The present invention is directed, in general, to processing video signals and, more specifically, to digital sampling of video signals.
The spatial frequency or frequencies of an image are the rates of pixel change per unit distance, usually expressed in cycles per degree or radian. For horizontal sampling of the gratings depicted in
Current digital image/video systems are designed to employ a fixed sampling frequency of at least twice the highest spatial frequency within the image (Nyquist theorem). The number of samples which are used and/or stored for an image may be reduced by sub-sampling, but such sub-sampling is not modulated by the image or video content. Moreover, while the Nyquist theorem is occasionally violated during sampling, the sampling frequency typically remains predefined and constant.
If the Nyquist theorem is met during sampling, all spatial frequencies for the sampled image are theoretically preserved. In practice, of course, uncertainties increase due to noise, with the result that reproduction of the original high spatial frequencies becomes more difficult or even impossible. Noise reduction algorithms attempt to improve recovery, which remains difficult for the highest frequencies.
There is, therefore, a need in the art for adapting the sampling frequency or sampling density according to the image or video content being sampled.
To address the above-discussed deficiencies of the prior art, it is a primary object of the present invention to provide, for use in a video receiver, a sampling system which adapts the sampling rate for sampling analog signals and/or the stored number of samples to the fixed or video image content, such that a higher rate, and equivalently a larger number of samples, are acquired for an image or video segment containing higher spatial frequencies while a lower number of samples (lower sampling rate) are retained for image or video segments containing lower spatial frequencies. The Nyquist theorem may still be satisfied for each individual image segment, while information necessary for edge enhancement is retained.
The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art will appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Those skilled in the art will also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.
Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words or phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, whether such a device is implemented in hardware, firmware, software or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, and those of ordinary skill in the art will understand that such definitions apply in many, if not most, instances to prior as well as future uses of such defined words and phrases.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, wherein like numbers designate like objects, and in which:
FIGS. 1 and 2A-2C, discussed below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any suitably arranged device.
Receiver 101 may be a digital television (DTV) having a digital display, a satellite, terrestrial, or cable broadcast receiver for connection to a television, or the like. The present invention may also be employed for any receiver such as, for example, a broadband wireless Internet access receiver or any other video device receiving analog video information such as a video cassette recorder (VCR), a digital video recorder, or a digital versatile disk (DVD) player. Regardless of the embodiment, however, receiver 101 employs content-dependent frequency of sampling or sample density within the resulting digital signal as described in further detail below.
Those skilled in the art will perceive that
Receiver 101 includes a sampling mechanism 104 which samples the analog video input signal at a frequency modulated by or dependent upon the spatial frequency of the sampled content. A higher sampling frequency (larger sampling density) is employed for image content having higher spatial frequencies and a lower sampling rate is employed for image content having lower spatial frequencies. The Nyquist theorem may still be satisfied, with the sampling frequency set to twice the highest spatial frequency within the content being sampled.
The result, as compared to fixed frequency sampling, is fewer samples for content having low spatial frequencies and more samples for image content having high spatial frequencies. If noise deteriorates the image or video, the larger number of samples for regions having higher spatial frequencies, mainly edges, help to preserve the original edge significantly better than fixed sampling rates. The additional samples are often necessary for many sharpness enhancement algorithms.
In the embodiment of
In the embodiment of
In each of the embodiments of
The present invention employs a sampling rate which is modulated based upon the spatial frequencies of the content being sampled. Higher sampling rates, and larger sample densities, are employed for content having high spatial frequencies while lower sampling rates are employed for content having low spatial frequencies. The Nyquist theorem may still be satisfied for particular segments of image data, and the necessary information for edge enhancement is retained. The resulting samples are suitable for image standards employing run-length encoding (RLE), such as the motion picture experts group (MPEG) standard.
It is important to note that while the present invention has been described in the context of a fully functional receiver, those skilled in the art will appreciate that at least portions of the mechanism of the present invention is capable of being distributed in the form of a machine usable medium containing instructions in a variety of forms, and that the present invention applies equally regardless of the particular type of signal bearing medium utilized to actually carry out the distribution. Examples of machine usable mediums include: nonvolatile, hard-coded type mediums such as read only memories (ROMs) or erasable, electrically programmable read only memories (EEPROMs), recordable type mediums such as floppy disks, hard disk drives and compact disc read only memories (CD-ROMs) or digital versatile discs (DVDs), and transmission type mediums such as digital and analog communication links.
Although the present invention has been described in detail, those skilled in the art will understand that various changes, substitutions, variations, enhancements, nuances, gradations, lesser forms, alterations, revisions, improvements and knock-offs of the invention disclosed herein may be made without departing from the spirit and scope of the invention in its broadest form.
Number | Name | Date | Kind |
---|---|---|---|
3324237 | Cherry et al. | Jun 1967 | A |
4496937 | Kitagawa et al. | Jan 1985 | A |
4626827 | Kitamura et al. | Dec 1986 | A |
4755795 | Page | Jul 1988 | A |
4763207 | Podolak et al. | Aug 1988 | A |
4816829 | Podolak et al. | Mar 1989 | A |
5148270 | Someya | Sep 1992 | A |
5150207 | Someya | Sep 1992 | A |
5302950 | Johnson et al. | Apr 1994 | A |
5576837 | Strolle et al. | Nov 1996 | A |
5612748 | Gohshi et al. | Mar 1997 | A |
5666386 | Masuda | Sep 1997 | A |
5841387 | Van Buskirk | Nov 1998 | A |
6473008 | Kelly et al. | Oct 2002 | B2 |
Number | Date | Country |
---|---|---|
0259004 | Mar 1988 | EP |
1146323 | Oct 2001 | EP |
63243882 | Oct 1988 | JP |
Number | Date | Country | |
---|---|---|---|
20030063219 A1 | Apr 2003 | US |