1. Field
The disclosure relates to techniques for dynamically configuring a receiver to switch amongst two or more downconversion paths.
2. Background
In the design of communication circuits, a wideband receiver may be configured to simultaneously receive information on multiple channels. To do this, the wideband receiver may utilize more than one downconversion path by mixing a received radio-frequency (RF) signal with a plurality of local oscillators (LO's) each having a distinct LO frequency. For example, a first receive channel at a given center frequency may be downconverted using a first LO having a first LO frequency, while a second receive channel at a different center frequency may be downconverted using a second LO having a second LO frequency.
While providing such multiple downconversion paths may advantageously ease the channel filter and/or other rejection requirements for each downconversion path, it may also unnecessarily increase power consumption in certain cases. For example, when the interference levels due to jammers are relatively low, the improved receive performance afforded by the multiple downconversion paths may not be necessary.
It would be desirable to provide techniques for dynamically configuring a number of downconversion paths used in a wideband receiver to optimize the tradeoff between receiver performance and power consumption.
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary aspects of the invention and is not intended to represent the only exemplary aspects in which the invention can be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other exemplary aspects. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary aspects of the invention. It will be apparent to those skilled in the art that the exemplary aspects of the invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary aspects presented herein. In this specification and in the claims, the terms “module” and “block” may be used interchangeably to denote an entity configured to perform the operations described.
In
In an exemplary embodiment, LO1 and LO2 may mix distinct channels in the RF outputs of RF processing block 110 each down to a zero frequency (e.g., according to a zero-IF architecture). In alternative exemplary embodiments, the local oscillators may mix the RF channels down to one or more low intermediate frequencies (e.g., according to a low IF architecture). The outputs of blocks 130 and 132 are provided to an A/D converter (ADC) and digital processing block 140. Block 140 may convert the outputs of blocks 130 and 132 to a digital signal, and additionally process the digital signal using digital processing hardware.
Further shown in
It would be desirable to provide techniques for dynamically switching amongst one, two, or even more downconversion paths in a receiver based on channel conditions, for example, the power and frequencies of interferers detected in the spectrum.
According to the present disclosure, an interferer detection block 120 such as shown in
For example, in
In
In an exemplary embodiment, the wideband power (WB) may be computed by computing the sum I2+Q2 (i.e., a squared magnitude) of the digitized I/Q outputs of block 440 prior to digital filtering performed by the block 460. The narrowband power (NB), on the other hand, may be computed as the sum I2+Q2 of post-filtered versions of the digitized I/Q outputs of block 440. To decide whether to use a single downconversion path or two downconversion path for receiving, a path selection logic block such as block 125 shown in
if WB<NB+FM, then enable a single path;
if WB>NB+FM, then enable two paths;
wherein FM corresponds to a predetermined fading margin.
In
At block 520, it is determined whether WB is greater than NB+FM. If so, then the scheme may proceed to block 530, wherein operation is switched to (or remains with) a single downconversion path. The scheme then returns to block 510.
If WB is not greater than NB+FM, then the scheme may proceed to block 540, wherein operation is switched to (or remains with) two or more downconversion paths. The scheme then returns to block 510.
It will be appreciated that alternative logic schemes may readily be designed to utilize the detected interference information to select the number of downconversion signal paths. For example, in alternative exemplary embodiments, the threshold or margin utilized to switch from one downconversion path to two downconversion paths may be different from the threshold or margin utilized to switch from two downconversion paths to one downconversion path. Hysteresis may further be employed when determining appropriate levels to switch. Any of the predetermined thresholds may be configured depending on channel allocation information received from a base station. Alternative exemplary embodiments employing other types of path selection logic are contemplated to be within the scope of the present disclosure.
One of ordinary skill in the art will appreciate in light of the present disclosure that many possible techniques may be employed for interferer detection, other than those explicitly described in this disclosure. For example, interference detection may be performed in the RF or analog domain, using one or more blocks not shown in
While certain exemplary embodiments have been described wherein the one or more interferer signal has a frequency that lies within a group of wanted signals, it will be appreciated that the techniques of the present disclosure may readily be applied to cases wherein an interferer signal has a frequency that lies outside a group of wanted signals.
In contrast to the exemplary embodiment shown in
Note the techniques of the present disclosure may readily be applied to accommodate more than two downconversion paths. For example, in a receiver having three downconversion paths, the interferer detection/path selection logic module may be configured to disable any one or two of the downconversion paths in response to the detected levels of interference being compared to one, two, or more thresholds. Such alternative exemplary embodiments are contemplated to be within the scope of the present disclosure.
In this specification and in the claims, it will be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected to” or “directly coupled to” another element, there are no intervening elements present. Furthermore, when an element is referred to as being “electrically coupled” to another element, it denotes that a path of low resistance is present between such elements, while when an element is referred to as being simply “coupled” to another element, there may or may not be a path of low resistance between such elements.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the exemplary aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary aspects of the invention.
The various illustrative logical blocks, modules, and circuits described in connection with the exemplary aspects disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the exemplary aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-Ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
The previous description of the disclosed exemplary aspects is provided to enable any person skilled in the art to make or use the invention. Various modifications to these exemplary aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other exemplary aspects without departing from the spirit or scope of the invention. Thus, the present disclosure is not intended to be limited to the exemplary aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application is a non-provisional application claiming priority to provisional application Ser. No. 61/557,838, filed on Nov. 9, 2011, entitled “DYNAMIC SWITCHING BETWEEN RECEIVERS”, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3911364 | Langseth et al. | Oct 1975 | A |
4035728 | Ishikawa et al. | Jul 1977 | A |
4035729 | Perry | Jul 1977 | A |
4246655 | Parker | Jan 1981 | A |
4326294 | Okamoto et al. | Apr 1982 | A |
4715048 | Masamura | Dec 1987 | A |
4742563 | Fukumura | May 1988 | A |
4756023 | Kojima | Jul 1988 | A |
4969207 | Sakamoto et al. | Nov 1990 | A |
5056411 | Baker | Oct 1991 | A |
5291519 | Tsurumaru | Mar 1994 | A |
5321850 | Backstrom et al. | Jun 1994 | A |
5345601 | Takagi et al. | Sep 1994 | A |
5390342 | Takayama et al. | Feb 1995 | A |
5559838 | Nakagoshi | Sep 1996 | A |
5566364 | Mizoguchi et al. | Oct 1996 | A |
5694396 | Firouzbakht et al. | Dec 1997 | A |
5697083 | Sano | Dec 1997 | A |
5761613 | Saunders et al. | Jun 1998 | A |
5794159 | Portin | Aug 1998 | A |
5805643 | Seki et al. | Sep 1998 | A |
5805989 | Ushida | Sep 1998 | A |
5835853 | Enoki et al. | Nov 1998 | A |
5940452 | Rich | Aug 1999 | A |
5999815 | TenBrook et al. | Dec 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6026288 | Bronner | Feb 2000 | A |
6040732 | Brokaw | Mar 2000 | A |
6044254 | Ohta et al. | Mar 2000 | A |
6063961 | Kroner | May 2000 | A |
6069923 | Ostman et al. | May 2000 | A |
6088348 | Bell, III | Jul 2000 | A |
6208844 | Abdelgany | Mar 2001 | B1 |
6249687 | Thomsen et al. | Jun 2001 | B1 |
6424683 | Schoellhorn | Jul 2002 | B1 |
6430237 | Anvari | Aug 2002 | B1 |
6472947 | Zeitz | Oct 2002 | B1 |
6473601 | Oda | Oct 2002 | B1 |
6522895 | Montalvo | Feb 2003 | B1 |
6535725 | Hatcher et al. | Mar 2003 | B2 |
6600759 | Wood | Jul 2003 | B1 |
6600907 | Taguchi | Jul 2003 | B1 |
6600931 | Sutton et al. | Jul 2003 | B2 |
6657498 | Park et al. | Dec 2003 | B2 |
6806777 | Franca-Neto | Oct 2004 | B2 |
6819941 | Dening et al. | Nov 2004 | B2 |
6888888 | Tu et al. | May 2005 | B1 |
6952594 | Hendin | Oct 2005 | B2 |
6954446 | Kuffner | Oct 2005 | B2 |
6983132 | Woo et al. | Jan 2006 | B2 |
6985712 | Yamakawa et al. | Jan 2006 | B2 |
6987950 | Coan | Jan 2006 | B2 |
7013166 | Clifford | Mar 2006 | B2 |
7023272 | Hung et al. | Apr 2006 | B2 |
7024172 | Murphy et al. | Apr 2006 | B1 |
7039377 | Yates | May 2006 | B2 |
7142042 | Henry | Nov 2006 | B1 |
7161423 | Paul et al. | Jan 2007 | B2 |
7167044 | Li et al. | Jan 2007 | B2 |
7187239 | Yeh | Mar 2007 | B2 |
7187735 | Kent, III et al. | Mar 2007 | B2 |
7187904 | Gainey et al. | Mar 2007 | B2 |
7212788 | Weber et al. | May 2007 | B2 |
7260377 | Burns et al. | Aug 2007 | B2 |
7283851 | Persico et al. | Oct 2007 | B2 |
7299021 | Parssinen et al. | Nov 2007 | B2 |
7313368 | Wu et al. | Dec 2007 | B2 |
7333831 | Srinivasan et al. | Feb 2008 | B2 |
7356325 | Behzad et al. | Apr 2008 | B2 |
7372336 | Lee et al. | May 2008 | B2 |
7403508 | Miao | Jul 2008 | B1 |
7444166 | Sahota et al. | Oct 2008 | B2 |
7454181 | Banister et al. | Nov 2008 | B2 |
7477106 | Van Bezooijen et al. | Jan 2009 | B2 |
7486135 | Mu | Feb 2009 | B2 |
7643847 | Daanen et al. | Jan 2010 | B2 |
7643848 | Robinett et al. | Jan 2010 | B2 |
7697905 | Lee et al. | Apr 2010 | B2 |
7728664 | Chang et al. | Jun 2010 | B2 |
7751513 | Eisenhut et al. | Jul 2010 | B2 |
7764726 | Simic et al. | Jul 2010 | B2 |
7848724 | Bult et al. | Dec 2010 | B2 |
7869528 | Robinson | Jan 2011 | B2 |
7877075 | Jin et al. | Jan 2011 | B1 |
7911269 | Yang et al. | Mar 2011 | B2 |
7944298 | Cabanillas et al. | May 2011 | B2 |
7949309 | Rofougaran et al. | May 2011 | B2 |
7952398 | Salcido et al. | May 2011 | B2 |
8022772 | Cassia et al. | Sep 2011 | B2 |
8055229 | Huang | Nov 2011 | B2 |
8063706 | Li et al. | Nov 2011 | B2 |
8081672 | Kent et al. | Dec 2011 | B2 |
8090332 | Sahota et al. | Jan 2012 | B2 |
8090369 | Kitazoe | Jan 2012 | B2 |
8139670 | Son et al. | Mar 2012 | B1 |
8149955 | Tired | Apr 2012 | B2 |
8195117 | Bult et al. | Jun 2012 | B2 |
8217723 | Rajendran et al. | Jul 2012 | B2 |
8270927 | Wallace et al. | Sep 2012 | B2 |
8295778 | Kotecha et al. | Oct 2012 | B2 |
8514015 | Chen | Aug 2013 | B2 |
8571510 | Liu et al. | Oct 2013 | B2 |
8600315 | Roufoogaran et al. | Dec 2013 | B2 |
20020008575 | Oskowsky et al. | Jan 2002 | A1 |
20020061773 | Adachi et al. | May 2002 | A1 |
20020111163 | Hamabe | Aug 2002 | A1 |
20020132597 | Peterzell et al. | Sep 2002 | A1 |
20020173337 | Hajimiri et al. | Nov 2002 | A1 |
20030076797 | Lozano | Apr 2003 | A1 |
20030081694 | Wieck | May 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030148750 | Yan et al. | Aug 2003 | A1 |
20030157915 | Atkinson et al. | Aug 2003 | A1 |
20030176176 | Leinonen et al. | Sep 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20030206076 | Hashemi et al. | Nov 2003 | A1 |
20030228851 | Taniguchi | Dec 2003 | A1 |
20040087290 | Schmidt et al. | May 2004 | A1 |
20040092243 | Hey-Shipton | May 2004 | A1 |
20040113746 | Brindle | Jun 2004 | A1 |
20040116086 | Huttunen | Jun 2004 | A1 |
20040121753 | Sugar et al. | Jun 2004 | A1 |
20040204104 | Horng et al. | Oct 2004 | A1 |
20040219959 | Khayrallah et al. | Nov 2004 | A1 |
20040224643 | Nakai | Nov 2004 | A1 |
20040253955 | Love et al. | Dec 2004 | A1 |
20040266356 | Javor et al. | Dec 2004 | A1 |
20050039060 | Okayasu | Feb 2005 | A1 |
20050075077 | Mach et al. | Apr 2005 | A1 |
20050079847 | Arafa | Apr 2005 | A1 |
20050118977 | Drogi et al. | Jun 2005 | A1 |
20050197090 | Stockstad et al. | Sep 2005 | A1 |
20050215264 | Subramaniam et al. | Sep 2005 | A1 |
20050265084 | Choi | Dec 2005 | A1 |
20050277387 | Kojima et al. | Dec 2005 | A1 |
20060009177 | Persico et al. | Jan 2006 | A1 |
20060061773 | Lee et al. | Mar 2006 | A1 |
20060128322 | Igarashi et al. | Jun 2006 | A1 |
20060146693 | Mori et al. | Jul 2006 | A1 |
20060189286 | Kyu et al. | Aug 2006 | A1 |
20060234662 | Diloisy | Oct 2006 | A1 |
20060291428 | Filipovic | Dec 2006 | A1 |
20070049332 | Higuchi | Mar 2007 | A1 |
20070060080 | Nishimura et al. | Mar 2007 | A1 |
20070105517 | Chang et al. | May 2007 | A1 |
20070142013 | Bucknor et al. | Jun 2007 | A1 |
20070177693 | Kluge | Aug 2007 | A1 |
20070184801 | Kogawa et al. | Aug 2007 | A1 |
20070197170 | Boos | Aug 2007 | A1 |
20070197178 | Gu | Aug 2007 | A1 |
20070197204 | Herczog et al. | Aug 2007 | A1 |
20070202890 | Feher | Aug 2007 | A1 |
20070242784 | Sampson et al. | Oct 2007 | A1 |
20070243832 | Park et al. | Oct 2007 | A1 |
20070262817 | Ciccarelli et al. | Nov 2007 | A1 |
20070262871 | Yamagajo et al. | Nov 2007 | A1 |
20080004078 | Barratt et al. | Jan 2008 | A1 |
20080013654 | Rick et al. | Jan 2008 | A1 |
20080117999 | Kadous et al. | May 2008 | A1 |
20080204148 | Kim et al. | Aug 2008 | A1 |
20080224770 | Kim et al. | Sep 2008 | A1 |
20080224791 | Cheng | Sep 2008 | A1 |
20080225971 | Behzad | Sep 2008 | A1 |
20080261650 | Piriyapoksombut et al. | Oct 2008 | A1 |
20090124227 | Ishiguro | May 2009 | A1 |
20090237161 | Fagg | Sep 2009 | A1 |
20090253456 | Toh et al. | Oct 2009 | A1 |
20090290659 | Petrovic et al. | Nov 2009 | A1 |
20090323779 | Lennen | Dec 2009 | A1 |
20100019970 | Farrokhi et al. | Jan 2010 | A1 |
20100034094 | Tenny | Feb 2010 | A1 |
20100040178 | Sutton et al. | Feb 2010 | A1 |
20100195754 | Li et al. | Aug 2010 | A1 |
20100197263 | Dwyer et al. | Aug 2010 | A1 |
20100210272 | Sundstrom et al. | Aug 2010 | A1 |
20100210299 | Gorbachov | Aug 2010 | A1 |
20100214184 | Tran et al. | Aug 2010 | A1 |
20100225414 | Gorbachov | Sep 2010 | A1 |
20100226327 | Zhang et al. | Sep 2010 | A1 |
20100232493 | Thirumoorthy | Sep 2010 | A1 |
20100237947 | Xiong et al. | Sep 2010 | A1 |
20100265875 | Zhao et al. | Oct 2010 | A1 |
20100271986 | Chen | Oct 2010 | A1 |
20100272051 | Fu et al. | Oct 2010 | A1 |
20100301946 | Borremans | Dec 2010 | A1 |
20100311378 | Tasic et al. | Dec 2010 | A1 |
20100328155 | Simic et al. | Dec 2010 | A1 |
20100330977 | Kadous et al. | Dec 2010 | A1 |
20110018635 | Tasic et al. | Jan 2011 | A1 |
20110044380 | Marra et al. | Feb 2011 | A1 |
20110050319 | Wong | Mar 2011 | A1 |
20110084791 | Mun et al. | Apr 2011 | A1 |
20110086603 | Toosi et al. | Apr 2011 | A1 |
20110110463 | Chang et al. | May 2011 | A1 |
20110122972 | Lie et al. | May 2011 | A1 |
20110165848 | Gorbachov et al. | Jul 2011 | A1 |
20110193625 | Gatta et al. | Aug 2011 | A1 |
20110211533 | Casaccia et al. | Sep 2011 | A1 |
20110217945 | Uehara et al. | Sep 2011 | A1 |
20110222443 | Khlat | Sep 2011 | A1 |
20110222444 | Khlat et al. | Sep 2011 | A1 |
20110242999 | Palanki et al. | Oct 2011 | A1 |
20110250926 | Wietfeldt et al. | Oct 2011 | A1 |
20110268048 | Toskala et al. | Nov 2011 | A1 |
20110268232 | Park et al. | Nov 2011 | A1 |
20110299434 | Gudem et al. | Dec 2011 | A1 |
20110300810 | Mikhemar et al. | Dec 2011 | A1 |
20120009886 | Poulin | Jan 2012 | A1 |
20120013387 | Sankaranarayanan et al. | Jan 2012 | A1 |
20120026862 | Sadri et al. | Feb 2012 | A1 |
20120044927 | Pan et al. | Feb 2012 | A1 |
20120056681 | Lee | Mar 2012 | A1 |
20120057621 | Hong et al. | Mar 2012 | A1 |
20120294299 | Fernando | Nov 2012 | A1 |
20120327825 | Gudem et al. | Dec 2012 | A1 |
20120329395 | Husted et al. | Dec 2012 | A1 |
20130003617 | Gudem et al. | Jan 2013 | A1 |
20130043946 | Hadjichristos et al. | Feb 2013 | A1 |
20130230080 | Gudem et al. | Sep 2013 | A1 |
20130231064 | Gudem et al. | Sep 2013 | A1 |
20130265892 | Fernando | Oct 2013 | A1 |
20130315348 | Tasic et al. | Nov 2013 | A1 |
20130316668 | Davierwalla et al. | Nov 2013 | A1 |
20130316669 | Davierwalla et al. | Nov 2013 | A1 |
20130316670 | Tasic et al. | Nov 2013 | A1 |
20130329665 | Kadous et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
1523912 | Aug 2004 | CN |
1164719 | Dec 2001 | EP |
1370012 | Dec 2003 | EP |
1398887 | Mar 2004 | EP |
1708372 | Oct 2006 | EP |
1726098 | Nov 2006 | EP |
1748567 | Jan 2007 | EP |
2068583 | Jun 2009 | EP |
1916767 | Dec 2010 | EP |
2398285 | Dec 2011 | EP |
2472978 | Mar 2011 | GB |
05227234 | Sep 1993 | JP |
H0730452 | Jan 1995 | JP |
07221684 | Aug 1995 | JP |
9027778 | Jan 1997 | JP |
09116458 | May 1997 | JP |
2000013278 | Jan 2000 | JP |
2001285114 | Oct 2001 | JP |
2004015162 | Jan 2004 | JP |
2007324711 | Dec 2007 | JP |
0150636 | Jul 2001 | WO |
2005039060 | Apr 2005 | WO |
2005088847 | Sep 2005 | WO |
2006118538 | Nov 2006 | WO |
2008092745 | Aug 2008 | WO |
2008103757 | Aug 2008 | WO |
2008145604 | Dec 2008 | WO |
2010059257 | May 2010 | WO |
2011019850 | Feb 2011 | WO |
2011050729 | May 2011 | WO |
WO2011092005 | Aug 2011 | WO |
2011138697 | Nov 2011 | WO |
2012008705 | Jan 2012 | WO |
2013036794 | Mar 2013 | WO |
Entry |
---|
3GPP TS 36.101 V11.0.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 11), Mar. 2012. |
Aparin et al., “A Highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband and receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability”, Solid-State Circuits Conference, 2002. Digest of Technical Papers. 2002 IEEE International Feb. 3-7, 2002, Piscataway, NJ, USA, IEEE, vol. 1, 2002, pp. 234-235, XP010585547, ISBN: 0-7803-7335-9. |
Broyde F., et al., “The Noise Performance of aMultiple-Input-Port and Multiple-Output-Port Low-Noise Amplifier Connected to an Array of Coupled Antennas,” International Journal of Antennas and Propagation, vol. 2011, Article ID 438478, Jul. 18, 2011, 12 pages. |
Chen, et al, “A 5-6 GHz 1-V CMOS Direct-Conversion Receiver With an Integrated Quadrature Coupler,” IEEE Journal of Solid-State Circuits, vol. 42, No. 9, 2007, pp. 1963-1975. |
Chen, et al., “A monolithic 5.9-GHz CMOS I/Q direct-down converter utilizing a quadrature coupler and transformer-coupled subharmonic mixers,” Microwave and Wireless Components Letters, IEEE , vol. 16, No. 4, 2006, pp. 197-199. |
Garuda, et al., “A Multi-band CMOS RF Front-end for 4G WiMAX and WLAN Applications,” 2006 IEEE International Symposium on Circuits and Systes, 2006. ISCAS 2006. May 2006, 4 pages. |
Hashemi, et al., “Concurrent Multiband Low-Noise Amplifiers—Theory, Design, and Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, No. 1, Jan. 2002. |
Henrik M et al., “A Full Duplex Front End Module for WiFi 802.11.n Applications”, European Microwave Association, vol. 12, No. 4, Oct. 2008, pp. 162-165. |
International Search Report and Written Opinion—PCT/US2012/064513—ISA/EPO—Feb. 5, 2013. |
Jones W. W., et al., “Narrowband interference suppression using filter-bank analysis/synthesis techniques”, Military Communications Conference, 1992. MILC0M '92, Conference REC0R D. Communications—Fusing Command, Control and Intelligence., IEEE San Diego, CA, USA, 11 Oct. 14, 1992, New York, NY, USA IEEE, US, Oct. 11, 1992, pp. 898-902, XP010060840, DOI: 10.1109/MILCOM.1992.243977, ISBN: 978-0-7803-0585-4. |
Jussi R et al., “A Dual-Band RF Front-End for WCDMA and GSM Applications”, IEEE, Journal Solid-State Circuits, 2001, vol. 36, No. 8, pp. 1198-1204. |
Kim, T.W., et al., Highly Linear Receiver Front-End Adopting MOSFET Transconductance Linearization by Multiple Gated Transistors, IEEE Journal of Solid-State Circuits, United States, IEEE, Jan. 1, 2004, vol. 39, No. 1, pp. 223-229. |
Lai, C.M.,et al., “Compact router transceiver architecture for carrier aggregation systems”, Microwave Conference (EUMC), 2011 41st European, IEEE, Oct. 10, 2011, pp. 693-696, XP032072825, ISBN: 978-1-61284-235-6 the whole document. |
Lee et al., “Development of Miniature Quad SAW filter bank based on PCB substrate”, IEEE Intl Frequency Control Symp, pp. 146-149, 2007. |
Pitschi M. et al., “High Performance Microwave Acoustic Components for Mobile Radios”, Ultrasonics Symposium (IUS), 2009 IEEE International, EPCOS AG, Munich, Germany, vol. 1, Sep. 20-23, 2009. |
Qualcomm Europe: “UE Implementation Impact due to 4C-HSDPA Operation”, 3GPP Draft; R1-094067—UE—IMPL—IMPACT—4C—HSDPA, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des LUCI0LES ; F-06921 Sophia-Antipolis Cedex ; France, No. Miyazaki; Oct. 12, 2009, XP050388547, [retrieved on Oct. 6, 20009]. |
Rahn D.G., et al., “A fully integrated multiband MIMO WLAN transceiver RFIC,” IEEE J. Solid-State Circuits, 2005, vol. 40 (8), 1629-1641. |
Sever et al. “A Dual-Antenna Phase-Array Ultra-Wideband CMOS Transceiver”. IEEE Communications Magazine [Online] 2006, vol. 44, Issue 8, pp. 102-110. See pp. 104-107. |
Tasic A. et al., “Design of Adaptive Multimode RF Front-End Circuits”, IEEE Journal of Solid-State Circuits, vol. 42, Issue 2, Feb. 2007 pp. 313-322. |
Winternitz, et al., “A GPS Receiver for High-Altitude Satellite Navigation,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, No. 4, pp. 541-556, Aug. 2009. |
Hwang, et al., “A High IIP2 Direct-Conversion Receiver using Even-Harmonic Reduction Technique for Cellular CDMA/PCS/GPS applications,” IEEE Transaction on Circuits and Systems, 2008. |
Kevin W et al., “3G/4G Multimode Cellular Front End Challenges”, Part 2: Architecture Discussion, RFMD® White Paper, 2009, 9 pages. |
MSM6000 Chipset Solution, Qualcomm Incorporated, 2003. |
MSM6500 Chipset Solution, Qualcomm Incorporated, 2004. |
Philips: “Capabilities of multi-transceiver UES”, 3GPP Draft; R1-103913, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, no. Dresden, Germany; 20100628, Jun. 22, 2010, XP050449298, [retrieved on Jun. 22, 2010] the whole document. |
“UMTS Picocell Front End Module”, CTS Corp., 2007, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20130114769 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61557838 | Nov 2011 | US |