Dynamic representation of multipolar leads in a programmer interface

Information

  • Patent Grant
  • 8483829
  • Patent Number
    8,483,829
  • Date Filed
    Thursday, September 20, 2012
    12 years ago
  • Date Issued
    Tuesday, July 9, 2013
    11 years ago
Abstract
An external programming system for programming an implantable medical device includes a user display and a memory storing multiple intracardiac lead images. The intracardiac lead images correspond to lead types and includes electrodes spaced according to the spacing of electrodes of a particular lead type. The programmer selects one of the lead images for display based on an indication of which type of lead has been implanted in a patient. The selected image is displayed to a user as part of a graphical user interface for programming cardiac pacing therapy for the patient.
Description
TECHNICAL FIELD

The invention relates to programming of implantable medical devices and, more particularly, to representation of cardiac leads in the user interface of a programmer


BACKGROUND

Implantable medical devices (IMD), such as pacemakers or other cardiac devices, may be used to deliver electrical stimulation therapy to a patient's heart to treat a variety of symptoms or conditions, such as heart failure and arrhythmia. In general, an IMD delivers cardiac stimulation therapy in a form of electrical pulses. An IMD may deliver cardiac stimulation therapy via one or more leads that include one or more electrodes located within in or proximate to the heart.


In general, a physician selects values for a number of programmable parameters in order to define the electrical cardiac stimulation therapy to be delivered by the IMD to a patient. For example, the physician ordinarily selects a combination of electrodes carried by one or more implantable leads, and assigns polarities to the selected electrodes. In addition, the physician may select an amplitude, which may be a current or voltage amplitude, and a pulse width for stimulation pulses to be delivered to the patient. The physician may also select chambers of the heart to which therapeutic stimulation should be delivered, select a mode of cardiac pacing, select a progression of anti-tachyarrhythmia therapies, and select values for a number of other programmable parameters, such as escape, atrioventricular, or inter-ventricular intervals.


SUMMARY

In general, the disclosure is directed to the depiction of multipolar intracardiac leads including an electrode spacing/location configuration. In some examples, the intracardiac leads depicted are quadripolar leads. In some examples, a programming device receives an indication of a type of lead, depicts one of a plurality of lead images having different electrode configurations based on the selected type. By displaying a lead image with a more accurate representation of the electrode configuration of the actual lead implanted in the patient, a programmer may facilitate more efficient programming of vectors for stimulation or sensing by a user.


In one example, the disclosure is directed to a method including retrieving, from a memory storing a plurality of intracardiac lead images, a selected lead image, the lead image selected based on an indication of a lead type, and displaying the selected lead image, wherein the selected lead image includes a plurality of electrodes spaced according to spacing of electrode on the lead type.


In another example, the disclosure is directed to a system including a user display, a memory configured to store a plurality of intracardiac lead images, each of the lead images associated with a respective one of a plurality of lead types, and each of the lead images including a plurality of electrodes spaced according to the spacing of electrodes of the associated lead type, an interface configured to receive an indication of which of the plurality of lead types corresponds to a lead of a patient, and a processor configured to choose the one of the lead images that is associated with the indicated lead type, and provide the chosen image to the user display for display as part of a graphical user interface for programming cardiac pacing therapy for the patient.


In another example, the disclosure is directed to a system including means for receiving an indication of a lead type, means for retrieving a lead image selected based on the indication of lead type from a plurality of intracardiac lead images, and means for displaying the selected lead image, wherein the selected lead image includes a plurality of electrodes spacing according to spacing of electrodes on the lead type.


The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a conceptual diagram illustrating an example system that provides therapeutic electrical stimulation to the heart of a patient.



FIG. 2 is a conceptual diagram illustrating an example programmer for programming an implantable medical device.



FIG. 3 is a schematic diagram illustrating an example user interface presented by the example programmer of FIG. 2.



FIGS. 4A-4D are schematic diagrams illustrating example user interfaces including an example lead image.



FIG. 5A-5C are schematic diagrams illustrating example graphical user interfaces including an example lead image.



FIG. 6 is a flow diagram illustrating an example method of electrode selection consistent with various examples in this disclosure.



FIG. 7 is a flow diagram illustrating another example method consistent with the present disclosure.





DETAILED DESCRIPTION

In various examples consistent with this disclosure, an implantable medical device (IMD) intended to provide pacing or other cardiac stimulation, as well as sense electrical activity of the heart, may be implanted within a patient. The IMD may be coupled to a number of leads that extend into and around the patient's heart. Each of the leads may include any number of electrodes. Leads with multiple electrodes may be referred to as multipolar leads.


Two or more electrodes on one or more of the leads may cooperate to provide stimulation at a particular location or region of tissue. A “vector” for stimulating the location or region may refer to the two or more electrodes, as well as the polarity of the electrodes or resulting direction of the stimulation. The various electrodes on the leads may be programmed individually to provide stimulation at a number of different locations and with a variety of vectors. Similarly, two or more electrodes on one or more of the leads that cooperate to sense electrical activity, e.g., from a particular chamber of heart, may be referred to as a sensing vector.


In some examples, one or more of the cardiac leads implanted within the patient is a left ventricular (LV) quadripolar lead. The LV quadripolar lead provides a total of four electrodes and the capability to program all four electrodes as a cathode or an anode. This flexibility in programming provides numerous possible LV vectors, each of which includes at least one electrode configured as an anode and at least one electrode configured as a cathode. In some examples, vectors including two or more anodes or two or more cathodes, resulting in greater anodal and/or cathodal surface area, are used. A physician that has implanted the LV quadripolar lead may want to test one or more of the potential vectors to determine which of the numerous vectors is most effective for the patient.


The sixteen or more vector choices provided by an LV quadripolar lead result in a relatively complex vector selection process when an LV quadripolar lead is implanted. In addition, different multipolar lead models may have a variety of different spacings between the electrodes, e.g., spacings between the four electrodes of a quadripolar lead. The size, shape and/or location of the electrical field resulting from delivery of an electrical stimulation via a vector may vary based on the spacing of the electrodes on a multipolar lead, and thus the spacing between the electrodes of the vector. It may be helpful to a clinician to have an accurate depiction of the type of multipolar lead, e.g., quadripolar LV lead, implanted in a patient, with an accurate depiction of the spacing between the electrodes of the lead, i.e., the positions of the electrodes on the lead. The depiction may influence the choice of a vector, and the order in which vectors are tested. In some examples, the multipolar lead may have more or less the four electrodes of a quadripolar lead. For example, a lead may have three or five electrodes.


In order for a programmer user interface to show a graphical depiction of an implanted lead with appropriate electrode positions and spacing, a user may choose an appropriate graphic corresponding to the multipolar lead model that has been implanted. In some examples, the user may select a graphic from a number of graphics stored within the programmer based on an image that represents the graphic. In some examples the multipolar lead may include four electrodes. In other examples the multipolar lead may include more or less electrodes. For example, a lead may include 3 or 5 electrodes. The graphic displayed on the user interface may include the appropriate number of electrodes, as well as appropriate positioning and spacing of the electrodes. Many of the examples below refer to a quadripolar lead; however, the examples may be applicable to multipolar leads with any number of electrodes greater than one.


In some examples, the user may select a graphic by providing a lead model or serial number. For example, the user may manually input the lead model or serial number. In other examples, the programmer may be coupled to a scanner. The scanner may read a barcode, radiofrequency identification (RFID) tag, or another identification element from on the lead or a lead package. In other examples, the scanner may scan a patient identification element, which may itself indicate the type of lead that has been implanted, or may provide a patient identification that allows the type of lead that has been implanted to be retrieved from database of patient information.


The user may then program the therapeutic stimulation and sensing for the patient, e.g., choose electrodes for one or more vectors to test. The graphic of the lead may be modified to depict the selection. For example, the graphic may highlight the electrodes chosen, as well as indicate whether the chosen electrode is being programmed as an anode or a cathode. In some examples, the graphic may be modified to depict the resulting vector as well.


In some examples, a user may choose a graphic that includes an electrode configuration that approximates the electrode configuration of an implanted lead. The user may select from a set of graphics including common electrode spacing configurations. For example, a programmer may present lead images with a variety of electrode spacing configurations including dual tight electrodes, where there are two electrodes close together near the tip, and a second set of electrodes close together at a distance away from the electrodes close to the tip. Another lead image may depict an electrode configuration with a tight middle spacing. Such an electrode spacing configuration may include an electrode near the tip of the electrodes, a space, two electrodes close together, another space and the fourth electrode. Another lead image may depict an electrode spacing configuration with equal spacing between the four electrodes. Another lead image may depict an electrode spacing configuration where there are two electrodes closely spaced near the tip and then the other two electrodes have a greater space between each other and between them and the first two electrodes. Another lead image may depict an electrode spacing configuration with wide unequal spacing between the four electrodes. For example, in a quadripolar lead including electrodes LV1-LV4, the electrodes may be spaced to such that there are 10 millimeters (mm) between LV1 and LV2, 20 mm between LV2 and LV3 and 15 mm between LV3 and LV4.


In some examples, the user may also be able to modify the electrode spacing. For example, a user may select from among a plurality of predefined lead images that approximate most multipolar lead electrode spacing configurations. The user may then select one or more of the electrodes and move it on the lead image to provide a better approximation of the configuration of the actual lead implanted within the patient.


In some examples, a programmer may have a default display of equal spacing between the electrodes. The user may modify the spacing to approximate the spacing of the electrodes of the lead implanted within the patient. In some examples the user may be able to save a lead image with the modified spacing in order to retrieve the lead image for use when the same lead type has been used in another patient.


In some examples, a lead image may include features in addition to the electrode spacing configuration. For example, the lead image may depict whether the lead that was implanted was a straight or canted lead. In some examples, the lead image may also include a depiction of the location of fixation points, e.g., a depiction of the type, such as structure, and location of a fixation mechanism. Although the examples below are discussed primarily with respect to programming of LV quadripolar leads, other multipolar leads, such as atrial or RV leads, with the same or a different number of electrodes, may also be programmed.



FIG. 1 is a conceptual diagram illustrating an example system 10 that provides electrical stimulation to heart 12 of patient 14. System 10 includes implantable medical device (IMD) 16, which is connected to leads 18, 20, and 22, and is communicatively coupled to a programmer 24. IMD 16 senses electrical signals attendant to the depolarization and repolarization of heart 12, e.g., a cardiac electrogram (EGM), via electrodes on one or more leads 18, 20 and 22 or the housing of IMD 16. IMD 16 may also deliver therapy in the form of electrical signals to heart 12 via electrodes located on one or more leads 18, 20 and 22 or a housing of IMD 16. The therapy may be pacing, cardioversion and/or defibrillation, which may be delivered in the form of electrical pulses. IMD 16 may similarly include or be couple to other sensors, such as one or more accelerometers, for detecting other physiological parameters of patient 14, such as activity or posture.


Leads 18, 20, 22 are intracardiac leads that extend into the heart 12 of patient 14 to sense electrical activity of heart 12 and/or deliver electrical stimulation to heart 12. In the example shown in FIG. 1, right ventricular (RV) lead 18 extends through one or more veins (not shown), the superior vena cava (not shown), and right atrium 26, and into right ventricle 28. Left ventricular (LV) coronary sinus lead 20 extends through one or more veins, the vena cava, right atrium 26, and into the coronary sinus 30 to a region adjacent to the free wall of left ventricle 32 of heart 12. In some examples, LV lead 20 is a quadripolar lead with electrodes LV1-LV4. Right atrial (RA) lead 22 extends through one or more veins and the vena cava, and into the right atrium 26 of heart 12.


In some examples, programmer 24 takes the form of a handheld computing device, computer workstation or networked computing device that includes a user interface for presenting information to and receiving input from a user. A user, such as a physician, technician, surgeon, electro-physiologist, or other clinician, may interact with programmer 24 to retrieve physiological or diagnostic information from IMD 16. A user may also interact with programmer 24 to program IMD 16, e.g., select electrodes through which to apply electrical stimulation. The user interface may include a display that allows the user to visualize the electrode spacing configuration of the lead 20 that has been implanted, for example.


IMD 16 and programmer 24 may communicate via wireless communication using any techniques known in the art. Examples of communication techniques may include, for example, low frequency or radiofrequency (RF) telemetry. Other techniques are also contemplated. In some examples, programmer 24 may include a programming head that may be placed proximate to the patient's body near the IMD 16 implant site in order to improve the quality or security of communication between IMD 16 and programmer 24. In some examples, programmer 24 may be located remotely from IMD 16, and communicate with IMD 16 via a network. Programmer 24 may also communicate with one or more other external devices using a number of known communication techniques, both wired and wireless.



FIG. 2 is a conceptual diagram illustrating an example programmer 24 for programming IMD 16. In the example of FIG. 2, programmer 24 includes processor 88, memory 90, telemetry interface 108 and user interface 98. In general, a user, i.e., a physician or clinician uses programmer 24 to program and control IMD 16.


In the example of FIG. 2, memory 90 stores images of a variety of leads 92. The lead images include an array of electrode spacing options. In some examples, leads 92 stores images of lead combinations as well. For example, leads 92 may store multiple images including the same electrode spacing configuration on LV lead 20, each with a different RV lead 18. RV lead 18 may have one or more of an RV tip electrode, an RV ring electrode and an RV coil electrode.


In some examples, the lead images are identified in leads 92 by lead name or serial number. In some examples, the lead images are identified in leads 92 by approximate electrode spacing. In some examples, the lead images are stored in a directory structure or the like based on approximate electrode spacing. For example, leads having even electrode spacing may be stored together, leads having a close spacing near the lead tip may be stored together, and leads having a close center spacing may be stored together.


Memory 90 may store program 94 including operational parameters that specify possible therapy and sensing parameters for download to IMD 16. As examples, therapy parameters may include pulse width and amplitude for pacing pulses, as well as values for various intervals that control the delivery or non-delivery, and the timing, of pacing pulses. Memory 90 may also store program instructions that, when executed by processor 88, control processor 88 and programmer 24 to provide the functionality ascribed to them herein. Memory 90 may include any volatile, non-volatile, magnetic, optical, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other digital media. Memory 90 may comprise a tangible computer-readable storage medium, e.g., a non-transitory medium.


Memory 90 may also record efficacy information 96 for particular programs 94 in combination with information identifying the electrodes selected by a user for a particular lead 92, e.g., the vector selected for the delivery of therapeutic stimulation. In some examples processor 88 may determine the efficacy of a particular electrode combination, e.g., vector, based on cardiac signals received from IMD 16 via telemetry interface 108. In some examples the cardiac signals may be electrogram (EGM) signals. In some examples the cardiac signals may be heart sounds-based signals. In some examples, the efficacy information 96 may include information received from the user. For example, the user may provide information regarding previous results using a particular electrode grouping. In this manner, over time different electrode groupings for a particular lead type may be rated in terms of efficacy so that the user ultimately may select an effective electrode combination and stimulation parameters. Over time, the programmer 24 may be able to suggest electrode combinations based on previous outcomes.


A user interacts with processor 88 via user interface 98 in order to identify a lead image that corresponds to the lead implanted within patient 14. The user also interacts with the user interface to select an electrode or electrode combination to provide stimulation. Processor 88 may provide display 100, i.e., a graphical user interface (GUI), via user interface 98 to facilitate interaction with the user. Processor 88 may include a microprocessor, a microcontroller, a DSP, an ASIC, an FPGA, or other equivalent discrete or integrated logic circuitry. The user interface 98 may include display 100 and one or more input media 106. In addition, the user interface may include lights, audible alerts, or tactile alerts.


The programmer 24 may include a number of input media 106. In some examples, programmer 24 may include a keyboard. In some examples, the input media 106 may include a barcode scanner. In some examples, the input media 106 may be a touch screen.


In some examples, processor 88 may control IMD 16 via telemetry interface 108 to test selected electrode combination by controlling a stimulator within IMD 16 to deliver cardiac stimulating pulses to heart 12 via the selected electrode combinations. In particular, processor 88 transmits programming signals to IMD 16 via telemetry interface 108.


After completion of electrode testing, processor 88 may transmit the operational parameters, e.g., vector(s), selected by the physician to IMD 16 via telemetry interface 108 for storage in the IMD 16. The selected vectors may be used to deliver therapy chronically or over an extended period of time.


Programmer 24 may be provided in the form of a handheld device, portable computer or workstation that provides a user interface to a physician or patient. The physician interacts with user interface 98 to program stimulation parameters for IMD 16 via external programmer 24.



FIG. 3 is a schematic diagram illustrating an example user interface that may be presented by example of programmer 24 of FIG. 2. Screen 114 is an example GUI that may be presented by user interface 98 of FIG. 2, which may provide a number of different screens and interactive possibilities. For example, user interface 98 may include a touch screen, and a physician may be able to make selections using a finger or other pointing device. Screen 114 may be a “home” or start screen for example. Screen 114 may include a number of icons that lead to additional screens. The additional screens may present information, programming capabilities, or both.


In response to selection of lead selection function 116, e.g., via a shortcut or other interactive element on screen 114, programmer 24 may present a lead selection screen similar to screen 118. In some examples, lead selection screen 118 may be a pull-down screen or pop-up screen that appears along with the icons of screen 114. In some examples, lead selection screen 118 may replace home screen 114.


In the example of FIG. 3, screen 118 includes lead images 120, 122, 124 and 126. Lead image 120 depicts a lead including wide, even spacing between the four electrodes of a quadripolar lead. Lead image 122 depicts a quadripolar lead including double short spacing. That is, two electrodes close together near the tip of the lead and two electrodes close together a distance away from the tip. Lead image 124 depicts a quadripolar lead with short middle spacing of the electrodes. That is, a lead with an electrode at the tip, a large space, two electrodes close together, and another large space. Lead image 126 depicts a quadripolar lead having a short tip spacing. That is, a lead with an electrode at the tip and another electrode close to the tip electrode with a large space before the next electrode, and another large space before the final electrode.


In some examples, a physician may select a lead image showing electrode spacing that approximately corresponds to the electrode spacing of the lead implanted in patient 14 based on the images on lead selection screen 118. In some examples, lead selection screen 118 may be an intermediate screen between the home screen 114 and a selection screen that includes a number of lead images that correspond to actual leads that may be implanted in a patient 14. Each of the lead images 120, 122, 124 and 126 may lead to a display screen including lead images with approximately the same lead spacing as those depicted on screen 118. In some instances the lead images may include not only the approximate lead spacing of the lead the image represents, but a final fixation configuration. For example, the lead images may depict a canted lead, or the placement of fixation points. In some examples the lead images may be associated with a lead model name or serial number. In some examples, after a lead image has been chosen, a user may then select one or more of the electrodes depicted to use when delivering cardiac electrical stimulation. The image of the lead including the relative spacing of the electrodes as implanted in the patient may be helpful to a physician in determining which electrodes to test first.


Screen 114 may include one or more of the icons 128, 130, 132, 134, 136, and 138. In some examples patient information 128 may include information regarding a patient including, for example, patient name, history, date of birth, hospital ID, the types of leads implanted, the type of stimulation that is to be provided, or the patient diagnosis. In some examples choosing parameters 130 brings a user to a screen that allows the user to program various therapy and sensing parameters, including selecting vectors for delivery of therapeutic stimulation and sensing. In some examples, if a lead image has been selected from the lead selection screen 118, the screen displayed in response to the user selecting parameters 130 may include the lead image selected to enable a user to select desired electrodes or electrode combinations for vector programming In some examples a lead image may indicate which electrodes have been selected. In some examples, the image may include an indication of a stimulation or sensing, e.g., pacing, vector resulting from the electrodes selected.


After an electrode has been selected and pacing parameters have been set, a physician may test the chosen parameters. These tests may be done by selecting the tests 138 icon, for example. In some examples, the test icon brings up a display screen that allows a user to select from one or more preprogrammed tests sequences. In some examples, the test results may be displayed. In some examples, the screen may display an EGM signal as the test is being conducted.


In some examples, the display screen 114 may also include icons for reports 134, data 136 and a checklist 132. Checklist 132 may include a checklist to ensure that appropriate tests of IMD 16 are completed. In some examples, checklist 132 may include a checklist to ensure that a predetermined number of vectors have been tested. In some examples, the checklist 132 may include a checklist for a clinic to ensure all tasks associated with the patient are completed before discharge. Selection of checklist 132 may result in display of a graphical user interface that includes a number of checklists. Some of the checklists may be related to programming IMD 16, while other checklists may be related to overall patient care.


In some examples, selection of data 136 may result in user interface 98 displaying patient diagnostic data or data associated with the integrity of the system. In some examples data 136 may include a list of various type of data associated with the IMD 16 and the patient 12. For example, data 136 may include data relating to trends regarding impedance, sensing, or capture threshold trends.


In some examples, display screen 114 may also include reports 134. Selecting reports 134 may result in a display screen including a variety of reports that may be generated by programmer 24. The reports may include, for examples, report related to patient diagnostics, efficacy of a chosen vector over time, the integrity of the system, changes in efficacy of provided stimulation since previous programming, patient clinical data, patient information or changes made during a follow-up session



FIGS. 4A-4D are schematic diagrams illustrating example lead images 140a-140d that may be presented by user interface 98 as part of a programming screen in response selection of one of lead images 140a-140d and selection of programming interface such as tests screen 138 or parameters screen 130 from home screen 114. The lead image 140 includes an image of IMD 16 connected to a LV lead 20 and RV lead 18. LV lead 20 includes four electrodes LV1-LV4. RV lead 18 includes a single electrode, RV coil. In some examples, not shown, RV lead 18 may include one or more of an RV tip electrode, an RV ring electrode and an RV coil electrode. Due to the number of electrodes on quadripolar lead 20, there are a number of possible electrode combinations, or vectors, for the application of stimulation to or sensing of the heart 12. Each of the electrodes LV1-LV4 has the possibility of being programmed as an anode of a cathode. Accordingly there are a number of LV pacing and sensing vectors that may be tested during implant and follow-up appointments.


The vectors may include a number of bipolar vectors, such as: the combination of LV1 and LV2, with either LV1 or LV2 programmed as the anode and the other programmed as the cathode; the combination of LV2 and LV3, with either LV2 or LV3 programmed as the anode and the other programmed as the cathode; LV3 and LV4 with either LV3 or LV4 programmed as the anode and the other programmed as the cathode; LV1 and LV4 with either LV1 or LV4 programmed as the anode and the other programmed as the cathode; LV2 and LV4, with either LV2 or LV4 programmed as the anode and the other programmed as the cathode; LV1 programmed as a cathode and RVcoil programmed as an anode LV2 programmed as an cathode and RVcoil programmed as an anode; LV3 programmed as an cathode and RVcoil programmed as an anode; or LV4 programmed as a cathode and RVcoil programmed as an anode. The IMD 16 may also be programmed to provide additional vectors that include two or more cathodes and/or two or more anodes. In some examples, one of the LV electrodes is programmed as a cathode and the other three LV electrodes are programmed as anodes. For example, LV1 may be programmed as a cathode with LV2, LV3 and LV4 programmed as anodes. In some examples, IMD 16 may utilize a vector that includes two anodes to two cathodes on the LV lead 20. For example, LV1 and LV 2 may be anodes and LV3 and LV4 may be cathodes. In some examples, the stimulation or sensing may be provided through one or more of LV1-LV4 programmed as cathodes and with the can of IMD 16 functioning as an anode. In some examples, not shown, one of LV1-LV4 may be programmed as a cathode with an RVring electrode on RV lead 18 programmed as an anode. The lead image 140, with the approximate spacing of the lead electrodes depicted, may help a physician or other clinician visualize the vectors resulting from a given electrode combination. This may help the physician to determine which of the numerous choices to test first.


In other examples, not shown, vector options may include a vector between an RV tip electrode and an RV ring electrode or an RV tip electrode and an RV coil electrode. The electrodes of RV may also form vectors with the can of IMD 16, or one or more electrodes on other leads, including LV lead 20. The IMD 16 may include leads placed in areas not shown in FIG. 1, and these lead may also be graphically represented consistent with this disclosure.


Programmer 24 may display one of lead images 140 in response to the selection of a left ventricular lead from a list of leads via lead section 116 and/or lead selection screen 118. FIG. 4A depicts Lead image 140a, which includes LV lead 20a with LV1 and LV2 closely spaced near the tip of LV lead 20a. LV3 and LV4, of LV lead 20a, are also closely spaced. The space between LV2 and LV3 is larger than the space between LV1 and LV2 and LV3 and LV4. In some examples, including the one shown in image 140a, the space between the fourth electrode LV4 and the can may not be accurately shown.



FIG. 4B depicts Lead image 140b, which includes LV lead 20b with LV1 at the tip of lead 20b. LV2 and LV3 are closely spaced together closer to IMD 16b. The space between LV1 and LV2 is larger than the spacing between LV2 and LV3. LV4 is closer to the can of IMD 16b than LV3 and the space between LV3 and LV4 is greater than the space between LV2 and LV3. In some examples, the spacing depicted in image 140 may be approximate. For example, the relative spacing between LV1, LV2, LV3 and LV4 may be accurate, while the spacing may not exactly equal the actual spacing of the electrodes on the lead 20b that has been implanted in patient 14.



FIG. 4C depicts Lead image 140c, which includes LV lead 20 with LV1 at the tip of lead 20b. The spacing between LV1, LV2, LV3 and LV4 are approximately equal. In some examples, the relative location of RVcoil on RV lead 18c to the electrodes of LV lead 20c may approximately equal to the spacing as the leads have been implanted within heart 12.



FIG. 4D depicts Lead image 140d which includes LV lead 20d with LV1 and LV2 closely spaced near the tip of LV lead 20d. The spacing between electrodes LV2 and LV3 is approximately equal to the spacing between electrodes LV3 and LV4. In some examples, the spacing depicted in image 140d may be approximate. For example, the relative spacing between LV1-LV4 may be accurate while the spacing may not exactly equal the actual spacing of the electrodes on the lead 20D that has been implanted in patient 14. In some examples, the lead may be depicted at multiple of the actual size for ease of visualization.



FIG. 5A is as schematic diagram illustrating an example lead image 150 that may be displayed on user interface 98. Lead image 150 includes an IMD 16, a LV lead 20 and a RV lead 18. In the example shown LV lead 20 is a quadripolar lead with electrodes LV1-LV4. In the example shown, electrode LV2 has been selected by a user to be an anode and electrode LV3 has been selected by the user as a cathode. The selection may occur, for example, on parameters screen 130 or tests screen 138. In some examples, the selection may occur when a selected lead image 150 is displayed on a programming interface. Lead image 150 shows the polarities of the electrodes selected by the user.



FIG. 5B is a schematic diagram illustrating an example lead image 160 that may be displayed on user interface 98. Lead image 160 includes an IMD 16, a LV lead 20 and a RV lead 18. In the example shown, LV lead 20 is a quadripolar lead with electrodes LV1-LV4. In the example shown, electrode LV2 has been selected by a user to be an anode and electrode LV 3 has been selected by a user to be a cathode. Lead image 160 includes a depiction of the vector 162 created by electrodes LV2 and LV3. This depiction may help a user visualize if the electrodes selected will provide the stimulation desired.



FIG. 5C is a schematic diagram illustrating an example lead image 164 that may be displayed on user interface 98. Lead image 165 includes an IMD 16, a LV lead 20 and a RV lead 18. In the example shown, LV lead 20 is a quadripolar lead with electrodes LV1-LV4. In the example shown, electrode LV2 has been selected by a user to be an anode and electrode LV 3 has been selected by a user to be a cathode. Lead image 164 includes a depiction of an electrode field 166 created by electrodes LV2 and LV3. This depiction may help a user visualize if the electrodes selected will provide the stimulation desired.



FIG. 6 is a flow diagram illustrating an example method of electrode selection consistent with various examples in this disclosure. A physician or other user may interact with user interface 98 to select lead(s) to program (170). The user may choose to program one or more of the leads that have been implanted in the patient 14 at a time. For example, a physician may desire to visualize both LV lead 20 and RV lead 18 in order to depict the possibility of a vector between one or more of the electrodes of LV lead 20 and an electrode on RV lead 18.


The programmer 24 receives an indication of the lead type (172), e.g., via the user interface. The indication of lead type may be received in the form of a selection made by a user after the user has accessed the options provided by a lead selection screen 118. In some examples, lead selection screen 118 may depict approximate spacings of electrodes from which a user may chose. In some examples, lead selection screen 118 may include thumbnails of lead configurations corresponding to actual leads. In some examples, the thumbnails may be labeled to include a lead model or serial number.


In some examples, programmer 24 may include a scanner, e.g., a barcode scanner, as part of user interface 98. The user may scan the barcode or another identifying from the packaging of the lead that was implanted. The scanner may be able to read a machine readable code. In some examples, the user may scan a barcode on a patient identification that may include information regarding the patient including the lead model number for the implanted lead. In some examples programmer 24 may receive an indication of lead type (172) from IMD 16 via telemetry interface 108.


Based on the indicated lead type, display 100 displays a lead image associated with the indicated lead type (174). In some examples, the processor 88 receives the indication of the lead type (172) form the user interface 98 and accesses memory 90 to retrieve the lead image 92 for display on display 100.


In some examples, the user selects electrodes (176) to be programmed based on the lead image (174) on display 100. In some examples, the selection may be an initial vector to be tested. In some examples, the lead image may be updated to depict the electrodes that have been selected. In some examples, the lead image may be displayed within other display screens, including the tests 128 screen or the parameters 130 screen. This may allow a physician to continually visualize the stimulation that is being provided while changing various parameters or testing the chosen electrode combination.



FIG. 7 if a flow diagram illustrating another example method consistent with the present disclosure. An external programmer receives an indication of a lead type (180) that has been implanted in patient 14. As discussed above with respect to FIG. 6, the indication may come from a variety of sources, including user input, user selection from a list or other ordering of images stored within programmer 24 via scanner, or from the IMD 16 itself In response to the indication of lead type (180), processor 88 may retrieve the corresponding lead image for display (182) on user interface 98.


In some examples, after a lead image has been selected based on the indication of lead type and displayed on display 100, a user may modify lead electrode spacing (184). The modification of lead spacing (184) may occur in order to provide a better approximation of the electrode spacing configuration of the lead that has been implanted in patient 14. This may be helpful in instances where the programmer 24 does not include a lead image that exactly corresponds to the lead type indicated or implanted. After a user is satisfied with electrode spacing configuration presented on display 100, a user may select electrodes (186) to test first. In some examples, the selection may be based on previous experience by the user with the same type of lead and electrode spacing configuration. In some examples, the selection may be based on the graphic presented. After a set of electrodes has been chosen, the user sets program parameters (188). In some examples, the user may access previous pacing programs 94 stored within memory 90. In some examples, processor 88 may access the pacing programs 94 and present one or more suggestions based on the electrodes selected by the user. The processes of selecting electrodes and program parameters may be repeated until a combination of electrodes and pacing parameters provides the desired effect.


Various examples have been described. These and other examples are within the scope of the following claims.

Claims
  • 1. A system comprising: a user display;a memory configured to store a plurality of intracardiac lead images, each of the lead images associated with a respective one of a plurality of lead types, and each of the lead images including a plurality of electrodes spaced according to the spacing of electrodes of the associated lead type,an interface configured to receive an indication of which of the plurality of lead types corresponds to a lead of a patient; anda processor configured to choose the one of the lead images that is associated with the indicated lead type, and provide the chosen image to the user display for display as part of a graphical user interface for programming cardiac stimulation therapy for the patient.
  • 2. The system of claim 1, wherein each of the intracardiac lead images include four electrodes.
  • 3. The system of claim 1, wherein the interface comprises a user interface configured to allow a user to select which of a plurality of intracardiac lead images from a pull-down or a pop-up screen corresponds to the lead of the patient.
  • 4. The system of claim 3, wherein the user interface is configured to present thumbnails of the plurality of intracardiac lead images, and allow the user to select which of a plurality of intracardiac lead images corresponds to the lead of the patient.
  • 5. The system of claim 3, wherein the memory is configured to store each of the lead images in association with a respective one of a plurality of model numbers, and the user interface is configured to allow the user to select which of a plurality of intracardiac lead images corresponds to the lead of the patient based on the model number associated with the lead of the patient.
  • 6. The system of claim 1, wherein each of the plurality of lead types comprises a different electrode spacing configuration.
  • 7. The system of claim 1, wherein the interface comprises a scanner configured to read a machine readable code that indicates which of the plurality of lead types corresponds to the lead of the patient.
  • 8. The system of claim 1, wherein the graphical user interface for programming the cardiac stimulation therapy is further configured to allow the user to select one or more of the plurality of electrodes of the lead image for programming the cardiac stimulation therapy.
  • 9. The system of claim 1, wherein the graphical user interface for programming the cardiac stimulation therapy is further configured to allow the user to modify the spacing of the electrodes of the selected lead image.
  • 10. The system of claim 1, wherein the interface comprises a scanner configured to read a radiofrequency identification tag that indicates which of the plurality of lead types corresponds to the lead of the patient.
US Referenced Citations (265)
Number Name Date Kind
2956586 Zeigler et al. Oct 1960 A
3857399 Zacouto Dec 1974 A
3888260 Fischell Jun 1975 A
3985123 Herzlinger et al. Oct 1976 A
4164946 Langer Aug 1979 A
4262982 Kenny Apr 1981 A
4397314 Vaguine Aug 1983 A
4399820 Wirtzfeld et al. Aug 1983 A
4600454 Plummer Jul 1986 A
4603705 Speicher et al. Aug 1986 A
4628934 Pohndorf et al. Dec 1986 A
4628935 Jones et al. Dec 1986 A
4750494 King Jun 1988 A
4776334 Prionas Oct 1988 A
4877032 Heinze et al. Oct 1989 A
4878898 Griffin et al. Nov 1989 A
4881410 Wise et al. Nov 1989 A
4902273 Choy et al. Feb 1990 A
5004275 Miller Apr 1991 A
5005613 Stanley Apr 1991 A
5035246 Heuvelmans et al. Jul 1991 A
5111816 Pless et al. May 1992 A
5113868 Wise et al. May 1992 A
5156154 Valenta, Jr. et al. Oct 1992 A
5158536 Sekins et al. Oct 1992 A
5176619 Segalowitz Jan 1993 A
5188106 Nappholz et al. Feb 1993 A
5209238 Sundhar May 1993 A
5213098 Bennett et al. May 1993 A
5243981 Hudrlick Sep 1993 A
5285744 Grantham et al. Feb 1994 A
5305745 Zacouto Apr 1994 A
5313020 Sackett May 1994 A
5391199 Ben-Haim Feb 1995 A
5411532 Mortazavi May 1995 A
5411537 Munshi et al. May 1995 A
5417717 Salo et al. May 1995 A
5419767 Eggers et al. May 1995 A
5423323 Orth Jun 1995 A
5433198 Desai Jul 1995 A
5500006 Heinze Mar 1996 A
5509411 Littmann et al. Apr 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5544656 Pitsillides et al. Aug 1996 A
5549650 Bornzin et al. Aug 1996 A
5579234 Wiley et al. Nov 1996 A
5579764 Goldreyer Dec 1996 A
5591142 Van Erp Jan 1997 A
5593430 Renger Jan 1997 A
5628777 Moberg et al. May 1997 A
5662587 Grundfest et al. Sep 1997 A
5674258 Henschel et al. Oct 1997 A
5676153 Smith et al. Oct 1997 A
5683429 Mehra Nov 1997 A
5713937 Nappholz et al. Feb 1998 A
5720768 Verboven-Nelissen Feb 1998 A
5743267 Nikolic et al. Apr 1998 A
5751050 Ishikawa et al. May 1998 A
5788647 Eggers Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800460 Powers et al. Sep 1998 A
5800465 Thompson et al. Sep 1998 A
5810735 Halperin et al. Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5836987 Baumann et al. Nov 1998 A
5873849 Bernard Feb 1999 A
5902234 Webb May 1999 A
5902248 Millar et al. May 1999 A
5913814 Zantos Jun 1999 A
5924997 Campbell Jul 1999 A
5935084 Southworth Aug 1999 A
5938690 Law et al. Aug 1999 A
5941904 Johnston et al. Aug 1999 A
5957957 Sheldon Sep 1999 A
5999848 Gord et al. Dec 1999 A
6009349 Mouchawar et al. Dec 1999 A
6015386 Kensey et al. Jan 2000 A
6024704 Meador et al. Feb 2000 A
6032699 Cochran et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6044297 Sheldon et al. Mar 2000 A
6058329 Salo et al. May 2000 A
6061593 Fischell et al. May 2000 A
6077136 Arai et al. Jun 2000 A
6078830 Levin et al. Jun 2000 A
6081748 Struble et al. Jun 2000 A
6115626 Whayne et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6120442 Hickey Sep 2000 A
6155267 Nelson Dec 2000 A
6163716 Edwards et al. Dec 2000 A
6163725 Peckham et al. Dec 2000 A
6165135 Neff Dec 2000 A
6171252 Roberts Jan 2001 B1
6197021 Panescu et al. Mar 2001 B1
6197677 Lee et al. Mar 2001 B1
6206835 Spillman, Jr. et al. Mar 2001 B1
6206874 Ubby et al. Mar 2001 B1
6223080 Thompson Apr 2001 B1
6234973 Meador et al. May 2001 B1
6241418 Suzuki et al. Jun 2001 B1
6264606 Ekwall et al. Jul 2001 B1
6277078 Porat et al. Aug 2001 B1
6287256 Park et al. Sep 2001 B1
6299582 Brockway et al. Oct 2001 B1
6301500 Van Herck et al. Oct 2001 B1
6309350 VanTassel et al. Oct 2001 B1
6309385 Simpson Oct 2001 B1
6328699 Eigler et al. Dec 2001 B1
6358245 Edwards et al. Mar 2002 B1
6360123 Kimchi et al. Mar 2002 B1
6363279 Ben-Haim et al. Mar 2002 B1
6366811 Carlson Apr 2002 B1
6370431 Stoop et al. Apr 2002 B1
6406677 Carter et al. Jun 2002 B1
6421567 Witte Jul 2002 B1
6438408 Mulligan et al. Aug 2002 B1
6466820 Juran et al. Oct 2002 B1
6477395 Schulman et al. Nov 2002 B2
6477417 Levine Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6496730 Kleckner et al. Dec 2002 B1
6580946 Struble Jun 2003 B2
6584362 Scheiner et al. Jun 2003 B1
6600954 Cohen et al. Jul 2003 B2
6611714 Mo Aug 2003 B1
6618619 Florio et al. Sep 2003 B1
6628989 Penner et al. Sep 2003 B1
6666826 Salo et al. Dec 2003 B2
6675049 Thompson et al. Jan 2004 B2
6768924 Ding et al. Jul 2004 B2
6812796 Pryanishnikov et al. Nov 2004 B2
6885889 Chinchoy Apr 2005 B2
6934584 Wong et al. Aug 2005 B1
6978178 Sommer et al. Dec 2005 B2
6978184 Marcus et al. Dec 2005 B1
6993384 Bradley et al. Jan 2006 B2
6994676 Mulligan et al. Feb 2006 B2
7020524 Bradley Mar 2006 B1
7047084 Erickson et al. May 2006 B2
7174218 Kuzma Feb 2007 B1
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7204798 Zdeblick et al. Apr 2007 B2
7214189 Zdeblick May 2007 B2
7218968 Condie et al. May 2007 B2
7239916 Thompson et al. Jul 2007 B2
7267649 Zdeblick et al. Sep 2007 B2
7392088 Dong et al. Jun 2008 B2
7467016 Colborn Dec 2008 B2
7561914 Busacker et al. Jul 2009 B2
7574259 Pei et al. Aug 2009 B1
7583998 Meyer et al. Sep 2009 B2
7640060 Zdeblick Dec 2009 B2
7676273 Goetz et al. Mar 2010 B2
7680536 Sathaye et al. Mar 2010 B2
7684863 Parikh et al. Mar 2010 B2
7713194 Zdeblick May 2010 B2
7792585 Shelchuk Sep 2010 B1
20010000187 Peckham et al. Apr 2001 A1
20010002924 Tajima Jun 2001 A1
20010025192 Gerber et al. Sep 2001 A1
20010047138 Kokate et al. Nov 2001 A1
20010053882 Haddock et al. Dec 2001 A1
20020026183 Simpson Feb 2002 A1
20020040236 Lau et al. Apr 2002 A1
20020045921 Wolinsky et al. Apr 2002 A1
20020072656 Vantassel et al. Jun 2002 A1
20020077568 Haddock Jun 2002 A1
20020077673 Penner et al. Jun 2002 A1
20020095196 Linberg Jul 2002 A1
20020099419 Cohen et al. Jul 2002 A1
20020111560 Kokate et al. Aug 2002 A1
20020120186 Keimel Aug 2002 A1
20020151816 Rich et al. Oct 2002 A1
20020156417 Rich et al. Oct 2002 A1
20020161307 Yu et al. Oct 2002 A1
20020169445 Jain et al. Nov 2002 A1
20020193859 Schulman et al. Dec 2002 A1
20030078623 Weinberg et al. Apr 2003 A1
20030105496 Yu et al. Jun 2003 A1
20030153952 Auricchio et al. Aug 2003 A1
20030191502 Sharma et al. Oct 2003 A1
20040024440 Cole Feb 2004 A1
20040039417 Soykan et al. Feb 2004 A1
20040093053 Gerber et al. May 2004 A1
20040097965 Gardeski et al. May 2004 A1
20040098074 Erickson et al. May 2004 A1
20040143154 Lau et al. Jul 2004 A1
20040193021 Zdeblick et al. Sep 2004 A1
20040199235 Younis Oct 2004 A1
20040215049 Zdeblick et al. Oct 2004 A1
20040220637 Zdeblick et al. Nov 2004 A1
20040254483 Zdeblick et al. Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20050027320 Nehls et al. Feb 2005 A1
20050054892 Lau et al. Mar 2005 A1
20050102011 Lau et al. May 2005 A1
20050246004 Cameron et al. Nov 2005 A1
20050267542 David et al. Dec 2005 A1
20060020314 Bodner Jan 2006 A1
20060058588 Zdeblick Mar 2006 A1
20060074454 Freeberg Apr 2006 A1
20060122678 Olsen et al. Jun 2006 A1
20060161211 Thompson et al. Jul 2006 A1
20060247539 Schugt et al. Nov 2006 A1
20060265038 Hagen et al. Nov 2006 A1
20070100399 Parramon et al. May 2007 A1
20070123944 Zdeblick May 2007 A1
20070172896 Goueli et al. Jul 2007 A1
20070179569 Zdeblick Aug 2007 A1
20070198066 Greenberg et al. Aug 2007 A1
20070203537 Goetz et al. Aug 2007 A1
20070203544 Goetz et al. Aug 2007 A1
20070219591 Zdeblick et al. Sep 2007 A1
20070219608 Swoyer et al. Sep 2007 A1
20070255336 Herbert et al. Nov 2007 A1
20070255373 Metzler et al. Nov 2007 A1
20070255460 Lopata Nov 2007 A1
20080007186 Lu et al. Jan 2008 A1
20080021292 Stypulkowski Jan 2008 A1
20080027289 Zdeblick Jan 2008 A1
20080027514 DeMulling et al. Jan 2008 A1
20080039916 Colliou et al. Feb 2008 A1
20080045826 Greenberg et al. Feb 2008 A1
20080058656 Costello et al. Mar 2008 A1
20080061630 Andreu et al. Mar 2008 A1
20080091246 Carey et al. Apr 2008 A1
20080097227 Zdeblick et al. Apr 2008 A1
20080097566 Colliou Apr 2008 A1
20080114230 Addis May 2008 A1
20080140141 Ben-David et al. Jun 2008 A1
20080140167 Hagen et al. Jun 2008 A1
20080147168 Ransbury et al. Jun 2008 A1
20080154328 Thompson et al. Jun 2008 A1
20080154340 Goetz et al. Jun 2008 A1
20080163097 Goetz et al. Jul 2008 A1
20080167702 Ransbury et al. Jul 2008 A1
20080177343 Dal Molin et al. Jul 2008 A1
20080183256 Keacher Jul 2008 A1
20080215118 Goetz et al. Sep 2008 A1
20080255647 Jensen et al. Oct 2008 A1
20080294062 Rapoport et al. Nov 2008 A1
20080294218 Savage et al. Nov 2008 A1
20080306394 Zdeblick et al. Dec 2008 A1
20080312726 Frank et al. Dec 2008 A1
20090018632 Zdeblick et al. Jan 2009 A1
20090024184 Sun et al. Jan 2009 A1
20090043352 Brooke et al. Feb 2009 A1
20090054946 Sommer et al. Feb 2009 A1
20090054947 Bourn et al. Feb 2009 A1
20090062880 Li et al. Mar 2009 A1
20090196471 Goetz et al. Aug 2009 A1
20090196472 Goetz et al. Aug 2009 A1
20090287266 Zdeblick Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100016928 Zdeblick et al. Jan 2010 A1
20100137935 Parikh et al. Jun 2010 A1
20100152801 Koh et al. Jun 2010 A1
20100204766 Zdeblick et al. Aug 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20110004264 Siejko et al. Jan 2011 A1
20120123496 Schotzko et al. May 2012 A1
Foreign Referenced Citations (39)
Number Date Country
0659388 Jun 1995 EP
1048321 Nov 2000 EP
1050265 Nov 2000 EP
1136033 Sep 2001 EP
1266606 Dec 2002 EP
1321097 Jun 2003 EP
1426079 Jun 2004 EP
1938861 Jul 2008 EP
6456031 Feb 1989 JP
2099036 Apr 1990 JP
3055032 Mar 1991 JP
5269136 Oct 1993 JP
2000139833 May 2000 JP
2002272758 Sep 2002 JP
WO 9952588 Oct 1999 WO
WO 0143821 Jun 2001 WO
WO 0195787 Dec 2001 WO
WO 02053228 Jul 2002 WO
WO 02065894 Aug 2002 WO
WO 2004020040 Mar 2004 WO
WO 2004052182 Jun 2004 WO
WO 2004066814 Aug 2004 WO
WO 2004066817 Aug 2004 WO
WO 2004067081 Aug 2004 WO
WO 2006029090 Mar 2006 WO
WO 2006042039 Apr 2006 WO
WO 2006069322 Jun 2006 WO
WO 2006073915 Jul 2006 WO
WO 2006105474 Oct 2006 WO
WO 2007005641 Jan 2007 WO
WO 2007075974 Jul 2007 WO
WO 2007120884 Oct 2007 WO
WO 2007149546 Dec 2007 WO
WO 2008004010 Jan 2008 WO
WO 2008008755 Jan 2008 WO
WO 2008027639 Mar 2008 WO
WO 2009131749 Oct 2009 WO
2009134475 Nov 2009 WO
2009137121 Nov 2009 WO
Non-Patent Literature Citations (9)
Entry
Auricchio et al., “The Pacing Therapies for Congestive Heart Failure (PATH-CHF) Study: Rationale, Design and Endpoints of a Prospective Randomized Multicenter Study” Am J. Cardio., 83:130D-135D, 1999.
Borky et al., “Integrated Signal Conditioning for Silicon Pressure Sensors” IEEE Transactions on Electron Devices ED-26(12): 1906-1910, 1979.
Little et al., “The Output of the Heart and its Control” Physiology of the Heart and Circulation, 4th ed., Year Book Medical Publishers Inc. pp. 165-187, 1989.
Paolocci et al., “Positive Inotropic ad Lusitropic Effects of HNO/NO in failing hearts: Independence from B-adrenergic signaling” PNAS vol. 100, No. 9, pp. 5537-5542, 2003.
Receveur et al., “Laterally Moving Bistable MEMS DC-Switch for Biomedical Applications,” Journal of Microelectromechanical Systems, vol. 14, No. 5, Oct. 2005.
U.S. Appl. No. 12/909,057, by Wade M. Demmer, filed Oct. 21, 2010.
U.S. Appl. Application No. 12/395,538, by Bi et al., filed Feb. 27, 2009.
United States Patent Application No. Elizabeth A. Schotzko, filed Sep. 29, 2010.
(PCT/US2012/037525) Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Sep. 11, 2012, 11 pages.
Related Publications (1)
Number Date Country
20130023948 A1 Jan 2013 US
Continuations (1)
Number Date Country
Parent 13107613 May 2011 US
Child 13623288 US