may then use the unique pre-shared key to access the secure communication network.


In step 210, a user device 110 connects to an open communication network 120A provided by hotspot access point 130. For some network activity (e.g., reading the news), the user may not necessarily require security and the use of the open communication network 120A may be sufficient. Some transactions (e.g., financial or business related) may require additional security so as to ensure that sensitive information is not exposed or misappropriated by other users of the open communication network 120A. The user of device 110 may be offered access to the secured communication network 120B as an option. Upon selection of that offering, a user request for access to the secure communication network 120B may be sent over the open communication network 120A. Connection to the open communication network 120A may, in some implementations, automatically initiate a request for secure access to the secured communication network 120B.


In step 220, the request for secure network access is redirected to web portal server 140. In addition to information regarding the particular user device 110, the access request may include information concerning various policies and parameters as determined by the particular entity (e.g., business) providing wireless access at the hotspot. These parameters and policies may include information used to configure a wireless device for connection to a restricted wireless network and access policies related to the same, such as a wireless network name, wireless device parameters, adapter configurations, security-related parameters, access constraints, quality of service parameters, security-related parameters, expiration date of the secure access, limits on session duration, bandwidth, user identity, user rewards, and access policies.


In step 230, the web portal server 140 submits a request for a unique pre-shared key to hotspot controller 150. Assigning each individual user/user device 110 a unique pre-shared key ensures that third-parties cannot eavesdrop on or otherwise access information belonging to another user accessing the network by way of device 110. Because each pre-shared key is unique, the encryption (and decryption) of information belonging to one particular user is different from that for any other user. Moreover, when the user leaves the hotspot, the unique pre-shared key assigned to that user/user device 110 does not need to be changed to maintain security for users remaining in the hotspot.


In step 240, the hotspot controller 150 generates a unique pre-shared key for the requesting user device 110 and sends the generated unique pre-shared key to the web portal server 140. Hotspot controller 150 may randomly generate the unique pre-shared secret for each user device 110 using various algorithms and formulas. By providing for randomly generated and unique keys, hotspot controller 150 increases the difficulty of illicitly gaining accessing user information by deducing the secret of any particular user. The unique pre-shared key may further be registered to the user of the user device based on user information provided in the request.


Hotspot controller 150 may also store information associating the particular key with the requesting user device 110. Where a particular business providing the hotspot wishes to apply certain policies and parameters, those policies and parameters may also be stored. A hotel, for example, may wish to provide frequent guests with greater bandwidth than other guests. As such, information regarding the guest identity, the user device 110 belonging to the guests (e.g., as identified by MAC address) and the amount of bandwidth allotted may also be stored in association with the unique pre-shared key.


In step 250, the web portal server 140 generates a webpage to display the unique pre-shared key to the user of user device 110.


In step 260, the unique pre-shared key is entered into user device 110, either manually by the user (e.g., a cut and paste operation), via user selection (e.g., execution of a script associated with a ‘install’ button), or automatically as a result of instructions embedded with a pre-shared key download package. A subsequent request for access to the secure communication network 120B is generated based on the unique pre-shared key. In some instances, the unique pre-shared key may be bundled as part of a package that may be installed automatically or upon request on the user device 110. The package may include any applications, policies, or parameters required for connection to the secure communication network 120B. For example, an application may be downloaded to the wireless device and executed to survey, configure (e.g., install parameters and policies), and/or connect the wireless device to the secured communication network 120B. The unique pre-shared key may then be used to authenticate the user device 110 so that the user device 110 can access the secured communication network 120B according to the installed policies and parameters.


The present invention may be implemented in a variety of devices. Non-transitory computer-readable storage media refer to any non-transitory storage medium or media that participate in providing instructions to a central processing unit (CPU) for execution. Such media can take many forms, including, but not limited to, non-volatile and volatile media, which may include optical disks, dynamic memory, floppy disks, flexible disks, hard disks, magnetic tape, any other magnetic medium, CD-ROM disks, digital video disks (DVDs), any other optical medium, RAM, PROM, EPROM, a FLASHEPROM, and any other memory chip or cartridge.


Various forms of transmission media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU. Various forms of storage may likewise be implemented as well as the necessary network interfaces and network topologies to implement the same.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art along with their full scope of equivalents.

Claims
  • 1. A method for providing secured network access, the method comprising: receiving a request initiated by a user device located within a range of a hotspot, the request sent via an open communication network associated with the hotspot and concerning access to a secured communication network at the hotspot by the user device, and wherein the request initiated by the user device was redirected to an intermediary web portal server;executing instructions stored in memory, wherein execution of the instructions by a processor: generates a new pre-shared key for the user device based on information in the request, wherein the new pre-shared key is unique to the user device, andregisters the new and unique pre-shared key to a user of the user device, the registration based on user information provided in the request;transmitting the unique pre-shared key over the open communication network for display on a webpage accessible to the user device, wherein the user device uses the unique pre-shared key in a subsequent request for access to the secured communication network; andstoring in memory the unique pre-shared key in association with information regarding the user device, wherein the memory further includes information regarding different user devices, each associated with a different pre-shared key unique to the respective different user device, and wherein access to the secured communication network is granted at the hotspot in response to the subsequent request by the user device, the subsequent request including the pre-shared key unique to the user device.
  • 2. The method of claim 1, wherein the generated unique pre-shared key is displayed on a web page generated by the intermediary web portal server.
  • 3. The method of claim 1, wherein the information regarding the user device includes at least one parameter, and wherein access to the secured communication network granted to the user device is governed at least in part by the at least one parameter.
  • 4. The method of claim 3, wherein the at least one parameter includes one or more of the following: expiration date, session duration, bandwidth, user identity, user rewards, or access policies.
  • 5. An apparatus for providing secured network access, the apparatus comprising: an interface for receiving an incoming request initiated by a user device located within a range of a hotspot, the request sent via an open communication network associated with the hotspot and concerning access to a secured communication network at the hotspot by the user device, and wherein the request initiated by the user device was redirected to an intermediary web portal server;a processor for executing instructions stored in memory, wherein execution of the instructions by the processor: generates a new pre-shared key for the user device based on information in the request, wherein the new pre-shared key is unique to the user device,registers the new and unique pre-shared key to a user of the user device, the registration based on user information provided in the request, andwherein the unique pre-shared key is transmitted over the open communication network for display on a webpage accessible to the user device; anda database in memory for storing the unique pre-shared key in association with information regarding the user device, wherein the memory further includes information regarding different user devices, each associated with a different pre-shared key unique to the respective different user device, and wherein access to the secured communication network at the hotspot is subsequently granted in response to a subsequent request for secured network access by the user device, the subsequent request including the pre-shared key unique to the user device.
  • 6. The apparatus of claim 5, wherein the interface further sends the generated unique pre-shared key to the intermediary web portal server to allow for generation of a web page display of the unique pre-shared key.
  • 7. The apparatus of claim 5, wherein the information regarding the user device stored in the database includes at least one parameter and wherein further execution of instructions by the processor grants the secured network access to the user device in response to the subsequent request, the secured network access governed by the at least one parameter.
  • 8. The apparatus of claim 7, wherein the at least one parameter stored in the database comprises expiration date, session duration, bandwidth, user identity, user rewards, or access policies.
  • 9. A system for providing secured network access, the system comprising: an access point associated with a hotspot, the access point providing both: open access over an open communication network, andsecured network access over a secured communication network based on a pre-shared key;an intermediary web portal service, wherein a request initiated by a user device located within a range of the hotspot is redirected to the intermediary web portal server, the request sent via the open communication network and concerning access to the secured communication network at the hotspot by the user device; anda hotspot controller comprising: an interface for receiving the incoming request initiated by the user device, wherein the intermediary web portal server submits the request to the hotspot controller for generation of the unique pre-shared key;a processor for executing instructions stored in memory, wherein execution of the instructions by the processor: generates a new pre-shared key for the user device based on information in the request, wherein the new pre-shared key is unique to the user device, andregisters the new and unique pre-shared key to a user of the user device, the registration based on user information provided in the request,wherein the interface transmits the unique pre-shared key over the open communication network for display on a webpage accessible to the user device, wherein the user device uses the unique pre-shared key in a subsequent request for access to the secured communication network, andmemory for storing the unique pre-shared key in association with information regarding the user device, wherein the memory further includes information regarding different user devices, each associated with a different pre-shared key unique to the respective different user device, and wherein access to the secured communication network at the hotspot is granted in response to the subsequent request by the user device, the subsequent request including the pre-shared key unique to the user device.
  • 10. The system of claim 9, wherein the generated unique pre-shared key is sent from the hotspot controller to the intermediary web portal server and wherein a web page display of the unique pre-shared key is generated by the intermediary web portal server.
  • 11. The system of claim 9, wherein the information regarding the user device include at least one parameter and wherein the secured network access granted to the user device is governed by the at least one parameter.
  • 12. The system of claim 11, wherein the at least one parameter comprises expiration date, session duration, bandwidth, user identity, user rewards, or access policies.
  • 13. A non-transitory computer-readable storage medium, having embodied thereon a program executable by a processor to perform a method for providing secured network access, the method comprising: receiving a request initiated by a user device located within a range of a hotspot, the request sent via an open communication network associated with the hotspot and concerning access to a secured communication network at the hotspot by the user device, and wherein the request initiated by the user device was redirected to an intermediary web portal server;generating a new pre-shared key for the user device based on information in the request, wherein the new pre-shared key is unique to the user device;registering the new and unique pre-shared key to a user of the user device, the registration based on user information provided in the request;transmitting the unique pre-shared key over the open communication network for display on a webpage accessible to the user device, wherein the user device uses the unique pre-shared key in a subsequent request for access to the secured communication network; andstoring the unique pre-shared key in association with information regarding the user device in memory, wherein the memory further includes information regarding different user devices, each associated with a different pre-shared key unique to the respective different user device, and wherein access to the secured communication network is granted at the hotspot in response to the subsequent request by the user device, the subsequent request including the pre-shared key unique to the user device.
  • 14. The non-transitory computer-readable storage medium of claim 13, wherein the generated unique pre-shared key is displayed on a web page generated by the intermediary web portal server.
  • 15. The non-transitory computer-readable storage medium of claim 13, wherein the information regarding the user device includes at least one parameter, and wherein access to the secured communication network granted to the user device is governed at least in part by the at least one parameter.
  • 16. The non-transitory computer-readable storage medium of claim 15, wherein the at least one parameter includes one or more of the following: expiration date, session duration, bandwidth, user identity, user rewards, or access policies.
US Referenced Citations (335)
Number Name Date Kind
723188 Tesla Mar 1903 A
725605 Tesla Apr 1903 A
1869659 Broertjes Aug 1932 A
2292387 Markey et al. Aug 1942 A
3488445 Chang Jan 1970 A
3568105 Felsenheld Mar 1971 A
3721990 Gibson et al. Mar 1973 A
3887925 Ranghelli Jun 1975 A
3967067 Potter Jun 1976 A
3969730 Fuchser Jul 1976 A
3982214 Burns Sep 1976 A
3991273 Mathes Nov 1976 A
4001734 Burns Jan 1977 A
4027307 Litchford May 1977 A
4176356 Foster et al. Nov 1979 A
4193077 Greenberg et al. Mar 1980 A
4203118 Alford May 1980 A
4253193 Kennard Feb 1981 A
4305052 Baril et al. Dec 1981 A
4513412 Cox Apr 1985 A
4554554 Olesen et al. Nov 1985 A
4733203 Ayasli Mar 1988 A
4764773 Larsen et al. Aug 1988 A
4800393 Edward et al. Jan 1989 A
4814777 Monser Mar 1989 A
4821040 Johnson et al. Apr 1989 A
5063574 Moose Nov 1991 A
5097484 Akaiwa Mar 1992 A
5173711 Takeuchi et al. Dec 1992 A
5203010 Felix et al. Apr 1993 A
5208564 Burns et al. May 1993 A
5220340 Shafai Jun 1993 A
5241693 Kim Aug 1993 A
5282222 Fattouche et al. Jan 1994 A
5291289 Hulyalkar et al. Mar 1994 A
5311550 Fouche et al. May 1994 A
5373548 McCarthy Dec 1994 A
5434575 Jelinek Jul 1995 A
5453752 Wang et al. Sep 1995 A
5479176 Zavrel Dec 1995 A
5507035 Bantz Apr 1996 A
5532708 Krenz et al. Jul 1996 A
5559800 Mousseau et al. Sep 1996 A
5726666 Hoover et al. Mar 1998 A
5754145 Evans May 1998 A
5767755 Kim et al. Jun 1998 A
5767807 Pritchett Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5786793 Maeda et al. Jul 1998 A
5802312 Lazaridis et al. Sep 1998 A
5828346 Park Oct 1998 A
5936595 Wang Aug 1999 A
5964830 Durrett Oct 1999 A
5990838 Burns et al. Nov 1999 A
6005525 Kivela Dec 1999 A
6011450 Miya Jan 2000 A
6031503 Preiss, II et al. Feb 2000 A
6034638 Thiel et al. Mar 2000 A
6046703 Wang Apr 2000 A
6052093 Yao et al. Apr 2000 A
6091364 Murakami et al. Jul 2000 A
6094177 Yamamoto Jul 2000 A
6097347 Duan et al. Aug 2000 A
6104356 Hikuma et al. Aug 2000 A
6169523 Ploussios Jan 2001 B1
6249216 Flick Jun 2001 B1
6266528 Farzaneh Jul 2001 B1
6281762 Nakao Aug 2001 B1
6288682 Thiel et al. Sep 2001 B1
6292153 Aiello et al. Sep 2001 B1
6307524 Britain Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323810 Poilasne et al. Nov 2001 B1
6326922 Hegendoerfer Dec 2001 B1
6326924 Muramoto et al. Dec 2001 B1
6337628 Campana, Jr. Jan 2002 B2
6337668 Ito et al. Jan 2002 B1
6339404 Johnson Jan 2002 B1
6345043 Hsu Feb 2002 B1
6356242 Ploussios Mar 2002 B1
6356243 Schneider et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366254 Sievenpiper Apr 2002 B1
6377227 Zhu et al. Apr 2002 B1
6392610 Braun et al. May 2002 B1
6400329 Barnes Jun 2002 B1
6404386 Proctor, Jr. et al. Jun 2002 B1
6407719 Ohira et al. Jun 2002 B1
RE37802 Fattouche et al. Jul 2002 E
6414647 Lee Jul 2002 B1
6424311 Tsai et al. Jul 2002 B1
6442507 Skidmore et al. Aug 2002 B1
6445688 Garces et al. Sep 2002 B1
6456242 Crawford Sep 2002 B1
6476773 Palmer Nov 2002 B2
6492957 Carillo, Jr. et al. Dec 2002 B2
6493679 Rappaport et al. Dec 2002 B1
6496083 Kushitani et al. Dec 2002 B1
6498589 Horii Dec 2002 B1
6499006 Rappaport et al. Dec 2002 B1
6507321 Oberschmidt et al. Jan 2003 B2
6521422 Hsu Feb 2003 B1
6531985 Jones et al. Mar 2003 B1
6545643 Sward Apr 2003 B1
6583765 Schamberger et al. Jun 2003 B1
6586786 Kitazawa et al. Jul 2003 B2
6606059 Barabash Aug 2003 B1
6611230 Phelan Aug 2003 B2
6621029 Galmiche Sep 2003 B2
6625454 Rappaport et al. Sep 2003 B1
6633206 Kato Oct 2003 B1
6642889 McGrath Nov 2003 B1
6642890 Chen Nov 2003 B1
6674459 Ben-Shachar et al. Jan 2004 B2
6700546 Benhammou et al. Mar 2004 B2
6701522 Rubin et al. Mar 2004 B1
6724346 Le Bolzer Apr 2004 B2
6725281 Zintel et al. Apr 2004 B1
6741219 Shor May 2004 B2
6747605 Lebaric et al. Jun 2004 B2
6753814 Killen et al. Jun 2004 B2
6757267 Evans Jun 2004 B1
6762723 Nallo et al. Jul 2004 B2
6774852 Chiang et al. Aug 2004 B2
6774864 Evans Aug 2004 B2
6779004 Zintel et al. Aug 2004 B1
6819287 Sullivan et al. Nov 2004 B2
6839038 Weinstein Jan 2005 B2
6859176 Choi Feb 2005 B2
6859182 Horii Feb 2005 B2
6864852 Chiang et al. Mar 2005 B2
6876280 Nakano Apr 2005 B2
6876836 Lin Apr 2005 B2
6879293 Sato Apr 2005 B2
6888504 Chiang et al. May 2005 B2
6888893 Li et al. May 2005 B2
6892230 Gu et al. May 2005 B1
6894653 Chiang et al. May 2005 B2
6903686 Vance et al. Jun 2005 B2
6906678 Chen Jun 2005 B2
6910068 Zintel et al. Jun 2005 B2
6914581 Popek Jul 2005 B1
6924768 Wu et al. Aug 2005 B2
6931429 Gouge et al. Aug 2005 B2
6933907 Shirosaka Aug 2005 B2
6941143 Mathur Sep 2005 B2
6943749 Paun Sep 2005 B2
6950019 Bellone et al. Sep 2005 B2
6950069 Gaucher et al. Sep 2005 B2
6961028 Joy et al. Nov 2005 B2
6965353 Shirosaka et al. Nov 2005 B2
6973622 Rappaport et al. Dec 2005 B1
6975834 Forster Dec 2005 B1
6980782 Braun et al. Dec 2005 B1
7023909 Adams et al. Apr 2006 B1
7024225 Ito Apr 2006 B2
7034769 Surducan et al. Apr 2006 B2
7034770 Yang et al. Apr 2006 B2
7043277 Pfister May 2006 B1
7046201 Okada May 2006 B2
7050809 Lim May 2006 B2
7053844 Gaucher et al. May 2006 B2
7064717 Kaluzni Jun 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7088299 Siegler et al. Aug 2006 B2
7088306 Chiang et al. Aug 2006 B2
7089307 Zintel et al. Aug 2006 B2
7098863 Bancroft Aug 2006 B2
D530325 Kerila Oct 2006 S
7120405 Rofougaran Oct 2006 B2
7130895 Zintel et al. Oct 2006 B2
7148846 Qi et al. Dec 2006 B2
7162273 Abramov et al. Jan 2007 B1
7164380 Saito Jan 2007 B2
7171475 Weisman et al. Jan 2007 B2
7193562 Shtrom Mar 2007 B2
7206610 Iacono et al. Apr 2007 B2
7215296 Abramov et al. May 2007 B2
7277063 Shirosaka et al. Oct 2007 B2
7292198 Shtrom Nov 2007 B2
7292870 Heredia et al. Nov 2007 B2
7295825 Shtrom et al. Nov 2007 B2
7298228 Sievenpiper Nov 2007 B2
7312762 Puente Ballarda et al. Dec 2007 B2
7319432 Andersson Jan 2008 B2
7333460 Vaisanen et al. Feb 2008 B2
7358912 Kish et al. Apr 2008 B1
7362280 Shtrom Apr 2008 B2
7385563 Bishop Jun 2008 B2
7498999 Shtrom et al. Mar 2009 B2
7511680 Shtrom et al. Mar 2009 B2
7522569 Rada Apr 2009 B2
7525486 Shtrom Apr 2009 B2
7609648 Hoffmann et al. Oct 2009 B2
7697550 Rada Apr 2010 B2
7733275 Hirota Jun 2010 B2
7782895 Pasanen et al. Aug 2010 B2
7835697 Wright Nov 2010 B2
7847741 Hirota Dec 2010 B2
7864119 Shtrom et al. Jan 2011 B2
7893882 Shtrom Feb 2011 B2
7916463 Aya et al. Mar 2011 B2
8068068 Kish et al. Nov 2011 B2
8085206 Shtrom Dec 2011 B2
8217843 Shtrom Jul 2012 B2
8358248 Shtrom Jan 2013 B2
20010046848 Kenkel Nov 2001 A1
20020031130 Tsuchiya et al. Mar 2002 A1
20020047800 Proctor, Jr. et al. Apr 2002 A1
20020080767 Lee Jun 2002 A1
20020084942 Tsai et al. Jul 2002 A1
20020101377 Crawford Aug 2002 A1
20020105471 Kojima et al. Aug 2002 A1
20020112058 Weisman et al. Aug 2002 A1
20020119757 Hamabe Aug 2002 A1
20020158798 Chiang et al. Oct 2002 A1
20020170064 Monroe et al. Nov 2002 A1
20030026240 Eyuboglu et al. Feb 2003 A1
20030030588 Kalis et al. Feb 2003 A1
20030038698 Hirayama Feb 2003 A1
20030063591 Leung et al. Apr 2003 A1
20030122714 Wannagot et al. Jul 2003 A1
20030169330 Ben-Shachar et al. Sep 2003 A1
20030184490 Raiman et al. Oct 2003 A1
20030189514 Miyano et al. Oct 2003 A1
20030189521 Yamamoto et al. Oct 2003 A1
20030189523 Ojantakanen et al. Oct 2003 A1
20030210207 Suh et al. Nov 2003 A1
20030214446 Shehab Nov 2003 A1
20030227414 Saliga et al. Dec 2003 A1
20040014432 Boyle Jan 2004 A1
20040017310 Vargas-Hurlston et al. Jan 2004 A1
20040017315 Fang et al. Jan 2004 A1
20040017860 Liu Jan 2004 A1
20040027291 Zhang et al. Feb 2004 A1
20040027304 Chiang et al. Feb 2004 A1
20040032378 Volman et al. Feb 2004 A1
20040036651 Toda Feb 2004 A1
20040036654 Hsieh Feb 2004 A1
20040041732 Aikawa et al. Mar 2004 A1
20040048593 Sano Mar 2004 A1
20040058690 Ratzel et al. Mar 2004 A1
20040061653 Webb et al. Apr 2004 A1
20040070543 Masaki Apr 2004 A1
20040075609 Li Apr 2004 A1
20040080455 Lee Apr 2004 A1
20040090371 Rossman May 2004 A1
20040095278 Kanemoto et al. May 2004 A1
20040114535 Hoffmann et al. Jun 2004 A1
20040125777 Doyle et al. Jul 2004 A1
20040145528 Mukai et al. Jul 2004 A1
20040160376 Hornsby et al. Aug 2004 A1
20040190477 Olson et al. Sep 2004 A1
20040203347 Nguyen Oct 2004 A1
20040207563 Yang Oct 2004 A1
20040227669 Okada Nov 2004 A1
20040260800 Gu et al. Dec 2004 A1
20050022210 Zintel et al. Jan 2005 A1
20050041739 Li et al. Feb 2005 A1
20050042988 Hoek et al. Feb 2005 A1
20050048934 Rawnick et al. Mar 2005 A1
20050062649 Chiang et al. Mar 2005 A1
20050074018 Zintel et al. Apr 2005 A1
20050097503 Zintel et al. May 2005 A1
20050122265 Gaucher et al. Jun 2005 A1
20050128983 Kim et al. Jun 2005 A1
20050128988 Simpson et al. Jun 2005 A1
20050135480 Li et al. Jun 2005 A1
20050138137 Encarnacion et al. Jun 2005 A1
20050138193 Encarnacion et al. Jun 2005 A1
20050146475 Bettner et al. Jul 2005 A1
20050180381 Retzer et al. Aug 2005 A1
20050188193 Kuehnel et al. Aug 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050240665 Gu et al. Oct 2005 A1
20050267935 Gandhi et al. Dec 2005 A1
20060031922 Sakai Feb 2006 A1
20060038734 Shtrom et al. Feb 2006 A1
20060050005 Shirosaka et al. Mar 2006 A1
20060094371 Nguyen May 2006 A1
20060098607 Zeng et al. May 2006 A1
20060109191 Shtrom May 2006 A1
20060123124 Weisman et al. Jun 2006 A1
20060123125 Weisman et al. Jun 2006 A1
20060123455 Pai et al. Jun 2006 A1
20060168159 Weisman et al. Jul 2006 A1
20060184660 Rao et al. Aug 2006 A1
20060184661 Weisman et al. Aug 2006 A1
20060184693 Rao et al. Aug 2006 A1
20060224690 Falkenburg et al. Oct 2006 A1
20060225107 Seetharaman et al. Oct 2006 A1
20060227761 Scott, III et al. Oct 2006 A1
20060239369 Lee Oct 2006 A1
20060251256 Asokan et al. Nov 2006 A1
20060262015 Thornell-Pers et al. Nov 2006 A1
20060291434 Gu et al. Dec 2006 A1
20070027622 Cleron et al. Feb 2007 A1
20070037619 Matsunaga et al. Feb 2007 A1
20070055752 Wiegand et al. Mar 2007 A1
20070115180 Kish et al. May 2007 A1
20070135167 Liu Jun 2007 A1
20080060064 Wynn et al. Mar 2008 A1
20080062058 Bishop Mar 2008 A1
20080075280 Ye et al. Mar 2008 A1
20080096492 Yoon Apr 2008 A1
20080109657 Bajaj et al. May 2008 A1
20080136715 Shtrom Jun 2008 A1
20080212535 Karaoguz et al. Sep 2008 A1
20080272977 Gaucher et al. Nov 2008 A1
20090005005 Forstall et al. Jan 2009 A1
20090103731 Sarikaya Apr 2009 A1
20090187970 Mower et al. Jul 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090295648 Dorsey et al. Dec 2009 A1
20090315794 Alamouti et al. Dec 2009 A1
20100053023 Shtrom Mar 2010 A1
20110007705 Buddhikot et al. Jan 2011 A1
20110047603 Gordon et al. Feb 2011 A1
20110095960 Shtrom Apr 2011 A1
20110126016 Sun May 2011 A1
20120030466 Yamaguchi Feb 2012 A1
20120054338 Ando Mar 2012 A1
20120089845 Raleigh Apr 2012 A1
20120098730 Kish Apr 2012 A1
20120134291 Raleigh May 2012 A1
20120257536 Kholaif et al. Oct 2012 A1
20120299772 Shtrom Nov 2012 A1
20130007853 Gupta et al. Jan 2013 A1
20130038496 Shtrom Feb 2013 A1
20130182693 Sperling et al. Jul 2013 A1
20130207865 Shtrom Aug 2013 A1
20130207866 Shtrom Aug 2013 A1
20130207877 Shtrom Aug 2013 A1
20130241789 Shtrom Sep 2013 A1
20130269008 Shtrom Oct 2013 A1
Foreign Referenced Citations (40)
Number Date Country
2003227399 Oct 2003 AU
02494982 Oct 2003 CA
10 2006 02635 Dec 2006 DE
352 787 Jan 1990 EP
0 534 612 Mar 1993 EP
0 756 381 Jan 1997 EP
0 883 206 Dec 1998 EP
1 152 452 Nov 2001 EP
1 152 542 Nov 2001 EP
1 152 543 Nov 2001 EP
1 376 920 Jun 2002 EP
1 220 461 Jul 2002 EP
1 315 311 May 2003 EP
1 450 521 Aug 2004 EP
1 608 108 Dec 2005 EP
1 909 358 Apr 2008 EP
1 287 588 Jan 2009 EP
2 426 870 Jun 2006 GB
2 423 191 Aug 2006 GB
03038933 Feb 1991 JP
2008088633 Apr 1996 JP
2001-057560 Feb 2001 JP
2002-505835 Feb 2002 JP
2005-354249 Dec 2005 JP
2006060408 Mar 2006 JP
201351188 Dec 2013 TW
WO 9004893 May 1990 WO
WO 9955012 Oct 1999 WO
WO 0113461 Feb 2001 WO
WO 0169724 Sep 2001 WO
WO 0225967 Mar 2002 WO
WO 03079484 Sep 2003 WO
WO 03081718 Oct 2003 WO
WO 2004051798 Jun 2004 WO
WO 2006023247 Mar 2006 WO
WO 2006057679 Jun 2006 WO
WO 2007076105 Jul 2007 WO
WO 2007127087 Nov 2007 WO
WO 2013119750 Aug 2013 WO
WO 2013152027 Oct 2013 WO
Non-Patent Literature Citations (150)
Entry
Encrypted Preshared key ; cisco corp. 14 pages, 2010.
“Fast Pre-Authentication Based on Proactive Key Distribution for 802.11 Infrastructure Networks”; kassab et al; WMuNeP'05, Oct. 13, 2005, Montreal, Quebec, Canada. Copyright 2005 ACM.
“Fast Authentication Methods for Handovers between IEEE 802.11 Wireless LANs”, Bargh et al., Proceedings of the ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots. Oct. 1, 2004.
Ruckus Wireless, Inc. vs. Netgear, Inc; Defendant Netgear, Inc. Invalidity Contentions.
Abramov 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Abramov 273—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Abramov 296—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Airgain 2004—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Bancroft 863—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Barabash 059—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Cetiner 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Chuang 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Evans 864—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
Johnson 404—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Kalis 2000—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Kalis 2002—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
Kaluzni 717—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Kim 693—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Lin 836—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Nakao 762—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
Okada 201—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Palmer 773—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Paun 749—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Qian 2000—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Shehab 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Shirosaka 907—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Shtrom 198 & 280—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Sievenpiper 254—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Simons 1994—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Sward 643—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Vaughan 1995—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Wang 703—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium.
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2x2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743 vol. 2.
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, and 90, Jun. 18, 1985.
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Jun. 30, 1981.
Bedell, Paul, “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA.
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003).
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003.
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels—Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793.
Casas, Eduardo F., et al., “OFDM for Data Communication over Mobile Radio FM Channels; Part II: Performance Improvement,” Department of Electrical Engineering, University of British Columbia.
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007.
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540.
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.C.
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002).
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675.
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003.
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003.
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002.
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004.
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
English Translation of PCT Pub. No. WO2004/051798 (as filed US National Stage U.S. Appl. No. 10/536,547).
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002.
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004).
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005.
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180.
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006.
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003.
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000.
Ian F. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology.
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004.
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013.
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006.
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001.
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003.
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE,CH2831-6/90/0000-0273.
Orinoco AP-2000 5GHz Kit, “Access Point Family,” Proxim Wireless Corporation.
Pat Calhoun et al., “802.11 r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html.
Press Release, NETGEAR RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php.
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc.
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510.
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811.
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003.
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001.
Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. I, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA.
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041.
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598.
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook (1998).
Weinstein, S. B., et al., “NData Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634.
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001.
Petition Decision Denying Request to Order Additional Claims for U.S. Patent No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
Right of Appeal Notice for U.S. Patent No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
European Examination Report for EP Application No. 05776697.4 mailed Jan. 21, 2011.
European Second Examination Report for EP Application No. 07775498.4 dated Mar. 12, 2013.
European Third Examination Report for EP Application No. 07775498.4 dated Oct. 17, 2011.
European First Examination Report for EP Application No. 09014989.9 dated May 7, 2012.
Supplementary European Search Report for EP Application No. EP05776697.4 dated Jul, 10 2009.
Supplementary European Search Report for EP Application No. EP07755519 dated Mar. 11, 2009.
PCT Application No. PCT/US2005/27023, International Search Report and Written Opinion mailed Dec. 23, 2005.
PCT Application No. PCT/US2006/49211, International Search Report and Written Opinion mailed Aug. 29, 2008.
PCT Application No. PCT/US2007/09276, International Search Report and Written Opinion mailed Aug. 11, 2008.
Chinese Application No. 200680048001.7, Office Action dated Jun. 20, 2012.
Chinese Application No. 200780020943.9, Office Action dated Feb. 7, 2013.
Chinese Application No. 200780020943.9, Office Action dated Aug. 29, 2012.
Chinese Application No. 200780020943.9, Office Action dated Dec. 19, 2011.
Chinese Application No. 200910258884.X, Office Action dated Aug. 3, 2012.
Taiwan Application No. 094127953, Office Action dated Mar. 20, 2012.
Taiwan Application No. 096114265, Office Action dated Jun. 20, 2011.
U.S. Appl. No. 11/010,076, Office Action mailed Oct. 31, 2006.
U.S. Appl. No. 11/010,076, Final Office Action mailed Aug. 8, 2006.
U.S. Appl. No. 11/010,076, Office Action mailed Dec. 23, 2006.
U.S. Appl. No. 11/022, 080, Office Action mailed Jul. 21, 2006.
U.S. Appl. No. 11/041,145, Final Office Action mailed Jan. 29, 2007.
U.S. Appl. No. 11/041,145, Office Action mailed Jul. 21, 2006.
U.S. Appl. No. 11/265,751, Office Action mailed Mar. 18, 2008.
U.S. Appl. No. 11/413,461, Office Action mailed Jun. 7, 2007.
U.S. Appl. No. 11/714,707, Final Office Action mailed May 30, 2008.
U.S. Appl. No. 11/714,707, Office Action mailed Oct. 15, 2007.
U.S. Appl. No. 11/924,082, Office Action mailed Aug. 29, 2008.
U.S. Appl. No. 12/082,090, Office Action mailed Jan. 18, 2011.
U.S. Appl. No. 12/404,124, Final Office Action mailed Feb. 7, 2012.
U.S. Appl. No. 12/404,124, Office Action mailed Sep. 19, 2011.
U.S. Appl. No. 12/953,324, Office Action mailed Mar. 24, 2011.
U.S. Appl. No. 13/280,278, Office Action mailed Mar. 25, 2013.
U.S. Appl. No. 13/280,278, Final Office Action mailed Aug. 22, 2012.
U.S. Appl. No. 13/280,278, Office Action mailed Feb. 12, 2012.
U.S. Appl. No. 13/305,609, Final Office Action mailed Jul. 3, 2012.
U.S. Appl. No. 13/305,609, Office Action mailed Dec. 20, 2011.
U.S. Appl. No. 13/485,012, Final Office Action mailed Mar. 3, 2013.
U.S. Appl. No. 13/485,012, Office Action mailed Oct. 25, 2012.
Request for Inter Partes Rexamination for U.S. Patent No. 7,358,912, filed by Rayspan Corporation and Netgear, Inc. on Sep. 4, 2008.
Third Party Comments after Patent Owner's Response in Accordance with 37 CFR 1.947 for U.S. Patent No. 7,358,912 (Control No. 95/001079) mailed on Jul. 17, 2009.
U.S. Appl. No. 95/001,078, Sep. 4, 2008, Shtrom et al. (Re-Exam).
U.S. Appl. No. 95/001,079, Sep. 4, 2008, Shtrom et al. (Re-Exam).
PCT Application No. PCT/US2005/027169, International Search Report and Written Opinion mailed Aug. 10, 2006.
PCT Application No. PCT/US2013/34997, International Search Report mailed Jun. 17, 2013.
Chinese Application No. 20058001532.6, Office Action dated Jun. 23, 2011.
Chinese Application No. 200910258884.X, Office Action dated Apr. 15, 2013.
Taiwan Application No. 094127953, Office Action dated Aug. 16, 2011.
U.S. Appl. No. 12/404,127, Final Office Action mailed Feb. 7, 2012.
U.S. Appl. No. 12/404,127, Office Action mailed Sep. 19, 2011.
U.S. Appl. No. 11/877,465, Final Office Action mailed May 16, 2013.
U.S. Appl. No. 11/877,465, Office Action mailed Oct. 3, 2012.
U.S. Appl. No. 11/877,465, Final Office Action mailed Jun. 20, 2012.
U.S. Appl. No. 11/877,465, Office Action mailed Sep. 19, 2011.
U.S. Appl. No. 11/877,465, Final Office Action mailed Dec. 9, 2010.
U.S. Appl. No. 11/877,465, Office Action mailed Apr. 12, 2010.
U.S. Appl. No. 12/980,253, Final Office Action mailed Jun. 6, 2013.
U.S. Appl. No. 12/980,253, Office Action mailed Aug. 17, 2012.
U.S. Appl. No. 12/980,253, Office Action mailed Sep. 13, 2011.
U.S. Appl. No. 12/980,253, Office Action mailed Mar. 1, 2011.
U.S. Appl. No. 12/425,374, Office Action mailed Jul. 6, 2010.
U.S. Appl. No. 13/653,405, Office Action mailed Dec. 19, 2012.
U.S. Appl. No. 13/731,273, Office Action mailed May 23, 2013.
U.S. Appl. No. 13/396,482, Office Action mailed Oct. 18, 2013.
U.S. Appl. No. 13/396,484, Office Action mailed Oct. 11, 2013.
U.S. Appl. No. 13/439,844, Final Office Action mailed Oct. 28, 2013.
U.S. Appl. No. 13/439,844, Office Action mailed Jun. 5, 2013.
Related Publications (1)
Number Date Country
20130212656 A1 Aug 2013 US