The present invention generally relates to wireless communications systems and methods.
The demand of mobile voice and data services is expected to grow rapidly. Increasing the system capacity while maintaining the minimum quality-of-service (QoS) requirement of every user is one of the main issues that needs to be investigated in these systems.
The conventional cellular concept represents a milestone for the efficient use of the radio resources. The service area is divided into a number of cells and the radio resources are allocated to each cell in such a way that some minimum transmission rate is achievable at any location in the entire cell. Frequency reuse is one of the well-known techniques to allocate resources to different cells.
One consequence of the above design is that mobile users, who are close to their serving base station (BS), experience a much higher signal quality compared with the mobiles users who are located near the edge of a cell. For users with high signal quality, they can tolerate a higher level of interference, which makes a denser reuse of channels possible. The concept of reuse partitioning, where a cell is divided into concentric zones, each with a different reuse pattern, has been proposed to increase the system total capacity. See, for example the following references: S. W. Halpern, “Reuse partitioning in cellular systems”, Proc. VTC, pp. 322-327, 1983; J. F. Whitehead, “Cellular spectrum efficiency via reuse planning”, Proc. VTC, pp. 16-20, 198; and J. Zander and M. Frodigh, “Capacity allocation and channel assignment in cellular radio systems using reuse partitioning”, Electronics Letters, Vol. 28, 1992, all of which are hereby incorporated by reference.
Recently, orthogonal frequency division multiple access (OFDMA) systems have been proposed to implement high data rate transmission in cellular networks. See, for example, J. Chuang and N. Sollenberger, “Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assigment”, IEEE Communications Magazine, Vol. 38, pp. 78-87, 2000, which is hereby incorporated by reference. In OFDMA systems, various dynamic subcarrier allocation and scheduling schemes have been proposed by many researchers to increase the system throughput under some fairness or QoS constraints. In Y. W. Cheng and R. Cheng and K. B. Letaief and R. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation”, IEEE Journal on Selected Areas in Communications, Vol. 17, pp. 1747-1758, 1999, a near optimal power and bit allocation scheme is proposed to minimize the total transmit power while maintaining QoS for each user. A low complexity algorithm with adaptive modulation and adaptive multiple-access control and cell selection is proposed in Y. J. Zhang and K. B. Letaief, “Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems”, IEEE Tran. on Wireless Communications, Vol: 3, pp. 1566-1575, 2004, where significant improvement in spectral efficiency is shown. In P. Svedman and S. Wilson and B. Ottersten, “A QoS-aware proportional fair scheduler for opportunistic OFDM”, Proc. VTC, pp. 558-562, 2004, a proportional fair scheduler is proposed to accommodate several QoS classes.
In a multicell OFDMA system, the concept of reuse partitioning is not investigated jointly with dynamic subcarrier allocation in most previous works. In a recent work, however, the joint problem of reuse partitioning and dynamic subcarrier allocation was considered. See, H. Kim and Y. Han and J. Koo, “Optimal subchannel allocation scheme in multicell OFDMA systems”, Proc. VTC, pp. 1821-1825, 2004. There, the authors formulate a linear programming problem that maximizes the total system throughput while guaranteeing QoS for each user. Through simulation, it is also demonstrated that the proposed scheme provides significant throughput improvement. One drawback of the above scheme, however, is that every mobile user has to calculate and report the best achievable rate of a subcarrier to the serving BS for all frequency reuse factors. Then each BS forwards all the information to the radio network controller (RNC), and the RNC solves the linear programming problem which gives the optimal subcarrier allocation. It can be seen that a substantial amount of communication overhead is involved between each mobile user and the serving Base Station (BS) as well as between each BS and the RNC. Moreover, the RNC needs to consume a lot of computational power in order to solve the linear programming problem in a timely manner. Finally, the concentric zone concept which was used intensively in reuse partitioning scheme is not explicitly addressed by H. Kim and Y. Han and J. Koo. Instead, a mobile station is allowed to use subcarriers with different frequency reuse factors.
One aspect of the present invention considers the joint problem of reuse partitioning and dynamic subcarrier allocation in cellular OFDMA systems with the QoS constraint from individual user. In accordance with a further aspect of the present invention, the joint problem is divided into two subproblems and a two-step suboptimal approach is adopted. In the first subproblem, the RNC solves the network planning (i.e. reuse partitioning) problem based on its limited information about every user in all cells. In the second subproblem, given the reuse partitioning pattern determined by the RNC, each BS solves the throughput maximization problem in its cell based on the accurate information about every user in the cell. Compared with the optimal scheme, this approach requires less amount of communication overhead and less computational power which makes it more practical for delay sensitive applications.
In accordance with one aspect of the present invention, a method of controlling a cellular communication system having a plurality of users and a plurality of cells is provided. Each of the plurality of cells has a plurality of possible inner radii r. A first equation is solved for the throughput for the cellular communication system for each of the plurality of possible inner radii r The first equation is a function of the number of subcarriers, the frequency reuse and the size of the plurality of cells.
Once the first equation is solved, one of the plurality of possible inner radii r is selected so as to maximize the first equation for throughput.
Then a second equation is solved for throughput of each user, the second equation being a function or the one of the plurality of possible inner radii r.
In accordance with another aspect of the present invention, the second equation is solved at a base station in each of the plurality of cells and the first equation is solved at a radio network controller.
The method of the present invention is preferably used to set communication parameters of the cellular communication system based on the second equation. For example, each of a plurality of base stations can allocate subcarriers to a plurality of mobile communication units based on a throughput maximization solution.
In accordance with a further aspect of the present invention, the cellular communication system is an orthogonal frequency division multiple access system. It can also be used on other types of systems, for example, systems with no intra cell interference and granular bin allocations
In accordance with another aspect of the present invention, the first equation is
subject to:
N1+pNp=M (5)
tr,j*Np≧T1
tt,i*≧T1
In accordance with a further aspect of the present invention, the second equation is:
where nib is the number of sub-channels allocated to a user i who is in the inner hexagon and njb is the number of sub-channels allocated to a user j who is in the outer ring, tib is an actual rate the user i can get and tjb is an actual rate the user j can get.
The present invention also contemplates a system for controlling a cellular communication system. The system includes a radio network controller in communication with each of a plurality of base stations. The radio network controller (1) solves a first equation for throughput for the cellular communication system for each of the plurality of possible inner radii r, the first equation being a function of the number of subcarriers, the frequency reuse and the size of the plurality of cells and (2) selects one of the plurality of possible inner radii r that maximizes the first equation for throughput. The system also includes the plurality of base stations. Each of the plurality of base stations is associated with a cell that has a plurality of users and each of the plurality of base stations solves a second equation for throughput of each of the plurality of users, the second equation being a function or the one of the plurality of possible inner radii r
The first and second equations can be solved by any appropriate processor in the cellular communication system.
In this specification, the system model and the problem formulation is introduced first. Then the two-step approach in accordance with one aspect of the present invention is presented. Then, simulation results are presented.
System Model and Problem Formulation
A downlink multicell OFDMA system 10 is illustrated in
Each BS 12 is able to implement a two-layer structure with two concentric hexagons as shown in
where di,0 is the distance between the ith user and the serving BS, di,1 is the distance between the ith user and the lth interfering BS and k is the attenuation factor. No power control and no fading/shadowing effects are assumed.
The objective is to find the optimal radius of the inner hexagon for every cell and the optimal subcarrier allocation for users located in both the inner hexagon and the outer ring in each cell so that the total system throughput T is maximized. The optimization problem can be explicitly written as:
where:
For simplicity, it is assumed that all users have the same minimum rate requirement denoted by tmin and all users i in the inner hexagon have frequency reuse factor of 1 while the jth user located in the outer ring uses the frequency reuse factor of p. Note that equation (2) is the constraint on the total number of subcarriers in each cell and equation (3) guarantees the minimum rate (QoS) requirement constraint for all users. Since the frequency reuse factor p≧1, there are less than M subcarriers available in each cell.
The Two-step Approach
In order to solve the system throughput maximization problem optimally, the central RNC 16 needs to know the exact location of all users 18 in all cells 14. Since all mobile users 18 are free to move, the only way that the RNC 16 is able to know the location of all users 18 is to let users in a cell 14 report their exact locations to the serving BS 12 and then the BSs 12 forward all the information to the RNC 16. In certain conditions, the receive signal strength or SIR may be used in place of the exact location. Nevertheless, this feedback mechanism requires a huge amount of communication overhead between all mobile users 18 and their serving BS 12 as well as between all BSs 12 and the RNC 16. Even if the system can accommodate this amount of communication overhead, the RNC 16 still needs to solve, for every possible value of r, an integer programming problem with a large number of variables. Therefore, a large delay and a substantial amount of computational power are expected at the RNC 16 while solving this optimization problem.
All of the above drawbacks render the optimal scheme unpractical for real system implementation, especially for delay sensitive mobile networks. Therefore, one aspect of the present invention decomposes the joint problem of reuse partitioning and dynamic subcarrier allocation into two subproblems. This suggests a two-step approach to solve the joint problem in a suboptimal way. The first subproblem is the “large scaled network planning” problem, where the RNC 16 needs to determine the radius r of the inner hexagon for every cell and the number of subcarriers allocated to both the inner hexagon and the outer ring in each cell based on limited information about all users 18 in each cell 14, while guaranteeing the minimum rate requirement of all users 18.
The second subproblem is the “small scaled cell throughput maximization” problem, where each BS 12, subject to the network planning results determined by the RNC 16, allocates the subcarriers to users in both the inner hexagon and the outer ring to maximize its cell's throughput based on its full knowledge of users' 18 locations within the cell 14.
One example of the 2-step approach is described below:
1. It is assumed that tmin is known by all the BSs 12, and there is a pre-defined radius set X where the radius of the inner hexagon r can only take values from this set.
2. During the association period, each mobile user 18 in a cell 14 reports its exact location to the serving BS 12.
3. Each BS b reports
to the RNC 16 for all r∈X. This means that for every pre-defined radius in the set X, each BS 12 reports two numbers to the RNC 16, where
is the total rate requirement of active users in the outer ring and
is the total rate requirement of active users in the inner hexagon when the radius of inner hexagon is r. For example, if there are L elements in the set X, each BS 12 reports an L×2 matrix.
4. Large scaled network planning: the RNC 16 solves the following optimization problem for each r∈X:
subject to:
N1+pNp=M (5)
tr,j*Np≧T1
tr,i*N1≧T1
where tr,j* is the worst case rate per sub-channel for the outer ring with frequency reuse factor p and tr,j* is the worst case rate per sub-channel for the inner hexagon with reuse factor of 1. These worst case rates can be calculated by assuming users are located at the worst case locations shown in
5. After solving the above optimization problem for each r∈X, the RNC 16 picks the radius r* which has the highest system throughput and reports (r*, N1, Np) to each BS 12. Thus, all cells will end up with a uniform layout. Each cell will have the same radius for the inner hexagon and same N1 and Np as shown in
6. Small scaled cell throughput maximization is performed. After obtaining (r*, N1, Np) from the RNC 16, each BS b solves:
where nib is the number of sub-channels allocated to user i who is in the inner hexagon and njb is the number of sub-channels allocated to user j who is in the outer ring. tib is the actual rate user i can get (a BS 12 can calculate this value because user i's exact location is known to the BS 12 and the network planning result is given by the RNC 16), and tjb is the actual rate user j can get.
Note that in step 3), each BS 12 only reports partial information to the RNC 16 which reduces the communication overhead between each BS 12 and the RNC 16. In step 4), the RNC 16 solves the large scaled network planning problem based on its limited information about all users. Since the RNC 16 needs to guarantee the minimum rate requirement for all users, it has to deal with the worst case situations which are illustrated in equations (6) and (7). However, the computational complexity of the optimization problem in Equation (4) is actually very low. N1 can be replaced by M—pNp, and the optimization problem reduces to
It is clear that the above single variable optimization problem is easy to solve. In step 6), each BS 12 does need to solve a linear programming problem, as shown in Equation (8), to maximize the throughput in each individual cell 12. But, compared with the optimization problem in Equation (1), the computational complexity is reduced dramatically, because the radius of the inner hexagon is already determined by the RNC 16 and the number of variables is also reduced substantially.
The joint problem of reuse partitioning and dynamic subcarrier allocation in an OFDMA downlink system has been considered. In order to reduce both the communication overhead and computational complexity, the joint problem is separated into two subproblems. The RNC solves the large scaled network planning problem based on its limited information about all users while guaranteeing all users' minimum rate requirement. Given the network planning results, each BS solves the small scaled cell throughput maximization problem based on its full knowledge of users' locations within its cell. Our simulation results demonstrate the fact that, even though our proposed scheme has less communication overhead and requires less computational power. Thus, the total throughput can be increased dramatically over the standard configuration.
The approach set forth above can be extended in accordance with further aspects of the present invention. In the extension, the optimization problem can, once again, be explicitly written as:
where:
As before, for simplicity, it has been assumed that all users have the same minimum rate requirement denoted by tmin and all users i in the inner hexagon have frequency reuse factor of 1 while the user located in the outer ring uses the frequency reuse factor of p. The second equation in the above paragraph is the constraint on the total number of subcarriers in each cell, and the third and furth equations in the above paragraph guarantee the minimum rate (QoS) requirement constraint for all users. Since the frequency reuse factor p>1, there are less than M subcarriers available in each cell.
Once again, a two-step process is used.
First, the large scaled network planning problem is solved. To optimize the whole network throughput, the RNC 16 solves the following problem and reports the optimal radius r*, the number of subcarriers allocated in the inner region N1 and the outer region Np to each BS 12.
where X is the pre-defined set of the inner radius, tr,j* is the worst case rate per sub-channel for the outer ring with frequency reuse factor p and tr,i* is the worst case rate per sub-channel for the inner hexagon with reuse factor of 1 and
are the total rate requirement reported by the base station b of active users in the outer region and the inner region of size r, respectively, as those regions are illustrated in
Next, small scaled cell throughput maximization is performed. After obtaining (r*, N1, Np) from the RNC 16, each BS b solves
where nib is the number of sub-channels allocated to user i who is in the inner hexagon and njb is the number of sub-channels allocated to user j who is in the outer ring. tib is the actual rate user i can get (a BS 12 can calculate this value because user i's exact location is known to the BS 12 and the network planning result is given by the RNC 16), and tjb is the actual rate user j can get.
Extended optimization steps suitable for practical scenarios are now discussed.
A. Optimization of Frequency Reuse for Outer Regions
It can be seen that a goal is to maximize the total system throughput with respect to the inner radius r and the number of subcarriers assigned to users in the inner hexagon and the outer ring, nib and njb, respectively. However, the objective function can be further extended to include the frequency reuse of the outer region p. Therefore, the equation from paragraph 0036 can be rewritten as
Similarly the large scaled network planning can be rewritten as
After solving the above optimization problem, the RNC 16 forwards the values (p, r, N1, Np) that satisfy equations (8) or (9) above to each BS 12. Note that the transmit power of the inner hexagon can be easily inferred from the radius r. In certain conditions such as those with high-level of intercell interference or largely nonuniform user distribution, it is possible that no feasible solution with r>0 exists and the optimization over the radius r may be dropped and equation (8) is reduced to:
In this case, the RNC reports (p, 0, 0, M/p) to each BS 12, indicating the standard network configuration is being used.
It can be seen that with concentric reuse partitioning and dynamic resource allocation, the optimization and simultaneous allocation of power, frequency, bandwidth and sub-carriers can be achieved.
B. Optimization of Frequency Reuse for Inner and Outer Regions
Here, the optimization steps are further generalized by relax the requirement that the inner hexagon uses the frequency reuse of 1. Even though the frequency reuse of 1 simplifies the network deployment tremedously, the optimization method in accordance with one aspect of the present invention can be extended to the cases where the reuse factor of 1 is no longer optimal or feasible.
Let α be the frequency reuse factor of the inner hexagon and equation (7) from paragraph 0043 can be modified as
Similarly the large scaled network planning shown in (8) can be modified as
For the optimization of α and p. the choices of reuse factor can be limited to a few practical values, such as 1, 3 and 7 so that it does not cause an extensive computational burden. Then the RNC 16 has to report (α, p, r, Nα, Np) to each BS 12 for small scaled throughput maximization as shown in equation (6) in paragraph 0040.
C. Non-Uniform Rate Requirements
For simplicity, it has been assumed that all users have the same minimum rate requirement, tmin. However, the optimization steps shown in the previous equations can be used with non-uniform user rate requirements. Specifically, the total rate requirement reported by BS b for active users in the inner hexagon and the outer region used in paragraphs 0036, 0044, 0050 and 0051 can be shown
respectively. Note that this change does not impact the large scaled network planning as the RNC 16 only needs to know the sum rate requirements of all users in each cell. However, each BS b needs to solve the following small scaled optimization:
which simply is the generalization of equation (6) from paragraph 0040.
D. Application to IEEE 802.16 and Similar OFDMA Systems
The present invention can be applied to the IEEE 802.16 frame structure, as an example. It is described how the concentric cell allocation be used with IEEE 802.16.
Accordingly, the present invention allows the ability to adjust the frequency reuse factors for both inner and outer cells, the radius of the inner cell (and its corresponding power), and the assigned throughput of each user (in both the inner and outer cells). Here, a suboptimal approach is provided that allows the features to be simultaneously adjusted.
The following references provide background information generally related to the present invention and are hereby incorporated by reference: [1] S. W. Halpern, “Reuse partitioning in cellular systems”, Proc. VTC, pp. 322-327, 1983; [2] J. F. Whitehead, “Cellular spectrum efficiency via reuse planning”, Proc. VTC, pp. 16-20, 1985;. [3] J. Zander and M. Frodigh, “Capacity allocation and channel assignment in cellular radio systems using reuse partitioning”, Electronics Letters, Vol. 28, 1992; [4] J. Chuang and N. Sollenberger, “Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assigment”, IEEE Communications Magazine, Vol. 38, pp. 78-87, 2000; [5] Y. W. Cheng and R. Cheng and K. B. Letaief and R. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation”, IEEE Journal on Selected Areas in Communications, Vol. 17, pp. 1747-1758, 1999; [6] Y. J. Zhang and K. B. Letaief, “Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems”, IEEE Tran. on Wireless Communications, Vol: 3, pp. 1566-1575, 2004; [7] P. Svedman and S. Wilson and B. Ottersten, “A QoS-aware proportional fair scheduler for opportunistic OFDM”, Proc. VTC, pp. 558-562, 2004; [8] H. Kim and Y. Han and J. Koo, “Optimal subchannel allocation scheme in multicell OFDMA systems”, Proc. VTC, pp. 1821-1825, 2004; [9] S. Lu, V. Bhsrghavan and R. Srikant, “Fair scheduling in wireless packet networks”, IEEE/ACM Trans. on Networking, Vol.7, pp. 473-489, Aug. 1999; [10] F. Berggren and it Jantti, “Asymptotically Fair Transmission Scheduling Over Fading Channels”, IEEE Trans. on Wireless Communications, Vol. 3, pp. 326-335, Jan. 2004; [11] IEEE 802.16-2004: Air Interface for Fixed Broadband Wireless Access systems, 2004; [12] 3GPP Physical Layer Aspects for Evolved UTRA, Technical Report TR 25.814v0.2.1, August 2005; and [13] G. Li and H. Liu, “Downlink dynamic resource allocation for multi-cell OFDMA system:’ Proc. VTC, pp. 1698-1702, 2003.
While there have been shown, described and pointed out fundamental novel features of the invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the device illustrated and in its operation may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
This application claims the benefit of U.S. Provisional Application No. 60/722,201, filed Sep. 30, 2005 and of U.S. Provisional Application No. 60/786,333, filed on Mar. 27, 2006, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60722201 | Sep 2005 | US | |
60786333 | Mar 2006 | US |