1. Field of the Invention
The invention relates to speech processing, and more particularly to amplitude adjustment of speech signals.
2. Description of the Related Art
A speech processing signal amplifies a speech signal with a power amplifier to obtain an amplified speech signal with suitable amplitude for speaker broadcasts. However, when the speech signal amplitude is greater than a threshold level, the power amplifier, amplifies the speech signal with a reduced gain, which is referred to as ‘saturation of the power amplifier’. The speech processing signal therefore requires a dynamic range control module to adjust the amplitude of a speech signal before the speech signal is amplified by a power amplifier to prevent the power amplifier from saturation.
A conventional dynamic range control module continuously monitors speech signal amplitude. When the speech signal amplitude is greater than a threshold level, the conventional dynamic range control module attenuates the speech signal before the speech signal is amplified by a power amplifier. The power amplifier is therefore prevented from saturation. The conventional dynamic range control module, however, starts to attenuate the speech signal after the section of the speech signal having amplitude exceeding the threshold level is found. The speech signal section with the high amplitude is therefore still amplified by the power amplifier to obtain an amplified speech signal with a high amplitude, causing amplitude differential between the speech signal section and a subsequent attenuated section. The amplitude difference caused by the conventional dynamic range control module induces a harsh noise in the amplified speech signal.
In addition, a speech signal comprises a series of syllables. Because a conventional dynamic range control module attenuates the speech signal with different attenuation factors according to the speech signal amplitude, when a syllable of the speech signal has different amplitudes, different sections of the syllable are attenuated with different attenuation factors, causing signal distortion in the adjusted speech signal output by the conventional dynamic range control module. Thus, the conventional dynamic range control module has deficiencies, and a new dynamic range control module without the aforementioned deficiencies is required.
The invention provides a dynamic range control module installed in a speech processing apparatus. In one embodiment, the dynamic range control module comprises a buffer, a voice activity detector, a peak calculation module, and an amplitude adjusting module. The buffer buffers a speech signal to obtain a delayed speech signal. The voice activity detector determines a syllable from the delayed speech signal. The peak calculation module calculates peak amplitude of the syllable. The amplitude adjusting module determines an attenuation factor corresponding to the syllable according to the peak amplitude in the syllable, and adjusts amplitude of the whole syllable with the same gain according to the attenuation factor to obtain an adjusted speech signal.
The invention provides a speech processing apparatus. In one embodiment, the speech processing apparatus comprises a speech signal source, a dynamic range control module, and a power amplifier. The speech signal source generates a speech signal. The dynamic range control module determines a syllable from the speech signal, calculates peak amplitude of the syllable, and adjusts amplitude of the syllable according to the peak amplitude to obtain an adjusted speech signal. The power amplifier then amplifies the adjusted speech signal to obtain an amplified speech signal.
The invention provides a method for amplitude adjustment for a speech signal. First, a speech signal is buffered to obtain a delayed speech signal. A syllable is then determined from the delayed speech signal. Peak amplitude of the syllable is then calculated. An attenuation factor corresponding to the syllable is then determined according to the peak amplitude in the syllable. Finally, amplitude of the whole syllable is adjusted with the same gain according to the attenuation factor to obtain an adjusted speech signal.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
Referring to
Referring to
After the syllable is determined, the peak calculation module 214 then calculates peak amplitude p(n) of the syllable. In one embodiment, the peak calculation module 214 first calculates amplitude values of the samples of the delayed speech signal x(n−D) within the range of the syllable. The peak calculation module 214 then selects a maximum amplitude value from the amplitude values as the peak amplitude p(n) of the syllable and delivers the peak amplitude p(n) to the amplitude adjusting module 218. After the peak amplitude p(n) is determined, the amplitude adjusting module 218 then determines an attenuation factor corresponding to the syllable according to the peak amplitude p(n), and then adjusts the amplitudes of all samples x(n−D) of the syllable according to the attenuation factor to obtain the adjusted speech signal y(n). In other words, the dynamic range control module 204 processes the speech signal x(n) in a unit of a syllable, and all samples of a syllable are attenuated by the same level. The samples of a syllable therefore do not have any signal distortion subsequent to processing of the dynamic range control module 204, and the adjusted speech signal y(n) does not comprise harsh noises caused by the dynamic range control module 204.
Referring to
In one embodiment, the amplitude adjusting module 218 adjusts the amplitude of the syllable according to the following algorithm:
wherein y(n) is the adjusted speech signal, x(n) is the delayed speech signal, sign[x(n)] is a sign of the delayed speech signal, T1, T2, and T3 are threshold levels, g0, g1, g2, and g3 are attenuation factors, and n is a sample index. In one embodiment, the attenuation factor g0 is equal to 1, and the attenuation factors g1, g2, and g3 are progressively decreasing. In other words, g0>g1>g2>g3. Thus, the amplitude adjusting module 218 attenuates a syllable with a greater peak amplitude according to a higher attenuation factor to generate the adjusted speech signal y(n).
Referring to
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.