The present invention generally relates to devices, systems, and methods for the fixation of the spine. In particular, the present invention relates to a system applied posteriorly to the spine that provides dynamic support to spinal vertebrae and controls load transfers to avoid deterioration of the vertebral disc or bone of adjacent spinal vertebrae.
Damage to the spine as a result of advancing age, disease, and injury, has been treated in many instances by fixation or stabilization of vertebrae. Conventional methods of spinal fixation utilize a rigid spinal fixation device to support an injured spinal vertebra relative to an adjacent vertebra and prevent movement of the injured vertebra relative to an adjacent vertebra. These conventional spinal fixation devices include anchor members for fixing to a series of vertebrae of the spine and at least one rigid link element designed to interconnect the anchor members. Typically, the anchor member is a screw and the rigid link element is a rod. The screw is configured to be inserted into the pedicle of a vertebra to a predetermined depth and angle. One end of the rigid link element is connected to an anchor inserted in the pedicle of the upper vertebra and the other end of the rod is connected to an anchor inserted in the pedicle of an adjacent lower vertebra. The rod ends are connected to the anchors via coupling constructs such that the adjacent vertebrae are supported and held apart in a relatively fixed position by the rods. Typically, two rods and two pairs of anchors are installed each in the manner described above such that two rods are employed to fix two adjacent vertebrae, with one rod positioned on each side of adjacent vertebrae. Once the system has been assembled and fixed to a series of two or more vertebrae, it constitutes a rigid device preventing the vertebrae from moving relative to one another. This rigidity enables the devices to support all or part of the stresses instead of the stresses being born by the series of damaged vertebra.
While these conventional procedures and devices have been proven capable of providing reliable fixation and stabilization of the spine, the resulting constructs typically provide a very high degree of rigidity to the operative levels of the spine resulting in decreased mobility of the vertebral segment. Unfortunately, this high degree of rigidity imparted to the spine by such devices can sometimes be excessive. Because the patient's fixed vertebrae are not allowed to move, the vertebrae located adjacent to, above or below, the series that has undergone such fixation tend to move more in order to compensate for the decreased mobility. As a result, a concentration of additional mechanical stresses is placed on these adjacent vertebral levels and a sharp discontinuity in the distribution of stresses along the spine can then arise between, for example, the last vertebra of the series and the first free vertebra. This increase in stress can accelerate degeneration of the vertebrae at these adjacent levels.
Sometimes, fixation accompanies a fusion procedure in which bone growth is encouraged to bridge the intervertebral body disc space to thereby fuse adjacent vertebrae together. Fusion involves removal of a damaged intervertebral disc and introduction of an interbody spacer along with bone graft material into the intervertebral disc space. In cases where fixation accompanies fusion, excessively rigid spinal fixation is not helpful to the promotion of the fusion process due to load shielding away from the fixed series. Without the stresses and strains, bone does not have loads to adapt to and as bone loads decrease, the bone becomes weaker. Thus, fixation devices that permit load sharing and assist the bone fusion process are desired in cases where fusion accompanies fixation.
Various improvements to fixation devices such as a link element having a dynamic central portion have been devised. These types of dynamic rods support part of the stresses and help relieve the vertebrae that are overtaxed by fixation. Some dynamic rods are designed to permit axial load transmission substantially along the vertical axis of the spine to prevent load shielding and promote the fusion process. Dynamic rods may also permit a bending moment to be partially transferred by the rod to the fixed series that would otherwise be born by vertebrae adjacent to the fixed series. Compression or extension springs can be coiled around the rod for the purpose of providing de-rotation forces as well as relative translational sliding movement along the vertical axis of the spine. Overall, the dynamic rod in the fixation system plays an important role in recreating the biomechanical organization of the functional unit made up of two fixed vertebrae together with the intervertebral disc.
In conclusion, conventional spinal fixation devices have not provided a comprehensive solution to the problems associated with curing spinal diseases in part due to the difficulty of creating a system that mimics a healthy functioning spinal unit. Hence, there is a need for an improved dynamic spinal fixation device that provides a desired level of flexibility to the fixed series of the spinal column, while also providing long-term durability and consistent stabilization of the spinal column.
According to one aspect of the invention, a dynamic rod is provided. The dynamic rod includes a first rod portion dynamically connected to a second rod portion dynamically connected to the first rod portion at a retainer. The retainer includes a first chamber configured to retain an end of the first rod portion and a second chamber configured to retain an end of the second rod portion and the first and second chambers are separated by a wall formed in the retainer.
According to another aspect of the invention, a dynamic rod is provided. The dynamic rod includes a first rod portion dynamically connected to a second rod portion at a retainer. The retainer is configured to retain an end of the first rod portion and an end of the second rod portion. The dynamic rod further includes a pin passed through at least one slot formed in the retainer and connected to the first rod portion such that longitudinal movement of the first rod portion relative to the retainer is limited to within the at least one slot.
According to another aspect of the invention, a dynamic rod is provided. The dynamic rod includes a first rod portion dynamically connected to a second rod portion at a retainer. The retainer is configured to retain an end of the first rod portion and an end of the second rod portion. The first rod portion is configured for longitudinal movement relative to the retainer and the second rod portion is configured to angulate polyaxially relative to the retainer.
According to another aspect of the invention a dynamic rod is provided. The dynamic rod includes a first rod portion dynamically connected to a second rod portion at a retainer. The retainer is configured to retain an end of the first rod portion and an end of the second rod portion. The first rod portion is longer than the second rod portion.
The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
a illustrates a perspective view of a dynamic rod according to the present invention.
b illustrates a side view of a dynamic rod of
c illustrates a cross-sectional view of the dynamic rod of
a illustrates a perspective view of a first rod portion of a dynamic rod according to the present invention.
b illustrates a side view of the first rod portion of
c illustrates a cross-sectional view of the first rod portion taken along line A-A of
d illustrates a side view of a pin of a first rod portion of a dynamic rod according to the present invention.
a illustrates a perspective view of a second rod portion of the dynamic rod according to the present invention.
b illustrates a side view of the second rod portion of a dynamic rod according to the present invention.
a illustrates a perspective view of a bias element of a dynamic rod according to the present invention.
b illustrates a side view of a bias element of the dynamic rod according to the present invention.
c illustrates a cross-sectional view taken along line A-A of
a illustrates a perspective view of a first piece of a retainer of the dynamic rod of
b illustrates a side view of a first piece of a retainer of the dynamic rod according to the present invention.
c illustrates a cross-sectional view taken along line A-A of
d illustrates a perspective view of a second piece of a retainer of a dynamic rod according to the present invention.
e illustrates a side view of a second piece of a retainer of a dynamic rod according to the present invention.
f illustrates a cross-sectional view taken along line A-A of
a illustrates a side view of a dynamic rod in a contracted state according to the present invention.
b illustrates a side view of a dynamic rod in an extended state according to the present invention.
c illustrates a side view of a dynamic rod with the longitudinal axis depicted in maximum deflected states to illustrate the range of deflection of the dynamic rod according to the present invention.
a illustrates a pair of anchor systems implanted in an upper vertebra and a pair of anchor systems implanted in a lower vertebra of a spine and interconnected by two dynamic rods according to the present invention.
b illustrates a side view of pair of anchor systems implanted in an upper vertebra and a pair of anchor systems implanted in a lower vertebra of a spine and interconnected by two dynamic rods according to the present invention.
c illustrates a posterior view of pair of anchor systems implanted in an upper vertebra and a pair of anchor systems implanted in a lower vertebra of a spine and interconnected by two dynamic rods according to the present invention.
Referring now to
A typical anchor system comprises, but is not limited to, a spinal bone screw that is designed to have one end that inserts threadably into a vertebra and a seat polyaxially attached at the opposite end thereof. Typically, the seat is designed to receive the link element in a channel in the seat. The link element is typically a rod or rod-like member. The seat typically has two upstanding arms that are on opposite sides of the channel that receives the rod member. The rod is laid in the open channel, the top of which is then closed with a closure member to both capture the rod in the channel and lock it in the seat to prevent relative movement between the seat and the rod.
With particular reference to
Referring now to
Still referencing
Turning now to
The second end 38 of the second rod portion 14 includes an anchor connecting portion 44 configured to be connected to an anchor. The anchor connecting portion 44 is sized and configured to be seated in a channel of a seat of a bone screw anchor for example. Any configuration for the second end 38 that is suitable for connection to an anchor or being received within the seat of an anchor is within the scope of the present invention and, for example, may include a pin-and-slot, snap-fit, compression-fit or other configuration including the type shown in
The first rod portion 12, the second rod portion 14 or both may be curved to correspond to the lordotic curvature of a human spine. Preferably, the longer of the two rod portions is curved.
Referring now to
Turning now to
With particular reference now to
With particular reference now to
Referring back to
After the dynamic rod 10 is assembled, it is ready to be implanted within a patient and be connected to anchors planted in pedicles of adjacent vertebral bodies preferably in a manner such that the first rod portion 12 of the dynamic rod 10 illustrated in
Therefore, it is noted that the preferred implantation method and preferred orientation of the dynamic rod 10 is such that there is minimal or substantially no “overhanging” rod that extends cephalad beyond the upper anchor. Such orientation is achieved by the orientation of the rod during implantation as well as by the configuration of the anchor connecting portion 22, 44 of either one or both of the first rod portion 12 and second rod portion 14 such that the anchor connecting portion 22, 44 is configured such that there is substantially no overhang beyond the anchor when seated in the anchor.
The implanted dynamic rod and anchor system fixes the adjacent vertebral bodies together in a dynamic fashion providing immediate postoperative stability and support of the spine. Referring now to
Hence,
In another variation, and still referencing
In another variation, and still referencing
In another variation, the dynamic rod 10 is configured to be connected to the anchor systems 201 in reverse such that the second rod portion 14 is oriented cephalad and connected to the upper anchor system 201 of the upper vertebra 204 and the first rod portion 12 is placed caudad and connected to the lower anchor system 201 of the lower vertebra 206. The rod end connections are configured preferably such that there is no rod overhang beyond the upper anchor system 201 and that the joint of the first and second rod portions 12, 14 at the retainer 17 is located closer to the lower vertebra 206 or lower anchor system 201 relative to the upper anchor system 201. In such a variation, the second rod portion 14 is longer than the first rod portion 12 and the retainer 17 is located closer to and more aligned with or adjacent to the lower facet joint. In such a variation, the first rod portion 12 is movable along the longitudinal axis of the rod 10 within the constraints of the slots 170 and the second rod portion 14, which extends cephalad from the retainer 17, is permitted to angulate relative to the retainer 17. In one variation, the second rod portion 14 is fixed or lockable in position such that it cannot angulate relative to the retainer 17 while the first rod portion 12 extending caudad is permitted to move longitudinally, extending in and out of the retainer 17, and in another variation, additionally configured to angulate relative to the retainer 17 as well. In yet another variation, the dynamic rod 10 is configured such that first rod portion 12 extending caudad is permitted to angulate relative to the retainer 17 in addition to moving longitudinally and the second rod portion 14 extending cephalad is permitted to angulate relative to the retainer 17. In another variation, the dynamic rod 10 is configured such that the first rod portion 12 extending caudad is fixed or lockable and the second rod portion 14 extending cephalad remains permitted to angulate relative to the retainer 17. In another variation, both the first and second rod portions 12, 14 are configured to extend and angulate relative to the retainer 17 and in another variation both are configured to angulate relative to the retainer 17 only. In yet another variation, both the first and second rod portions 12, 14 are configured to move longitudinally relative to the retainer 17, extending in and out of the retainer 17. In such a variation, either the first or second or both rod portions 12, 14 may be configured to additionally angulate relative to the retainer 17.
In another variation that is applicable to all of the above iterations, the joint of the first and second rod portions 12, 14, or retainer 17 is located closer to the upper anchor system 201 implanted in the upper vertebra 204 relative to the lower anchor system 201 implanted in the lower vertebra 206. With the retainer 17 located closer to the superior facet joint of the motion segment, the dynamic rod 10 advantageously off-loads the facet joint and places the nexus of motion of the retainer as close as possible to the facet joint to more accurately mimic the natural movement of the spine. Also, for all of the iterations described above, angulation with respect to the retainer 17 is polyaxial angulation or otherwise limited and rotation relative to the retainer 17 is of either the first or second or both or none of the rod portions 12, 14 for any of the above variations. Furthermore, in another variation and for any of the above variations and iterations, the dynamic rod 10 is further configured to bias any angulation relative to the retainer 17. Such bias is provided by a spring (not shown) included inside the retainer 17 and configured such that when either the first or second or both rod portions is angulated or deflected away from the normal longitudinal position, the bias or spring provides a bias force to return the deflected rod back toward its normal position. Yet furthermore, in another variation and for any of the above variations and iterations any extension or longitudinal movement of a first or second or both rod portions 12, 14 relative to the retainer 17 may also be biased to return the movement back to its normal position. Such bias may also be provided by a spring located inside the retainer 17 and configured to provide an inward bias force against a rod portion that is extended outwardly relative to the retainer 17. Alternatively, such bias may also be provided by a spring located inside the retainer 17 and configured to provide an outward bias force against a rod portion that is extended inwardly relative to the retainer 17. Any combination of bias in a single dynamic rod 10 is within the scope of the present invention.
With two rods implanted in a patient's spine to stabilize two adjacent vertebral bodies with one rod on each side of the spinous process as shown in
The dynamic rod 10 of the present invention is suitable for treating indications including but not limited to facet degeneration, nerve root impingement, morbid obesity, previous abdominal surgery, spondylolisthesis, spinal stenosis, scoliosis, osteoporosis, and deficiency of posterior elements. From the above, it is evident that the present invention can be used to relieve pain caused by spinal stenosis in the form of, by way of example only, central canal stenosis or foraminal stenosis, degenerative disc disease, spondylolisthesis, spinal deformities, fracture, pseudarthrosis and tumors.
All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The preceding illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope.
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/188,976 entitled “Dynamic rod” filed on Aug. 14, 2008 which is incorporated herein by reference in its entirety. This application also claims priority to and is a continuation-in-part of co-pending U.S. patent application Ser. No. 12/154,540 entitled “Dynamic rod” filed on May 23, 2008 which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/931,811 filed on May 25, 2007. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 12/233,212 entitled “Dynamic rod” filed on Sep. 18, 2008 which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/994,899 entitled “Dynamic rod” filed on Sep. 21, 2007. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 12/366,089 entitled “Dynamic rod” filed on Feb. 5, 2009 which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/063,878 entitled “Dynamic rod” filed on Feb. 6, 2008. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 11/427,738 entitled “Systems and methods for stabilization of the bone structures” filed on Jun. 29, 2006 which is a continuation-in-part of U.S. patent application Ser. No. 11/436,407 entitled “Systems and methods for stabilization of the bone structures” filed on May 17, 2006 which is a continuation-in-part of U.S. patent application Ser. No. 11/033,452 entitled “Systems and methods for stabilization of the bone structures” filed on Jan. 10, 2005 which is a continuation-in-part of U.S. patent application Ser. No. 11/006,495 entitled “Systems and methods for stabilization of the bone structures” filed on Dec. 6, 2004 which is a continuation-in-part of U.S. patent application Ser. No. 10/970,366 entitled “Systems and methods for stabilization of the bone structures” filed on Oct. 20, 2004. All of the above-referenced applications are each incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61188976 | Aug 2008 | US | |
60931811 | May 2007 | US | |
60994899 | Sep 2007 | US | |
61063878 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12154540 | May 2008 | US |
Child | 12540865 | US | |
Parent | 12233212 | Sep 2008 | US |
Child | 12154540 | US | |
Parent | 12366089 | Feb 2009 | US |
Child | 12233212 | US | |
Parent | 11427738 | Jun 2006 | US |
Child | 12366089 | US | |
Parent | 11436407 | May 2006 | US |
Child | 11427738 | US | |
Parent | 11033452 | Jan 2005 | US |
Child | 11436407 | US | |
Parent | 11006495 | Dec 2004 | US |
Child | 11033452 | US | |
Parent | 10970366 | Oct 2004 | US |
Child | 11006495 | US |