The invention relates to programming of implantable medical devices and, more particularly, to representation of cardiac leads in the user interface of a programmer
Implantable medical devices (IMD), such as pacemakers or other cardiac devices, may be used to deliver electrical stimulation therapy to a patient's heart to treat a variety of symptoms or conditions, such as heart failure and arrhythmia. In general, an IMD delivers cardiac stimulation therapy in a form of electrical pulses. An IMD may deliver cardiac stimulation therapy via one or more leads that include one or more electrodes located within in or proximate to the heart.
In general, a physician selects values for a number of programmable parameters in order to define the electrical cardiac stimulation therapy to be delivered by the IMD to a patient. For example, the physician ordinarily selects a combination of electrodes carried by one or more implantable leads, and assigns polarities to the selected electrodes. In addition, the physician may select an amplitude, which may be a current or voltage amplitude, and a pulse width for stimulation pulses to be delivered to the patient. The physician may also select chambers of the heart to which therapeutic stimulation should be delivered, select a mode of cardiac pacing, select a progression of anti-tachyarrhythmia therapies, and select values for a number of other programmable parameters, such as escape, atrioventricular, or inter-ventricular intervals.
In general, the disclosure is directed to the depiction of multipolar intracardiac leads including an electrode spacing/location configuration. In some examples, the intracardiac leads depicted are quadripolar leads. In some examples, a programming device receives an indication of a type of lead, depicts one of a plurality of lead images having different electrode configurations based on the selected type. By displaying a lead image with a more accurate representation of the electrode configuration of the actual lead implanted in the patient, a programmer may facilitate more efficient programming of vectors for stimulation or sensing by a user.
In one example, the disclosure is directed to a method including retrieving, from a memory storing a plurality of intracardiac lead images, a selected lead image, the lead image selected based on an indication of a lead type, and displaying the selected lead image, wherein the selected lead image includes a plurality of electrodes spaced according to spacing of electrode on the lead type.
In another example, the disclosure is directed to a system including a user display, a memory configured to store a plurality of intracardiac lead images, each of the lead images associated with a respective one of a plurality of lead types, and each of the lead images including a plurality of electrodes spaced according to the spacing of electrodes of the associated lead type, an interface configured to receive an indication of which of the plurality of lead types corresponds to a lead of a patient, and a processor configured to choose the one of the lead images that is associated with the indicated lead type, and provide the chosen image to the user display for display as part of a graphical user interface for programming cardiac pacing therapy for the patient.
In another example, the disclosure is directed to a system including means for receiving an indication of a lead type, means for retrieving a lead image selected based on the indication of lead type from a plurality of intracardiac lead images, and means for displaying the selected lead image, wherein the selected lead image includes a plurality of electrodes spacing according to spacing of electrodes on the lead type.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
In various examples consistent with this disclosure, an implantable medical device (IMD) intended to provide pacing or other cardiac stimulation, as well as sense electrical activity of the heart, may be implanted within a patient. The IMD may be coupled to a number of leads that extend into and around the patient's heart. Each of the leads may include any number of electrodes. Leads with multiple electrodes may be referred to as multipolar leads.
Two or more electrodes on one or more of the leads may cooperate to provide stimulation at a particular location or region of tissue. A “vector” for stimulating the location or region may refer to the two or more electrodes, as well as the polarity of the electrodes or resulting direction of the stimulation. The various electrodes on the leads may be programmed individually to provide stimulation at a number of different locations and with a variety of vectors. Similarly, two or more electrodes on one or more of the leads that cooperate to sense electrical activity, e.g., from a particular chamber of heart, may be referred to as a sensing vector.
In some examples, one or more of the cardiac leads implanted within the patient is a left ventricular (LV) quadripolar lead. The LV quadripolar lead provides a total of four electrodes and the capability to program all four electrodes as a cathode or an anode. This flexibility in programming provides numerous possible LV vectors, each of which includes at least one electrode configured as an anode and at least one electrode configured as a cathode. In some examples, vectors including two or more anodes or two or more cathodes, resulting in greater anodal and/or cathodal surface area, are used. A physician that has implanted the LV quadripolar lead may want to test one or more of the potential vectors to determine which of the numerous vectors is most effective for the patient.
The sixteen or more vector choices provided by an LV quadripolar lead result in a relatively complex vector selection process when an LV quadripolar lead is implanted. In addition, different multipolar lead models may have a variety of different spacings between the electrodes, e.g., spacings between the four electrodes of a quadripolar lead. The size, shape and/or location of the electrical field resulting from delivery of an electrical stimulation via a vector may vary based on the spacing of the electrodes on a multipolar lead, and thus the spacing between the electrodes of the vector. It may be helpful to a clinician to have an accurate depiction of the type of multipolar lead, e.g., quadripolar LV lead, implanted in a patient, with an accurate depiction of the spacing between the electrodes of the lead, i.e., the positions of the electrodes on the lead. The depiction may influence the choice of a vector, and the order in which vectors are tested. In some examples, the multipolar lead may have more or less the four electrodes of a quadripolar lead. For example, a lead may have three or five electrodes.
In order for a programmer user interface to show a graphical depiction of an implanted lead with appropriate electrode positions and spacing, a user may choose an appropriate graphic corresponding to the multipolar lead model that has been implanted. In some examples, the user may select a graphic from a number of graphics stored within the programmer based on an image that represents the graphic. In some examples the multipolar lead may include four electrodes. In other examples the multipolar lead may include more or less electrodes. For example, a lead may include 3 or 5 electrodes. The graphic displayed on the user interface may include the appropriate number of electrodes, as well as appropriate positioning and spacing of the electrodes. Many of the examples below refer to a quadripolar lead; however, the examples may be applicable to multipolar leads with any number of electrodes greater than one.
In some examples, the user may select a graphic by providing a lead model or serial number. For example, the user may manually input the lead model or serial number. In other examples, the programmer may be coupled to a scanner. The scanner may read a barcode, radiofrequency identification (RFID) tag, or another identification element from on the lead or a lead package. In other examples, the scanner may scan a patient identification element, which may itself indicate the type of lead that has been implanted, or may provide a patient identification that allows the type of lead that has been implanted to be retrieved from database of patient information.
The user may then program the therapeutic stimulation and sensing for the patient, e.g., choose electrodes for one or more vectors to test. The graphic of the lead may be modified to depict the selection. For example, the graphic may highlight the electrodes chosen, as well as indicate whether the chosen electrode is being programmed as an anode or a cathode. In some examples, the graphic may be modified to depict the resulting vector as well.
In some examples, a user may choose a graphic that includes an electrode configuration that approximates the electrode configuration of an implanted lead. The user may select from a set of graphics including common electrode spacing configurations. For example, a programmer may present lead images with a variety of electrode spacing configurations including dual tight electrodes, where there are two electrodes close together near the tip, and a second set of electrodes close together at a distance away from the electrodes close to the tip. Another lead image may depict an electrode configuration with a tight middle spacing. Such an electrode spacing configuration may include an electrode near the tip of the electrodes, a space, two electrodes close together, another space and the fourth electrode. Another lead image may depict an electrode spacing configuration with equal spacing between the four electrodes. Another lead image may depict an electrode spacing configuration where there are two electrodes closely spaced near the tip and then the other two electrodes have a greater space between each other and between them and the first two electrodes. Another lead image may depict an electrode spacing configuration with wide unequal spacing between the four electrodes. For example, in a quadripolar lead including electrodes LV1-LV4, the electrodes may be spaced to such that there are 10 millimeters (mm) between LV1 and LV2, 20 mm between LV2 and LV3 and 15 mm between LV3 and LV4.
In some examples, the user may also be able to modify the electrode spacing. For example, a user may select from among a plurality of predefined lead images that approximate most multipolar lead electrode spacing configurations. The user may then select one or more of the electrodes and move it on the lead image to provide a better approximation of the configuration of the actual lead implanted within the patient.
In some examples, a programmer may have a default display of equal spacing between the electrodes. The user may modify the spacing to approximate the spacing of the electrodes of the lead implanted within the patient. In some examples the user may be able to save a lead image with the modified spacing in order to retrieve the lead image for use when the same lead type has been used in another patient.
In some examples, a lead image may include features in addition to the electrode spacing configuration. For example, the lead image may depict whether the lead that was implanted was a straight or canted lead. In some examples, the lead image may also include a depiction of the location of fixation points, e.g., a depiction of the type, such as structure, and location of a fixation mechanism. Although the examples below are discussed primarily with respect to programming of LV quadripolar leads, other multipolar leads, such as atrial or RV leads, with the same or a different number of electrodes, may also be programmed.
Leads 18, 20, 22 are intracardiac leads that extend into the heart 12 of patient 14 to sense electrical activity of heart 12 and/or deliver electrical stimulation to heart 12. In the example shown in
In some examples, programmer 24 takes the form of a handheld computing device, computer workstation or networked computing device that includes a user interface for presenting information to and receiving input from a user. A user, such as a physician, technician, surgeon, electro-physiologist, or other clinician, may interact with programmer 24 to retrieve physiological or diagnostic information from IMD 16. A user may also interact with programmer 24 to program IMD 16, e.g., select electrodes through which to apply electrical stimulation. The user interface may include a display that allows the user to visualize the electrode spacing configuration of the lead 20 that has been implanted, for example.
IMD 16 and programmer 24 may communicate via wireless communication using any techniques known in the art. Examples of communication techniques may include, for example, low frequency or radiofrequency (RF) telemetry. Other techniques are also contemplated. In some examples, programmer 24 may include a programming head that may be placed proximate to the patient's body near the IMD 16 implant site in order to improve the quality or security of communication between IMD 16 and programmer 24. In some examples, programmer 24 may be located remotely from IMD 16, and communicate with IMD 16 via a network. Programmer 24 may also communicate with one or more other external devices using a number of known communication techniques, both wired and wireless.
In the example of
In some examples, the lead images are identified in leads 92 by lead name or serial number. In some examples, the lead images are identified in leads 92 by approximate electrode spacing. In some examples, the lead images are stored in a directory structure or the like based on approximate electrode spacing. For example, leads having even electrode spacing may be stored together, leads having a close spacing near the lead tip may be stored together, and leads having a close center spacing may be stored together.
Memory 90 may store program 94 including operational parameters that specify possible therapy and sensing parameters for download to IMD 16. As examples, therapy parameters may include pulse width and amplitude for pacing pulses, as well as values for various intervals that control the delivery or non-delivery, and the timing, of pacing pulses. Memory 90 may also store program instructions that, when executed by processor 88, control processor 88 and programmer 24 to provide the functionality ascribed to them herein. Memory 90 may include any volatile, non-volatile, magnetic, optical, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other digital media. Memory 90 may comprise a tangible computer-readable storage medium, e.g., a non-transitory medium.
Memory 90 may also record efficacy information 96 for particular programs 94 in combination with information identifying the electrodes selected by a user for a particular lead 92, e.g., the vector selected for the delivery of therapeutic stimulation. In some examples processor 88 may determine the efficacy of a particular electrode combination, e.g., vector, based on cardiac signals received from IMD 16 via telemetry interface 108. In some examples the cardiac signals may be electrogram (EGM) signals. In some examples the cardiac signals may be heart sounds-based signals. In some examples, the efficacy information 96 may include information received from the user. For example, the user may provide information regarding previous results using a particular electrode grouping. In this manner, over time different electrode groupings for a particular lead type may be rated in terms of efficacy so that the user ultimately may select an effective electrode combination and stimulation parameters. Over time, the programmer 24 may be able to suggest electrode combinations based on previous outcomes.
A user interacts with processor 88 via user interface 98 in order to identify a lead image that corresponds to the lead implanted within patient 14. The user also interacts with the user interface to select an electrode or electrode combination to provide stimulation. Processor 88 may provide display 100, i.e., a graphical user interface (GUI), via user interface 98 to facilitate interaction with the user. Processor 88 may include a microprocessor, a microcontroller, a DSP, an ASIC, an FPGA, or other equivalent discrete or integrated logic circuitry. The user interface 98 may include display 100 and one or more input media 106. In addition, the user interface may include lights, audible alerts, or tactile alerts.
The programmer 24 may include a number of input media 106. In some examples, programmer 24 may include a keyboard. In some examples, the input media 106 may include a barcode scanner. In some examples, the input media 106 may be a touch screen.
In some examples, processor 88 may control IMD 16 via telemetry interface 108 to test selected electrode combination by controlling a stimulator within IMD 16 to deliver cardiac stimulating pulses to heart 12 via the selected electrode combinations. In particular, processor 88 transmits programming signals to IMD 16 via telemetry interface 108.
After completion of electrode testing, processor 88 may transmit the operational parameters, e.g., vector(s), selected by the physician to IMD 16 via telemetry interface 108 for storage in the IMD 16. The selected vectors may be used to deliver therapy chronically or over an extended period of time.
Programmer 24 may be provided in the form of a handheld device, portable computer or workstation that provides a user interface to a physician or patient. The physician interacts with user interface 98 to program stimulation parameters for IMD 16 via external programmer 24.
In response to selection of lead selection function 116, e.g., via a shortcut or other interactive element on screen 114, programmer 24 may present a lead selection screen similar to screen 118. In some examples, lead selection screen 118 may be a pull-down screen or pop-up screen that appears along with the icons of screen 114. In some examples, lead selection screen 118 may replace home screen 114.
In the example of
In some examples, a physician may select a lead image showing electrode spacing that approximately corresponds to the electrode spacing of the lead implanted in patient 14 based on the images on lead selection screen 118. In some examples, lead selection screen 118 may be an intermediate screen between the home screen 114 and a selection screen that includes a number of lead images that correspond to actual leads that may be implanted in a patient 14. Each of the lead images 120, 122, 124 and 126 may lead to a display screen including lead images with approximately the same lead spacing as those depicted on screen 118. In some instances the lead images may include not only the approximate lead spacing of the lead the image represents, but a final fixation configuration. For example, the lead images may depict a canted lead, or the placement of fixation points. In some examples the lead images may be associated with a lead model name or serial number. In some examples, after a lead image has been chosen, a user may then select one or more of the electrodes depicted to use when delivering cardiac electrical stimulation. The image of the lead including the relative spacing of the electrodes as implanted in the patient may be helpful to a physician in determining which electrodes to test first.
Screen 114 may include one or more of the icons 128, 130, 132, 134, 136, and 138. In some examples patient information 128 may include information regarding a patient including, for example, patient name, history, date of birth, hospital ID, the types of leads implanted, the type of stimulation that is to be provided, or the patient diagnosis. In some examples choosing parameters 130 brings a user to a screen that allows the user to program various therapy and sensing parameters, including selecting vectors for delivery of therapeutic stimulation and sensing. In some examples, if a lead image has been selected from the lead selection screen 118, the screen displayed in response to the user selecting parameters 130 may include the lead image selected to enable a user to select desired electrodes or electrode combinations for vector programming In some examples a lead image may indicate which electrodes have been selected. In some examples, the image may include an indication of a stimulation or sensing, e.g., pacing, vector resulting from the electrodes selected.
After an electrode has been selected and pacing parameters have been set, a physician may test the chosen parameters. These tests may be done by selecting the tests 138 icon, for example. In some examples, the test icon brings up a display screen that allows a user to select from one or more preprogrammed tests sequences. In some examples, the test results may be displayed. In some examples, the screen may display an EGM signal as the test is being conducted.
In some examples, the display screen 114 may also include icons for reports 134, data 136 and a checklist 132. Checklist 132 may include a checklist to ensure that appropriate tests of IMD 16 are completed. In some examples, checklist 132 may include a checklist to ensure that a predetermined number of vectors have been tested. In some examples, the checklist 132 may include a checklist for a clinic to ensure all tasks associated with the patient are completed before discharge. Selection of checklist 132 may result in display of a graphical user interface that includes a number of checklists. Some of the checklists may be related to programming IMD 16, while other checklists may be related to overall patient care.
In some examples, selection of data 136 may result in user interface 98 displaying patient diagnostic data or data associated with the integrity of the system. In some examples data 136 may include a list of various type of data associated with the IMD 16 and the patient 12. For example, data 136 may include data relating to trends regarding impedance, sensing, or capture threshold trends.
In some examples, display screen 114 may also include reports 134. Selecting reports 134 may result in a display screen including a variety of reports that may be generated by programmer 24. The reports may include, for examples, report related to patient diagnostics, efficacy of a chosen vector over time, the integrity of the system, changes in efficacy of provided stimulation since previous programming, patient clinical data, patient information or changes made during a follow-up session
The vectors may include a number of bipolar vectors, such as: the combination of LV1 and LV2, with either LV1 or LV2 programmed as the anode and the other programmed as the cathode; the combination of LV2 and LV3, with either LV2 or LV3 programmed as the anode and the other programmed as the cathode; LV3 and LV4 with either LV3 or LV4 programmed as the anode and the other programmed as the cathode; LV1 and LV4 with either LV1 or LV4 programmed as the anode and the other programmed as the cathode; LV2 and LV4, with either LV2 or LV4 programmed as the anode and the other programmed as the cathode; LV1 programmed as a cathode and RVcoil programmed as an anode LV2 programmed as an cathode and RVcoil programmed as an anode; LV3 programmed as an cathode and RVcoil programmed as an anode; or LV4 programmed as a cathode and RVcoil programmed as an anode. The IMD 16 may also be programmed to provide additional vectors that include two or more cathodes and/or two or more anodes. In some examples, one of the LV electrodes is programmed as a cathode and the other three LV electrodes are programmed as anodes. For example, LV1 may be programmed as a cathode with LV2, LV3 and LV4 programmed as anodes. In some examples, IMD 16 may utilize a vector that includes two anodes to two cathodes on the LV lead 20. For example, LV1 and LV 2 may be anodes and LV3 and LV4 may be cathodes. In some examples, the stimulation or sensing may be provided through one or more of LV1-LV4 programmed as cathodes and with the can of IMD 16 functioning as an anode. In some examples, not shown, one of LV1-LV4 may be programmed as a cathode with an RVring electrode on RV lead 18 programmed as an anode. The lead image 140, with the approximate spacing of the lead electrodes depicted, may help a physician or other clinician visualize the vectors resulting from a given electrode combination. This may help the physician to determine which of the numerous choices to test first.
In other examples, not shown, vector options may include a vector between an RV tip electrode and an RV ring electrode or an RV tip electrode and an RV coil electrode. The electrodes of RV may also form vectors with the can of IMD 16, or one or more electrodes on other leads, including LV lead 20. The IMD 16 may include leads placed in areas not shown in
Programmer 24 may display one of lead images 140 in response to the selection of a left ventricular lead from a list of leads via lead section 116 and/or lead selection screen 118.
The programmer 24 receives an indication of the lead type (172), e.g., via the user interface. The indication of lead type may be received in the form of a selection made by a user after the user has accessed the options provided by a lead selection screen 118. In some examples, lead selection screen 118 may depict approximate spacings of electrodes from which a user may chose. In some examples, lead selection screen 118 may include thumbnails of lead configurations corresponding to actual leads. In some examples, the thumbnails may be labeled to include a lead model or serial number.
In some examples, programmer 24 may include a scanner, e.g., a barcode scanner, as part of user interface 98. The user may scan the barcode or another identifying from the packaging of the lead that was implanted. The scanner may be able to read a machine readable code. In some examples, the user may scan a barcode on a patient identification that may include information regarding the patient including the lead model number for the implanted lead. In some examples programmer 24 may receive an indication of lead type (172) from IMD 16 via telemetry interface 108.
Based on the indicated lead type, display 100 displays a lead image associated with the indicated lead type (174). In some examples, the processor 88 receives the indication of the lead type (172) form the user interface 98 and accesses memory 90 to retrieve the lead image 92 for display on display 100.
In some examples, the user selects electrodes (176) to be programmed based on the lead image (174) on display 100. In some examples, the selection may be an initial vector to be tested. In some examples, the lead image may be updated to depict the electrodes that have been selected. In some examples, the lead image may be displayed within other display screens, including the tests 128 screen or the parameters 130 screen. This may allow a physician to continually visualize the stimulation that is being provided while changing various parameters or testing the chosen electrode combination.
In some examples, after a lead image has been selected based on the indication of lead type and displayed on display 100, a user may modify lead electrode spacing (184). The modification of lead spacing (184) may occur in order to provide a better approximation of the electrode spacing configuration of the lead that has been implanted in patient 14. This may be helpful in instances where the programmer 24 does not include a lead image that exactly corresponds to the lead type indicated or implanted. After a user is satisfied with electrode spacing configuration presented on display 100, a user may select electrodes (186) to test first. In some examples, the selection may be based on previous experience by the user with the same type of lead and electrode spacing configuration. In some examples, the selection may be based on the graphic presented. After a set of electrodes has been chosen, the user sets program parameters (188). In some examples, the user may access previous pacing programs 94 stored within memory 90. In some examples, processor 88 may access the pacing programs 94 and present one or more suggestions based on the electrodes selected by the user. The processes of selecting electrodes and program parameters may be repeated until a combination of electrodes and pacing parameters provides the desired effect.
Various examples have been described. These and other examples are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2956586 | Zeigler et al. | Oct 1960 | A |
3857399 | Zacouto | Dec 1974 | A |
3888260 | Fischell | Jun 1975 | A |
3985123 | Herzlinger et al. | Oct 1976 | A |
4164946 | Langer | Aug 1979 | A |
4262982 | Kenny | Apr 1981 | A |
4397314 | Vaguine | Aug 1983 | A |
4399820 | Wirtzfeld et al. | Aug 1983 | A |
4600454 | Plummer | Jul 1986 | A |
4603705 | Speicher et al. | Aug 1986 | A |
4628934 | Pohndorf et al. | Dec 1986 | A |
4628935 | Jones et al. | Dec 1986 | A |
4750494 | King | Jun 1988 | A |
4776334 | Prionas | Oct 1988 | A |
4877032 | Heinze et al. | Oct 1989 | A |
4878898 | Griffin et al. | Nov 1989 | A |
4881410 | Wise et al. | Nov 1989 | A |
4902273 | Choy et al. | Feb 1990 | A |
5004275 | Miller | Apr 1991 | A |
5005613 | Stanley | Apr 1991 | A |
5035246 | Heuvelmans et al. | Jul 1991 | A |
5111816 | Pless et al. | May 1992 | A |
5113868 | Wise et al. | May 1992 | A |
5156154 | Valenta, Jr. et al. | Oct 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5176619 | Segalowitz | Jan 1993 | A |
5188106 | Nappholz et al. | Feb 1993 | A |
5209238 | Sundhar | May 1993 | A |
5213098 | Bennett et al. | May 1993 | A |
5243981 | Hudrlick | Sep 1993 | A |
5285744 | Grantham et al. | Feb 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5313020 | Sackett | May 1994 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5411532 | Mortazavi | May 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5417717 | Salo et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5423323 | Orth | Jun 1995 | A |
5433198 | Desai | Jul 1995 | A |
5500006 | Heinze | Mar 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5534018 | Wahlstrand et al. | Jul 1996 | A |
5535752 | Halperin et al. | Jul 1996 | A |
5544656 | Pitsillides et al. | Aug 1996 | A |
5549650 | Bornzin et al. | Aug 1996 | A |
5579234 | Wiley et al. | Nov 1996 | A |
5579764 | Goldreyer | Dec 1996 | A |
5591142 | Van Erp | Jan 1997 | A |
5593430 | Renger | Jan 1997 | A |
5628777 | Moberg et al. | May 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5674258 | Henschel et al. | Oct 1997 | A |
5676153 | Smith et al. | Oct 1997 | A |
5683429 | Mehra | Nov 1997 | A |
5713937 | Nappholz et al. | Feb 1998 | A |
5720768 | Verboven-Nelissen | Feb 1998 | A |
5743267 | Nikolic et al. | Apr 1998 | A |
5751050 | Ishikawa et al. | May 1998 | A |
5788647 | Eggers | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800460 | Powers et al. | Sep 1998 | A |
5800465 | Thompson et al. | Sep 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5873849 | Bernard | Feb 1999 | A |
5902234 | Webb | May 1999 | A |
5902248 | Millar et al. | May 1999 | A |
5913814 | Zantos | Jun 1999 | A |
5924997 | Campbell | Jul 1999 | A |
5935084 | Southworth | Aug 1999 | A |
5938690 | Law et al. | Aug 1999 | A |
5941904 | Johnston et al. | Aug 1999 | A |
5957957 | Sheldon | Sep 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
6009349 | Mouchawar et al. | Dec 1999 | A |
6015386 | Kensey et al. | Jan 2000 | A |
6024704 | Meador et al. | Feb 2000 | A |
6032699 | Cochran et al. | Mar 2000 | A |
6033398 | Farley et al. | Mar 2000 | A |
6038480 | Hrdlicka et al. | Mar 2000 | A |
6044297 | Sheldon et al. | Mar 2000 | A |
6058329 | Salo et al. | May 2000 | A |
6061593 | Fischell et al. | May 2000 | A |
6077136 | Arai et al. | Jun 2000 | A |
6078830 | Levin et al. | Jun 2000 | A |
6081748 | Struble et al. | Jun 2000 | A |
6115626 | Whayne et al. | Sep 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6120442 | Hickey | Sep 2000 | A |
6155267 | Nelson | Dec 2000 | A |
6163716 | Edwards et al. | Dec 2000 | A |
6163725 | Peckham et al. | Dec 2000 | A |
6165135 | Neff | Dec 2000 | A |
6171252 | Roberts | Jan 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6197677 | Lee et al. | Mar 2001 | B1 |
6206835 | Spillman, Jr. et al. | Mar 2001 | B1 |
6206874 | Ubby et al. | Mar 2001 | B1 |
6223080 | Thompson | Apr 2001 | B1 |
6234973 | Meador et al. | May 2001 | B1 |
6241418 | Suzuki et al. | Jun 2001 | B1 |
6264606 | Ekwall et al. | Jul 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6287256 | Park et al. | Sep 2001 | B1 |
6299582 | Brockway et al. | Oct 2001 | B1 |
6301500 | Van Herck et al. | Oct 2001 | B1 |
6309350 | VanTassel et al. | Oct 2001 | B1 |
6309385 | Simpson | Oct 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6358245 | Edwards et al. | Mar 2002 | B1 |
6360123 | Kimchi et al. | Mar 2002 | B1 |
6363279 | Ben-Haim et al. | Mar 2002 | B1 |
6366811 | Carlson | Apr 2002 | B1 |
6370431 | Stoop et al. | Apr 2002 | B1 |
6406677 | Carter et al. | Jun 2002 | B1 |
6421567 | Witte | Jul 2002 | B1 |
6438408 | Mulligan et al. | Aug 2002 | B1 |
6466820 | Juran et al. | Oct 2002 | B1 |
6477395 | Schulman et al. | Nov 2002 | B2 |
6477417 | Levine | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6496730 | Kleckner et al. | Dec 2002 | B1 |
6580946 | Struble | Jun 2003 | B2 |
6584362 | Scheiner et al. | Jun 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6611714 | Mo | Aug 2003 | B1 |
6618619 | Florio et al. | Sep 2003 | B1 |
6628989 | Penner et al. | Sep 2003 | B1 |
6666826 | Salo et al. | Dec 2003 | B2 |
6675049 | Thompson et al. | Jan 2004 | B2 |
6768924 | Ding et al. | Jul 2004 | B2 |
6812796 | Pryanishnikov et al. | Nov 2004 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6934584 | Wong et al. | Aug 2005 | B1 |
6978178 | Sommer et al. | Dec 2005 | B2 |
6978184 | Marcus et al. | Dec 2005 | B1 |
6993384 | Bradley et al. | Jan 2006 | B2 |
6994676 | Mulligan et al. | Feb 2006 | B2 |
7020524 | Bradley | Mar 2006 | B1 |
7047084 | Erickson et al. | May 2006 | B2 |
7174218 | Kuzma | Feb 2007 | B1 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7204798 | Zdeblick et al. | Apr 2007 | B2 |
7214189 | Zdeblick | May 2007 | B2 |
7218968 | Condie et al. | May 2007 | B2 |
7239916 | Thompson et al. | Jul 2007 | B2 |
7267649 | Zdeblick et al. | Sep 2007 | B2 |
7392088 | Dong et al. | Jun 2008 | B2 |
7467016 | Colborn | Dec 2008 | B2 |
7561914 | Busacker et al. | Jul 2009 | B2 |
7574259 | Pei et al. | Aug 2009 | B1 |
7583998 | Meyer et al. | Sep 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7676273 | Goetz et al. | Mar 2010 | B2 |
7680536 | Sathaye et al. | Mar 2010 | B2 |
7684863 | Parikh et al. | Mar 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7792585 | Shelchuk | Sep 2010 | B1 |
20010000187 | Peckham et al. | Apr 2001 | A1 |
20010002924 | Tajima | Jun 2001 | A1 |
20010025192 | Gerber et al. | Sep 2001 | A1 |
20010047138 | Kokate et al. | Nov 2001 | A1 |
20010053882 | Haddock et al. | Dec 2001 | A1 |
20020026183 | Simpson | Feb 2002 | A1 |
20020040236 | Lau et al. | Apr 2002 | A1 |
20020045921 | Wolinsky et al. | Apr 2002 | A1 |
20020072656 | Vantassel et al. | Jun 2002 | A1 |
20020077568 | Haddock | Jun 2002 | A1 |
20020077673 | Penner et al. | Jun 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099419 | Cohen et al. | Jul 2002 | A1 |
20020111560 | Kokate et al. | Aug 2002 | A1 |
20020120186 | Keimel | Aug 2002 | A1 |
20020151816 | Rich et al. | Oct 2002 | A1 |
20020156417 | Rich et al. | Oct 2002 | A1 |
20020161307 | Yu et al. | Oct 2002 | A1 |
20020169445 | Jain et al. | Nov 2002 | A1 |
20020193859 | Schulman et al. | Dec 2002 | A1 |
20030078623 | Weinberg et al. | Apr 2003 | A1 |
20030105496 | Yu et al. | Jun 2003 | A1 |
20030153952 | Auricchio et al. | Aug 2003 | A1 |
20030191502 | Sharma et al. | Oct 2003 | A1 |
20040024440 | Cole | Feb 2004 | A1 |
20040039417 | Soykan et al. | Feb 2004 | A1 |
20040093053 | Gerber et al. | May 2004 | A1 |
20040097965 | Gardeski et al. | May 2004 | A1 |
20040098074 | Erickson et al. | May 2004 | A1 |
20040143154 | Lau et al. | Jul 2004 | A1 |
20040193021 | Zdeblick et al. | Sep 2004 | A1 |
20040199235 | Younis | Oct 2004 | A1 |
20040215049 | Zdeblick et al. | Oct 2004 | A1 |
20040220637 | Zdeblick et al. | Nov 2004 | A1 |
20040254483 | Zdeblick et al. | Dec 2004 | A1 |
20040260346 | Overall et al. | Dec 2004 | A1 |
20050027320 | Nehls et al. | Feb 2005 | A1 |
20050054892 | Lau et al. | Mar 2005 | A1 |
20050102011 | Lau et al. | May 2005 | A1 |
20050246004 | Cameron et al. | Nov 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20060020314 | Bodner | Jan 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060074454 | Freeberg | Apr 2006 | A1 |
20060122678 | Olsen et al. | Jun 2006 | A1 |
20060161211 | Thompson et al. | Jul 2006 | A1 |
20060247539 | Schugt et al. | Nov 2006 | A1 |
20060265038 | Hagen et al. | Nov 2006 | A1 |
20070100399 | Parramon et al. | May 2007 | A1 |
20070123944 | Zdeblick | May 2007 | A1 |
20070172896 | Goueli et al. | Jul 2007 | A1 |
20070179569 | Zdeblick | Aug 2007 | A1 |
20070198066 | Greenberg et al. | Aug 2007 | A1 |
20070203537 | Goetz et al. | Aug 2007 | A1 |
20070203544 | Goetz et al. | Aug 2007 | A1 |
20070219591 | Zdeblick et al. | Sep 2007 | A1 |
20070219608 | Swoyer et al. | Sep 2007 | A1 |
20070255336 | Herbert et al. | Nov 2007 | A1 |
20070255373 | Metzler et al. | Nov 2007 | A1 |
20070255460 | Lopata | Nov 2007 | A1 |
20080007186 | Lu et al. | Jan 2008 | A1 |
20080021292 | Stypulkowski | Jan 2008 | A1 |
20080027289 | Zdeblick | Jan 2008 | A1 |
20080027514 | DeMulling et al. | Jan 2008 | A1 |
20080039916 | Colliou et al. | Feb 2008 | A1 |
20080045826 | Greenberg et al. | Feb 2008 | A1 |
20080058656 | Costello et al. | Mar 2008 | A1 |
20080061630 | Andreu et al. | Mar 2008 | A1 |
20080091246 | Carey et al. | Apr 2008 | A1 |
20080097227 | Zdeblick et al. | Apr 2008 | A1 |
20080097566 | Colliou | Apr 2008 | A1 |
20080114230 | Addis | May 2008 | A1 |
20080140141 | Ben-David et al. | Jun 2008 | A1 |
20080140167 | Hagen et al. | Jun 2008 | A1 |
20080147168 | Ransbury et al. | Jun 2008 | A1 |
20080154328 | Thompson et al. | Jun 2008 | A1 |
20080154340 | Goetz et al. | Jun 2008 | A1 |
20080163097 | Goetz et al. | Jul 2008 | A1 |
20080167702 | Ransbury et al. | Jul 2008 | A1 |
20080177343 | Dal Molin et al. | Jul 2008 | A1 |
20080183256 | Keacher | Jul 2008 | A1 |
20080215118 | Goetz et al. | Sep 2008 | A1 |
20080255647 | Jensen et al. | Oct 2008 | A1 |
20080294062 | Rapoport et al. | Nov 2008 | A1 |
20080294218 | Savage et al. | Nov 2008 | A1 |
20080306394 | Zdeblick et al. | Dec 2008 | A1 |
20080312726 | Frank et al. | Dec 2008 | A1 |
20090018632 | Zdeblick et al. | Jan 2009 | A1 |
20090024184 | Sun et al. | Jan 2009 | A1 |
20090043352 | Brooke et al. | Feb 2009 | A1 |
20090054946 | Sommer et al. | Feb 2009 | A1 |
20090054947 | Bourn et al. | Feb 2009 | A1 |
20090062880 | Li et al. | Mar 2009 | A1 |
20090196471 | Goetz et al. | Aug 2009 | A1 |
20090196472 | Goetz et al. | Aug 2009 | A1 |
20090287266 | Zdeblick | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100016928 | Zdeblick et al. | Jan 2010 | A1 |
20100137935 | Parikh et al. | Jun 2010 | A1 |
20100152801 | Koh et al. | Jun 2010 | A1 |
20100204766 | Zdeblick et al. | Aug 2010 | A1 |
20100268059 | Ryu et al. | Oct 2010 | A1 |
20110004264 | Siejko et al. | Jan 2011 | A1 |
20120123496 | Schotzko et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
0659388 | Jun 1995 | EP |
1048321 | Nov 2000 | EP |
1050265 | Nov 2000 | EP |
1136033 | Sep 2001 | EP |
1266606 | Dec 2002 | EP |
1321097 | Jun 2003 | EP |
1426079 | Jun 2004 | EP |
1938861 | Jul 2008 | EP |
6456031 | Feb 1989 | JP |
2099036 | Apr 1990 | JP |
3055032 | Mar 1991 | JP |
5269136 | Oct 1993 | JP |
2000139833 | May 2000 | JP |
2002272758 | Sep 2002 | JP |
WO 9952588 | Oct 1999 | WO |
WO 0143821 | Jun 2001 | WO |
WO 0195787 | Dec 2001 | WO |
WO 02053228 | Jul 2002 | WO |
WO 02065894 | Aug 2002 | WO |
WO 2004020040 | Mar 2004 | WO |
WO 2004052182 | Jun 2004 | WO |
WO 2004066814 | Aug 2004 | WO |
WO 2004066817 | Aug 2004 | WO |
WO 2004067081 | Aug 2004 | WO |
WO 2006029090 | Mar 2006 | WO |
WO 2006042039 | Apr 2006 | WO |
WO 2006069322 | Jun 2006 | WO |
WO 2006073915 | Jul 2006 | WO |
WO 2006105474 | Oct 2006 | WO |
WO 2007005641 | Jan 2007 | WO |
WO 2007075974 | Jul 2007 | WO |
WO 2007120884 | Oct 2007 | WO |
WO 2007149546 | Dec 2007 | WO |
WO 2008004010 | Jan 2008 | WO |
WO 2008008755 | Jan 2008 | WO |
WO 2008027639 | Mar 2008 | WO |
WO 2009131749 | Oct 2009 | WO |
2009134475 | Nov 2009 | WO |
2009137121 | Nov 2009 | WO |
Entry |
---|
Auricchio et al., “The Pacing Therapies for Congestive Heart Failure (PATH-CHF) Study: Rationale, Design and Endpoints of a Prospective Randomized Multicenter Study” Am J. Cardio., 83:130D-135D, 1999. |
Borky et al., “Integrated Signal Conditioning for Silicon Pressure Sensors” IEEE Transactions on Electron Devices ED-26(12): 1906-1910, 1979. |
Little et al., “The Output of the Heart and its Control” Physiology of the Heart and Circulation, 4th ed., Year Book Medical Publishers Inc. pp. 165-187, 1989. |
Paolocci et al., “Positive Inotropic ad Lusitropic Effects of HNO/NO in failing hearts: Independence from B-adrenergic signaling” PNAS vol. 100, No. 9, pp. 5537-5542, 2003. |
Receveur et al., “Laterally Moving Bistable MEMS DC-Switch for Biomedical Applications,” Journal of Microelectromechanical Systems, vol. 14, No. 5, Oct. 2005. |
U.S. Appl. No. 12/909,057, by Wade M. Demmer, filed Oct. 21, 2010. |
U.S. Appl. Application No. 12/395,538, by Bi et al., filed Feb. 27, 2009. |
United States Patent Application No. Elizabeth A. Schotzko, filed Sep. 29, 2010. |
(PCT/US2012/037525) Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Sep. 11, 2012, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20130023948 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13107613 | May 2011 | US |
Child | 13623288 | US |