The present invention is directed to dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members for such assemblies, the connecting members being attached to at least two bone fasteners.
Historically, it has been common to fuse adjacent vertebrae that are placed in fixed relation by the installation therealong of bone screws or other bone anchors and cooperating longitudinal connecting members or other elongate members. Fusion results in the permanent immobilization of one or more of the intervertebral joints. Because the anchoring of bone screws, hooks and other types of anchors directly to a vertebra can result in significant forces being placed on the vertebra, and such forces may ultimately result in the loosening of the bone screw or other anchor from the vertebra, fusion allows for the growth and development of a bone counterpart to the longitudinal connecting member that can maintain the spine in the desired position even if the implants ultimately fail or are removed. Because fusion has been a desired component of spinal stabilization procedures, longitudinal connecting members have been designed that are of a material, size and shape to largely resist flexure, extension, torsion, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused. Thus, longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially rigid support in all planes.
An alternative to fusion, which immobilizes at least a portion of the spine, and the use of more rigid longitudinal connecting members or other rigid structure has been a “soft” or “dynamic” stabilization approach in which a flexible loop-, S-, C- or U-shaped member or a coil-like and/or a spring-like member is utilized as an elastic longitudinal connecting member fixed between a pair of pedicle screws in an attempt to create, as much as possible, a normal loading pattern between the vertebrae in flexion, extension, distraction, compression, side bending and torsion. Another type of soft or dynamic system known in the art includes bone anchors connected by flexible cords or strands, typically made from a plastic material. Such a cord or strand may be threaded through cannulated spacers that are disposed between adjacent bone anchors when such a cord or strand is implanted, tensioned and attached to the bone anchors. The spacers typically span the distance between bone anchors, providing limits on the bending movement of the cord or strand and thus strengthening and supporting the overall system. Such cord or strand-type systems require specialized bone anchors and tooling for tensioning and holding the cord or strand in the bone anchors. Although flexible, the cords or strands utilized in such systems do not allow for elastic distraction of the system once implanted because the cord or strand must be stretched or pulled to maximum tension in order to provide a stable, supportive system.
The complex dynamic conditions associated with spinal movement create challenges for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and that allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member. A further challenge are situations in which a portion or length of the spine requires a more rigid stabilization, possibly including fusion, while another portion or length may be better supported by a more dynamic system that allows for protective movement.
Longitudinal connecting member assemblies according to the invention for use between at least two bone attachment structures or anchors provide dynamic, protected motion of the spine. A longitudinal connecting member assembly according to the invention has an inner pre-tensioned core of circular or non-circular cross-section that is integral or otherwise fixed to a first bone anchor attachment portion. At least one elastic spacer surrounds the core and is slidable along the core at a location between a pair of adjacent bone anchors. At least one outer sleeve also surrounds the core and is in sliding relationship with the core. The outer sleeve also engages at least one bone anchor. The inner core and outer elastic spacer cooperate dynamically, with the outer sleeve being in compression while the core is in tension. The assembly may further include an elastic end bumper that also is in compression and places distractive force on the core.
In one embodiment, an improved medical implant assembly having at least two bone anchor attachment structures cooperating with a longitudinal connecting member is provided, including an anchor member portion that is in engagement with one of the at least two bone anchor attachment structures, at least one compressible outer spacer, and at least one sleeve. The anchor member portion has a pre-tensioned member portion of reduced diameter that extends from an end thereof. The pre-tensioned member portion is received in the spacer, and the spacer is positioned between the at least two bone anchor attachment structures. The pre-tensioned member portion is also received within the sleeve and in slidable relationship therewith. The sleeve is in engagement with the other of the at least two bone anchor attachment structures. The improvement may further include an elastic bumper that engages the sleeve and receives the pre-tensioned member portion therein. The improvement may further include a fixation structure that is secured to the pre-tensioned member portion at an end thereof opposite the anchor member portion.
In another embodiment, an improved medical implant assembly having at least two bone attachment structures cooperating with a longitudinal connecting member is provided, the improvement wherein the longitudinal connecting member includes an anchor member portion in engagement with one of the at least two bone attachment structures, the anchor member portion having a pre-tensioned bendable core extension of reduced diameter along a length thereof, the core extension attached to and extending from the anchor member portion and having a linear and a non-linear configuration; at least one compressible outer spacer, the core extension being received in the spacer, the spacer being positioned between the at least two bone attachment structures; and at least one sleeve, the core extension being received within the sleeve and in slidable relationship therewith, the sleeve being in engagement with the other of the at least two bone attachment structures.
In yet another embodiment, an improved medical implant assembly having at least two bone anchor attachment structures cooperating with a longitudinal connecting member is provided, the improvement wherein the longitudinal connecting member includes an anchor member portion in engagement with one of the at least two bone anchor attachment structures, the anchor member portion having a pre-tensioned member portion of reduced diameter extending from an end thereof; at least one compressible outer spacer, the pre-tensioned member portion being received in the spacer, the spacer being positioned between the at least two bone anchor attachment structures; and at least one sleeve, the pre-tensioned member portion being received within the sleeve and in slidable relationship therewith, the sleeve being in engagement with the other of the at least two bone anchor attachment structures. In some embodiments, the longitudinal connecting member also includes one or more of an elastic bumper and a fixation structure. Further, the pre-tensioned member portion is fixed to the anchor member portion at an end thereof, in some embodiments.
In still another embodiment, a medical implant assembly having at least two bone attachment structures cooperating with a longitudinal connecting member is provided, the improvement wherein the longitudinal connecting member includes an anchor member portion in engagement with one of the at least two bone attachment structures, the anchor member portion having a pre-tensioned bendable core extension of reduced diameter along a length thereof, the core extension attached to and extending from the anchor member portion and having a linear and a non-linear configuration; at least one compressible outer spacer, the core extension being received in the spacer, the spacer being positioned between the at least two bone attachment structures; and at least one sleeve, the core extension being received within the sleeve and in slidable relationship therewith, the sleeve being in engagement with the other of the at least two bone attachment structures.
In another embodiment, a medical implant assembly is provided, the assembly including a longitudinal connecting member having a stiff portion secured to at least a first bone attachment structure, the stiff portion being coaxial with a less stiff core extension portion of reduced width relative to the stiff portion, the core extension being in slidable relation with at least a second end bone attachment structure; at least one solid non-slitted outer spacer positioned entirely outside of the core extension and between the at least first and second end bone attachment structures, the spacer being in slidable relation with the core extension; and at least one end fixing structure and at least one elastic bumper, both the end fixing structure and the elastic bumper being positioned entirely outside of the at least second end bone attachment structure, wherein the bumper is positioned around the core extension and between the fixing structure and the at least second end bone attachment structure, and wherein the bumper is in slidable relation with the core extension; and wherein the fixing structure is slidable on the core section, compressible against the bumper and securable to the core extension.
In a further embodiment, the core extension is in tension. In some further embodiments, the core extension is maintained in tension by axial elastic distraction from the bumper. In some further embodiments, the core extension is made of at least one of a polymer, PEEK and a non-metal. In some further embodiments, at least one sleeve is positioned around and between the core extension and the bone attachment structure, the sleeve being secured to at least the bone attachment structure. In some further embodiments, the tensioned core extension is adapted to provide resilient bending stiffness for the longitudinal connecting member while cooperating with the bone attachment structures. In some further embodiments, the end fixing structure is positioned entirely outside of the bumper. In some further embodiments, the bumper and the spacer are positioned entirely outside of the sleeve.
An object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include a pre-tensioned inner core that allows for some bending, torsion, compression and distraction of the assembly. Another object of the invention is to provide such an assembly including an elastic pre-compressed outer spacer or sleeve. A further object of the invention is to provide dynamic medical implant longitudinal connecting members that may be utilized with a variety of bone screws, hooks and other bone anchors. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone anchors and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. It is also noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of the connecting member assemblies of the application and cooperating bone anchors in actual use.
With reference to
As illustrated in
The illustrated polyaxial bone screws 25 each include a shank 30 for insertion into a vertebra (not shown), the shank 30 being pivotally attached to an open receiver or head 31. The shank 30 includes a threaded outer surface and may further include a central cannula or through-bore disposed along an axis of rotation of the shank. The through bore provides a passage through the shank interior for a length of wire or pin inserted into the vertebra prior to the insertion of the shank 30, the wire or pin providing a guide for insertion of the shank 30 into the vertebra. The receiver 31 includes a pair of spaced and generally parallel arms that form an open generally U-shaped channel therebetween that is open at distal ends of such arms. The receiver arms each include radially inward or interior surfaces that have a discontinuous guide and advancement structure mateable with cooperating structure on the closure structure 27. The guide and advancement structure may be a partial helically wound flange form configured to mate under rotation with a similar structure on the closure structure 27 or a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the closure structure 27 downward between the receiver arms and having such a nature as to resist splaying of the receiver arms when the closure 27 is advanced between the receiver arms.
The shank 30 and the receiver 31 may be attached in a variety of ways. For example, a spline capture connection as described in U.S. Pat. No. 6,716,214, and incorporated by reference herein, may be used wherein the bone screw shank includes a capture structure mateable with a retaining structure disposed within the receiver. The retaining structure includes a partially spherical surface that is slidingly mateable with a cooperating inner surface of the receiver 31, allowing for a wide range of pivotal movement between the shank 30 and the receiver 31. Polyaxial bone screws with other types of capture connections may also be used according to the invention, including but not limited to, threaded connections, frictional connections utilizing frusto-conical or polyhedral capture structures, integral top or downloadable shanks, and the like. Also, as indicated above, polyaxial and other bone screws for use with connecting members of the invention may have bone screw shanks that attach directly to the connecting member or may include compression members or inserts that engage the bone screw shank and cooperate with the shank, the receiver and the closure structure to secure the connecting member assembly to the bone screw and/or fix the bone screw shank at a desired angle with respect to the bone screw receiver that holds the longitudinal connecting member assembly. Furthermore, although the closure structure 27 of the present invention is illustrated with the polyaxial bone screw 25 having an open receiver or head 31, it foreseen that a variety of closure structure may be used in conjunction with any type of medical implant having an open or closed head or receiver, including monoaxial bone screws, hinged bone screws, hooks and the like used in spinal surgery.
To provide a biologically active interface with the bone, the threaded shank 30 may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.
With reference to
Returning to the longitudinal connecting member assembly 1 illustrated in
With particular reference to
With particular reference to
With particular reference to
The illustrated sleeves 12 and 16 each are substantially cylindrical, having outer cylindrical bone anchor attachment surfaces 50 and 52, respectively, that are each of substantially the same diameter as the outer surface 39 of the bone anchor attachment portion 8. Each of the sleeves 12 and 16 further include an inner cylindrical surface 54 and 56, respectively, that define a through-bore for the passage of the core 6 therethrough. The sleeve 12 includes a pair of integral, opposed end plates 58 and 60 while the sleeve 16 includes a single end plate 62. The illustrated plates 58, 60 and 62 have outer cylindrical surfaces 64, 66 and 68, respectively, that are of substantially the same diameter as the buttress plate outer cylindrical surface 46. The plates 58 and 60 terminate at outer planar and annular surfaces 70 and 72, respectively. The plate 62 terminates at an outer planar and annular surface 74. The cylindrical surface 52 of the sleeve 16 terminates at an outer planar and annular surface 76.
With reference to
The illustrated spacers 10 and 14 advantageously cooperate with the core 6 of the anchor member 4, providing limitation and protection of movement of the core 6 located between bone screws 25. With particular reference to
The core 6 and cooperating compressible spacers 10 and 14 allows for some twist or turn, providing some relief for torsional stresses. The spacers 10 and 14 and cooperating plates 40, 58, 60 and 62 may cooperate to limit such torsional movement as well as bending movement. For example, a first set of pins may be inserted through the plates 40 and 60 and respective engaging spacer surfaces 89 and 88. A second set of pins may be inserted through the plates 58 and 62 and respective engaging spacer surfaces 91 and 90. It may be particularly advantageous to utilize pins made from tantalum, for example to provide x-ray markers, for example, when the anchor member 4, sleeves and spacers are made from radiolucent plastics. In other embodiments according to the invention, the spacers 10 and 14 and cooperating plates 40, 58, 60 and 62 may include ribs or fins for insertion into apertures located on cooperating facing surfaces to provide limits on twisting movement between such plates and spacers.
With particular reference to
With particular reference to
The illustrated dynamic connecting member assembly 1 having a pre-tensioned core 6 cooperates with at least three bone anchors, such as polyaxial bone screws, generally 25 as shown in
With particular reference to
After the crimping ring 20 is loaded onto the core 6, manipulation tools (not shown) are used to grasp the core 6 near the end 38 and at the bone anchor attachment portion 8, placing tension on the core 6. Furthermore, the spacer 10, the sleeve 12, the spacer 14, the sleeve 16, the bumper 18 and the crimping ring 20 are moved toward the buttress plate 40 and into contact with one another. Axial compressive force may also be placed on the components loaded on the core 6, followed by deforming the crimping ring at the crimp grooves 120 and against the core 6. When the manipulation tools are released, the crimping ring 20, now firmly and fixedly attached to the core 6 holds the spacers 10 and 14 and the bumper 18 in compression and the spacers and bumper place axial tension forces on the core 6, resulting in a dynamic relationship between the core 6 and the spacers 10, 14 and the bumper 18. The tension on the core 6 is advantageously balanced and uniform as the spacers 10 and 16 are slidable with respect to the core 6, but also are limited by the buttress plate of the anchor member 4 and end plates of the sleeves 12 and 16. Furthermore, the bumper 18 that is compressed between the sleeve surface 76 and the crimping ring surface 116 is also slidable with respect to the core 206. The spacers 10 and 14 and the bumper 18 place a distractive force on the core 6 along the axis A and between the buttress plate 40 and the crimping ring 20, but also are movable with respect to the core 6, thus being able to respond to jolting and other body movements and thereafter spring back into an originally set location. The sleeves 12 and 16 that may compress slightly, but are more rigid than the spacers 10 and 14, keep the spacers 10 and 14 in an approximate desired axially spaced relation. However, the spacers 10 and 14 also advantageously slide along the core 6 in response to outside forces. The core 6 is then trimmed to be approximately flush with the end surface 114 of the crimping ring 20.
With reference to
The assembly 1 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 1 and the three connected bone screws 25. The slender core 6 allows for some twisting or turning, providing some relief for torsional stresses. Furthermore, the compressed spacers 10 and 14 place some limits on torsional movement as well as bending movement, to provide spinal support. The pre-loaded core 6 (in tension) and spacers 10, 14 and bumper 18 (in compression) allow for compression and some extension of the assembly 1 located between the two bone screws 25, e.g., shock absorption.
If removal of the assembly 1 from any of the bone screw assemblies 25 is necessary, or if it is desired to release the assembly 1 at a particular location, disassembly is accomplished by using the driving tool (not shown) with a driving formation cooperating with the closure structure 27 internal drive or cooperating set screw internal drive to rotate and remove the closure structure 27 from the receiver 31. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.
Eventually, if the spine requires more rigid support, the connecting member assembly 1 according to the invention may be removed and replaced with another longitudinal connecting member, such as a solid rod, having the same diameter as the portion 8 and the sleeves 12 and 16, utilizing the same receivers 31 and the same or similar closure structures 27. Alternatively, if less support is eventually required, a less rigid, more flexible assembly, for example, an assembly 1 having components made of a more flexible material, but with the same diameter sleeves as the assembly 1, may replace the assembly 1, also utilizing the same bone screws 25.
With reference to
In the illustrated embodiment, the anchor member 204 is substantially similar to the anchor member 4 previously described herein with respect to the assembly 1. Therefore, the member 204 includes the core 206, the bone anchor attachment portion 208 and an integral buttress plate 240 identical or substantially similar in size and shape to the respective core 6, attachment portion 8 and buttress plate 40 of the anchor member 4 previously described herein. The member 204 differs from the member 4 only in the length of the bone anchor attachment portion 208. The portion 208 is longer than the similar portion 8 of the member 4 such that at least two bone screws 25 are attachable to the portion 208 as illustrated in
The assembly 201 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 1, the assembly 201 however, does not include a second spacer or second sleeve. Therefore, the core 206 is first received within a through bore of the spacer 210, then within the inner cylindrical surface 256 of the sleeve 216, followed by an inner through bore of the bumper 218 and then an inner through bore of the crimping ring 220. Similar to what has been described previously with respect to the assembly 1, the core 206 is initially of a longer length measured along the axis B than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 206 near an end thereof that extends through the crimping ring bore. The core 206 is tensioned and/or the spacer 210 and bumper 220 are compressed, followed by deformation of the crimping ring 220 against the core 206. The core 206 is then trimmed substantially flush to the crimping ring 220. The assembly is now in dynamic relationship with the core 206 being in tension while the spacer 210 that is slidable with respect to the core 206 is compressed between the plates 240 and 262 and the bumper 218 that is also slidable with respect to the core 206 is compressed between the sleeve 216 and the crimping ring 220; the spacer 210 and the bumper 218 placing a distractive force on the core 206 along the axis B and between the buttress plate 240 and the crimping ring 220. The assembly 201 may then be implanted, cooperating with three bone screws 25 as illustrated in
With reference to
With reference to
With reference to
With reference to
Similar to the assembly 1, the assembly 404, when fully assembled, has the inner core 406 in tension and at least the spacer 411 in compression, with the ring 420 crimped against the core 406. The dynamic connecting member assembly 401 cooperates with at least two bone anchors (not shown), such as the anchors 25, the anchors being attached to the portion 408 and the rigid sleeve 412.
With reference to
With reference to
As illustrated in
The illustrated polyaxial bone screws 525 each include a shank 530 for insertion into a vertebra (not shown), the shank 530 being pivotally attached to an open receiver or head 531. The shank 530 includes a threaded outer surface and may further include a central cannula or through-bore disposed along an axis of rotation of the shank. The through bore provides a passage through the shank interior for a length of wire or pin inserted into the vertebra prior to the insertion of the shank 530, the wire or pin providing a guide for insertion of the shank 530 into the vertebra. The receiver 531 includes a pair of spaced and generally parallel arms that form an open squared off U-shaped channel therebetween that is open at distal ends of such arms. The receiver arms each include radially inward or interior surfaces that have a discontinuous guide and advancement structure mateable with cooperating structure on the closure structure 527. The guide and advancement structure may be a partial helically wound flange form configured to mate under rotation with a similar structure on the closure structure 527 or a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the closure structure 527 downward between the receiver arms and having such a nature as to resist splaying of the receiver arms when the closure 527 is advanced between the receiver arms.
The shank 530 and the receiver 531 may be attached in a variety of ways. For example, a threaded capture connection as described in U.S. Patent Pub. No. 2007/0055244, and incorporated by reference herein, may be used wherein the bone screw shank includes an outer helical thread mateable with an inner helical thread of a retaining structure disposed within the receiver. The shank 530 of the illustrated bone screw 525 is top loaded into the receiver 531 and includes an upper portion 536 that has a partially spherical surface that is slidingly mateable with a cooperating inner surface of the receiver 531, allowing for a wide range of pivotal movement between the shank 530 and the receiver 531. Top or bottom loaded polyaxial bone screws for use with the assembly 501 may include other types of capture connections, including but not limited to, other threadably connected, spline connected, or cam connected shank upper portions mateable with a retainer structure or ring that is in turn slidingly mateable with the inner surface of the receiver 531, frictional connections utilizing frusto-conical or polyhedral capture structures, and other types of integral top or downloadable shanks. Also, as indicated above, polyaxial and other bone screws for use with connecting members of the invention may have bone screw shanks that directly engage the elongate connecting member or, as illustrated, include at least one compression member, such as the lower insert 538 that includes a partially spherical base that engages the substantially spherical upper portion of the bone screw shank 536 and also engages the bone anchor attachment portion 508 or the sleeve 512 to securely hold the connecting member assembly 501 within the receiver 531 and/or cooperate with the closure structure 527 to fix the bone screw shank 530 at a desired angle with respect to the bone screw receiver 531. As illustrated in
Although the closure structure 527 for use with the assembly 501 of the present invention is illustrated with the polyaxial bone screw 525 having an open receiver or head 531, it foreseen that a variety of closure structures may be used in conjunction with any type of medical implant having an open or closed head or receiver, including monoaxial bone screws, hinged bone screws, hooks and the like used in spinal surgery.
To provide a biologically active interface with the bone, the threaded shank 530 may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding.
With further reference to
Returning to the longitudinal connecting member assembly 501 illustrated in
The anchor attachment portion 508 may be made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber. It is noted that although an anchor member 504 is illustrated in which the components 506 and 508 are integral, the core extension 506 and the anchor attachment portion 508 may be made from different materials, for example, the core extension 506 may be made out of PEEK and fixed or adhered to a bone anchor attachment portion 508 made out of titanium. The core 506 and attachment portion 508 each include a small central lumen or through-bore 540 extending along the central axis AA. The lumen 540 may be used as a passage through the entire assembly 501 interior for a length of a guide wire for aiding insertion of the assembly 501 between implanted bone screws 525 in a percutaneous or less invasive procedure.
With particular reference to
The bone anchor attachment portion 508 that is integral with the core extension 506 has a second rectangular cross-section that is larger than the core 506 cross-section and thus the portion 508 is more rigid than the core 506. Also with reference to
The buttress plate 546 includes a first substantially flat and annular face 552 facing away from the core 506 and an opposed parallel substantially flat face 554 facing toward the core 506. The faces 552 and 554 are disposed substantially perpendicular to the axis AA. An outer surface 556 of rectangular cross-section extends between the faces 552 and 554. A gently sloping transition surface or flange 558 bridges between and connects the surfaces 543 of the core 506 with the substantially flat face 554 of the buttress plate 546.
With particular reference to
The illustrated sleeve 512 has a rectangular cross-section taken perpendicular to the axis AA, having outer opposed planar anchor attachment surfaces 560 and cooperating perpendicular opposed planar attachment surfaces 562. The illustrated sleeve 512 rectangular cross-section is identical or substantially similar to the rectangular cross-section formed by the surfaces 548 and 550 of the bone anchor attachment portion 508. The sleeve 512 further includes inner opposed planar surfaces 564 and cooperating perpendicular opposed planar surfaces 566 that define a through-bore for the passage of the core 506 therethrough. In the illustrated embodiment, the surfaces 564 and 566 are of substantially the same width (measured perpendicular to the axis AA) for being closely slidingly mateable with the surfaces 543 of the core 506. The sleeve 512 further includes a plate 570 at an end thereof. The illustrated end plate 570 has a rectangular cross-section perpendicular to the axis AA partially defined by outer planar surfaces 574. The surfaces 574 are sized and shaped to be identical or substantially similar to the surfaces 556 of the plate 546 of the anchor member 504. The plate 570 has a planar surface 575 perpendicular to the axis AA and an opposed terminal planar surface 576. The surfaces 560 and 562 terminate at an outer planar surface 578.
With reference to
The illustrated spacer 510 advantageously closely slidingly mates and cooperates with the core 506 of the anchor member 504, providing limitation and protection of axial movement and torsional control of the core 506 located between bone screws 525. With particular reference to
With particular reference to
With particular reference to
The illustrated dynamic connecting member assembly 501 having a pre-tensioned core extension 506 cooperates with at least two bone anchors, such as the polyaxial bone screws, generally 525 as shown in
With particular reference to
After the crimping member 520 is loaded onto the core 506, manipulation tools (not shown) are used to grasp the core 506 near the end 544 and at the bone anchor attachment portion 508, placing tension on the core 506. Furthermore, the spacer 510, the sleeve 512, the bumper 518 and the crimping member 520 are moved toward the buttress plate 540 and into contact with one another. Alternatively, or in addition, axial compressive force is placed on the components loaded on the core 506, followed by deforming the crimping member at the crimp grooves 610 and against the core 506. When the manipulation tools are released, the crimping member 520, now firmly and fixedly attached to the core 506 holds the spacer 510 and the bumper 518 in compression and the spacers and bumper place axial tension forces on the core 506, resulting in a dynamic relationship between the core 506 and the spacer 510 and bumper 518. The tension on the core 506 is advantageously balanced and uniform as the spacer 510 is slidable with respect to the core 506, but also are limited by the buttress plate of the anchor member 504 and end plate of the sleeve 512. Furthermore, the bumper 518 that is compressed between the sleeve surface 578 and the crimping member surface 606 is also slidable with respect to the core 506. The spacer 510 and the bumper 518 place a distractive force on the core 506 along the axis AA and between the buttress plate 546 and the crimping member 520, but also are movable with respect to the core 506, thus being able to respond to jolting and other body movements and thereafter spring back into an originally set location.
The sleeve 512 may compress slightly, but is more rigid than the spacer 510 and bumper 518 and thus keeps the spacers 510 and bumper 518 in an approximate desired axially spaced relation. However, the spacer 510 also advantageously slides along the core 506 in response to outside forces. The core 506 is then trimmed to be approximately flush with the end surface 608 of the crimping member 520.
With reference to
The assembly 501 is thus substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to flexion, extension, distraction and compressive forces placed on the assembly 501 and the connected bone screws 525. The slender core extension 506 allows for some twisting providing some relief for torsional stresses. However, the fact that the core 506 is of a non-round cross-section and cooperates with through bores of the other assembly components that are also non-round and closely slidingly mate with the core 506 also advantageously provides limits to rotational or twisting movement of the assembly 501 in response to torsional forces. Furthermore, the compressed spacer 510 places some limits on torsional movement as well as bending movement, to provide spinal support. The pre-loaded core 506 (in tension) and spacer 510 and bumper 518 (in compression) allow for compression and some extension of the assembly 501 located between the two bone screws 525, e.g., shock absorption.
If removal of the assembly 501 from any of the bone screw assemblies 525 is necessary, or if it is desired to release the assembly 501 at a particular location, disassembly is accomplished by using the driving tool (not shown) with a driving formation cooperating with the closure structure 527 internal drive or cooperating set screw internal drive to rotate and remove the closure structure 527 from the receiver 531. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.
Eventually, if the spine requires more rigid support, the connecting member assembly 501 according to the invention may be removed and replaced with another longitudinal connecting member, such as a solid cylindrical or bar-like rod, having the same diameter or width as the width of the bar-like portion 508 and the sleeve 512, utilizing the same receivers 531 and the same or similar closure structures 527. Alternatively, if less support is eventually required, a less rigid, more flexible assembly, for example, an assembly 501 having components made of a more flexible material, but with the same size sleeves as the assembly 501, may replace the assembly 501, also utilizing the same bone screws 525.
With reference to
In the illustrated embodiment, the anchor member 704 is substantially similar to the anchor member 504 previously described herein with respect to the assembly 501. Therefore, the member 704 includes the core 706, the bone anchor attachment portion 708 and an integral buttress plate 746 identical or substantially similar in size and shape to the respective core 506, attachment portion 508 and buttress plate 546 of the anchor member 504 previously described herein. The member 704 differs from the member 504 only in the fact that the core 706 is bent adjacent the buttress plate 746.
The sleeve 712 is identical or substantially similar to the sleeve 512 illustrated in
The spacer 710 is operatively located between the buttress plate 746 and the sleeve plate 770 in a manner similar to the spacer 510 located between the plates 546 and 570 of the assembly 501. The spacer 710 is also made from materials similar to the materials from which the spacer 10 is made. The spacer 710 further includes inner planar surfaces 784 and a flanged surface 786 forming a through bore for receiving the core 706, such surfaces 784 and 786 being substantially similar in form and function to the surfaces 584 and 586 previously described herein with respect to the spacer 510 with the exception that the through bore may be further modified to follow the curvature of the bent core 706. Also, the spacer 710 is of a different shape than the spacer 510. The spacer 710 includes a pair of opposed planar surfaces 790 that are trapezoidal in shape. The surfaces 790 run parallel to the through bore formed by the planar surfaces 784, such bore terminating at opposed load-bearing end surfaces 792 and 794. The surfaces 792 and 794 are not parallel, each directed toward one another and terminating at a small top (operatively posterior with respect to the spine) surface 796 and sloping in a direction away from one another at a larger bottom (operatively anterior) surface 798. It is noted that also according to the invention the surface 796 may be placed in an anterior position and the surface 798 placed in a posterior position with respect to the spine if desired to correct spinal kyphosis. In other embodiments of the invention the core 706 and spacer 710 may be bent, sized and shaped for the correction of other spinal deformities, such as scoliosis, for example.
The assembly 701 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 501. Therefore, the core 706 is first received within a through bore of the spacer 710 formed by the surfaces 784, then within the inner planar surfaces 764 and 766 of the sleeve 712, followed by an inner through bore of the bumper 718 and then an inner through bore of the crimping member 720. Similar to what has been described previously with respect to the assembly 1, the core 706 is initially of a longer length measured along the axis BB than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 706 near an end thereof that extends through the crimping member bore. The core 706 is tensioned and/or the spacer 710 and bumper 720 are compressed, followed by deformation of the crimping member 720 against the core 706. The core 706 is then trimmed substantially flush to the crimping member 720. The assembly is now in dynamic relationship with the core 706 being in tension while the spacer 710 that is slidable with respect to the core 706 is compressed between the plates 746 and 770 and the bumper 718 that is also slidable with respect to the core 706 is compressed between the sleeve 712 and the crimping member 720; the spacer 710 and the bumper 718 placing a distractive force on the core 706 along the axis BB and between the buttress plate 746 and the crimping member 720. The assembly 701 may then be implanted, cooperating with a pair of bone screws 525 as illustrated in
With reference to
The sleeve 816 is for the most part similar to the sleeve 812, the sleeve 712 and the sleeve 512 of the previously described embodiments, having outer planar surfaces 860 and 862, a rectangular cross-section, inner planar surfaces 864 and 866 defining a through bore for closely receiving the core 806 and an end plate 870 identical or substantially similar to the respective outer surfaces 560 and 562, inner surfaces 564 and 566 and end plate 570 of the sleeve 512 previously described herein with respect to the assembly 501. Additionally, the sleeve 816 has an opposite end plate 871 spaced from and parallel to the end plate 870.
The assembly 801 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 701. The core 806 is first received within a through bore of the spacer 810, then within the inner planar surfaces 864 and 866 of the sleeve 816, followed by an inner through bore of the spacer 814 and then a through bore of the sleeve 812. Thereafter, the core 806 is received in an inner through bore of the bumper 818 and then an inner through bore of the crimping member 820. Similar to what has been described previously with respect to the assemblies 501 and 701, the core 806 is initially of a longer length than is shown in the drawing figures, allowing for a manipulation tool to grasp the core near an end thereof that extends through the crimping member bore. The core 806 is tensioned and/or the spacers 810 and 816 and the bumper 818 are compressed, followed by deformation of the crimping member 820 against the core 806. The core 806 is then trimmed substantially flush to the crimping member 820. The assembly is now in dynamic relationship with the core 806 being in tension while the spacers 810 and 816 that are slidable with respect to the core 806 are compressed and the bumper 818 that is also slidable with respect to the core 806 is compressed between the sleeve 812 and the crimping member 820; the spacers 810 and 816 and the bumper 818 placing a distractive force on the core 806 along an elongate axis thereof. The assembly 801 may then be implanted, cooperating with a three bone screws 525 as illustrated in
It is foreseen that longitudinal connecting member assemblies according to the invention may be of a variety of lengths for cooperation with a plurality of bone screws 525, either along an attachment portion, such as the portion 808 or along dynamic portions that include one or more spacers and one or more sleeves, such as the sleeves 512, 712, 812 and 816 for attachment of a plurality of bone screws 525 or other bone anchors. It is foreseen that such sleeves may also be a variety of lengths for attachment to one or more bone anchors along a length of the individual sleeve.
As another example of an elongate dynamic connecting member of the invention for use with at least three bone screws 525,
The assembly 901 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 801. The core 906 is first received within a through bore of the spacer 910, then within the inner planar surfaces defining the inner through bore of the sleeve 916, followed by an inner through bore of the spacer 910A and then a through bore of the sleeve 912. Thereafter, the core 906 is received in an inner through bore of the bumper 918 and then an inner through bore of the crimping member 920. Similar to what has been described previously with respect to the assemblies 501, 701 and 801, the core 906 is initially of a longer length than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 906 near an end thereof that extends through the crimping member bore. The core 906 is tensioned and/or the spacers 910A and 910B and the bumper 918 are compressed, followed by deformation of the crimping member 920 against the core 906. The core 906 is then trimmed substantially flush to the crimping member 920. The assembly is now in dynamic relationship with the core 906 being in tension while the spacers 910A and 910B that are slidable with respect to the core 906 are compressed and the bumper 918 that is also slidable with respect to the core 906 is compressed between the sleeve 912 and the crimping member 920; the spacers 910A and 910B and the bumper 918 placing a distractive force on the core 946 along an elongate axis thereof. The assembly 901 may then be implanted, cooperating with a three bone screws 525 as illustrated in
It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
This application is a continuation of U.S. application Ser. No. 13/317,158 filed on Oct. 11, 2011 which is a continuation of U.S. application Ser. No. 12/459,492, filed Jul. 1, 2009, now U.S. Pat. No. 8,366,745 issued Feb. 5, 2013. U.S. application Ser. No. 12/459,492 claims the benefit of U.S. Provisional Application No. 61/137,743, filed Aug. 1, 2008 and U.S. Provisional Application No. 61/134,480, filed Jul. 10, 2008. U.S. application Ser. No. 12/459,492 is a continuation-in-part of U.S. application Ser. No. 12/156,260, filed May 30, 2008, now U.S. Pat. No. 7,951,170 issued May 31, 2011 which claims the benefit of U.S. Provisional Application No. 60/994,068 filed Sep. 17, 2007, and U.S. Provisional Application No. 60/932,567 filed May 31, 2007. U.S. application Ser. No. 12/459,492 is also a continuation-in-part of U.S. application Ser. No. 12/148,465 filed Apr. 18, 2008 which claims the benefit of U.S. Provisional Application No. 60/927,111, filed May 1, 2007. U.S. application Ser. No. 12/148,465 is also a continuation in part of U.S. application Ser. No. 12/006,460 filed Jan. 3, 2008, now U.S. Pat. No. 8,475,498 issued Jul. 2, 2013 which claims the benefit of U.S. Provisional Application No. 60/922,465 filed Apr. 9, 2007, U.S. Provisional Application No. 60/898,870 filed Feb. 1, 2007, and U.S. Provisional Application No. 60/880,969 filed Jan. 18, 2007 all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
D346217 | Sparker et al. | Apr 1994 | S |
6132431 | Nilsson | Oct 2000 | A |
6251112 | Jackson | Jun 2001 | B1 |
6290700 | Schmotzer | Sep 2001 | B1 |
6565565 | Yuan et al. | May 2003 | B1 |
7713288 | Timm et al. | May 2010 | B2 |
7815665 | Jahng et al. | Oct 2010 | B2 |
7828825 | Bruneau et al. | Nov 2010 | B2 |
7842072 | Dawson | Nov 2010 | B2 |
8128667 | Jackson | Mar 2012 | B2 |
8157843 | Biederman et al. | Apr 2012 | B2 |
8292926 | Jackson | Oct 2012 | B2 |
8366745 | Jackson | Feb 2013 | B2 |
9439683 | Jackson | Sep 2016 | B2 |
9451989 | Jackson | Sep 2016 | B2 |
20020035366 | Walder et al. | Mar 2002 | A1 |
20020055740 | Lieberman | May 2002 | A1 |
20020107570 | Sybert et al. | Aug 2002 | A1 |
20020116001 | Schafer | Aug 2002 | A1 |
20020198526 | Shaolian et al. | Dec 2002 | A1 |
20030083657 | Drewry et al. | May 2003 | A1 |
20030212398 | Jackson | Nov 2003 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040143265 | Landry et al. | Jul 2004 | A1 |
20040167523 | Jackson | Aug 2004 | A1 |
20040172032 | Jackson | Sep 2004 | A1 |
20040215191 | Kitchen | Oct 2004 | A1 |
20040236327 | Paul et al. | Nov 2004 | A1 |
20040236328 | Paul et al. | Nov 2004 | A1 |
20050010220 | Casutt et al. | Jan 2005 | A1 |
20050085815 | Harms et al. | Apr 2005 | A1 |
20050131407 | Sicvol et al. | Jun 2005 | A1 |
20050149020 | Jahng | Jul 2005 | A1 |
20050203514 | Jahng | Sep 2005 | A1 |
20050203517 | Jahng et al. | Sep 2005 | A1 |
20050277919 | Slivka et al. | Dec 2005 | A1 |
20050277920 | Slivka et al. | Dec 2005 | A1 |
20050277922 | Trieu et al. | Dec 2005 | A1 |
20050277932 | Farris | Dec 2005 | A1 |
20050288671 | Yuan et al. | Dec 2005 | A1 |
20060025767 | Khalili | Feb 2006 | A1 |
20060036240 | Colleran et al. | Feb 2006 | A1 |
20060058788 | Hammer et al. | Mar 2006 | A1 |
20060064090 | Park | Mar 2006 | A1 |
20060079894 | Colleran et al. | Apr 2006 | A1 |
20060142760 | McDonnell | Jun 2006 | A1 |
20060149238 | Sherman et al. | Jul 2006 | A1 |
20060241602 | Jackson | Oct 2006 | A1 |
20060241769 | Gordon et al. | Oct 2006 | A1 |
20060247635 | Gordon et al. | Nov 2006 | A1 |
20060247779 | Gordon et al. | Nov 2006 | A1 |
20060264937 | White | Nov 2006 | A1 |
20070100341 | Reglos et al. | May 2007 | A1 |
20070118123 | Strausbaugh et al. | May 2007 | A1 |
20070123864 | Walder et al. | May 2007 | A1 |
20070129729 | Petit et al. | Jun 2007 | A1 |
20070191841 | Justis et al. | Aug 2007 | A1 |
20070233064 | Holt | Oct 2007 | A1 |
20070270821 | Trieu et al. | Nov 2007 | A1 |
20070270840 | Chin et al. | Nov 2007 | A1 |
20070276380 | Jahng et al. | Nov 2007 | A1 |
20070288011 | Logan | Dec 2007 | A1 |
20080021469 | Holt | Jan 2008 | A1 |
20080051787 | Remington et al. | Feb 2008 | A1 |
20080086125 | Molz et al. | Apr 2008 | A1 |
20080086130 | Lake | Apr 2008 | A1 |
20080161857 | Hestad et al. | Jul 2008 | A1 |
20080294198 | Jackson | Nov 2008 | A1 |
20080319482 | Jackson | Dec 2008 | A1 |
20090012562 | Hestad et al. | Jan 2009 | A1 |
20090036924 | Egli et al. | Feb 2009 | A1 |
20090204152 | Blain | Aug 2009 | A1 |
20090228045 | Hayes et al. | Sep 2009 | A1 |
20100010542 | Jackson | Jan 2010 | A1 |
20100036423 | Hayes | Feb 2010 | A1 |
20100174319 | Jackson | Jul 2010 | A1 |
20100228292 | Arnold et al. | Sep 2010 | A1 |
20100331887 | Jackson et al. | Dec 2010 | A1 |
20120035660 | Jackson | Feb 2012 | A1 |
20120221054 | Jackson | Aug 2012 | A1 |
20140018857 | Jackson | Jan 2014 | A1 |
20140039555 | Jackson | Feb 2014 | A1 |
20140222076 | Jackson | Aug 2014 | A1 |
20140343610 | Jackson | Nov 2014 | A1 |
20140379030 | Jackson | Dec 2014 | A1 |
20150216567 | Trautwein et al. | Aug 2015 | A1 |
20150320449 | Jackson | Nov 2015 | A1 |
20160310169 | Jackson et al. | Oct 2016 | A1 |
20160346010 | Jackson | Dec 2016 | A1 |
20160354120 | Jackson | Dec 2016 | A1 |
Entry |
---|
Overlap, Merriam-Webster, accessed Apr. 13, 2015 http://www.meriam-webster.com/dictionary/overlap. |
Number | Date | Country | |
---|---|---|---|
20160310171 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61137743 | Aug 2008 | US | |
61134480 | Jul 2008 | US | |
60994068 | Sep 2007 | US | |
60932567 | May 2007 | US | |
60927111 | May 2007 | US | |
60922465 | Apr 2007 | US | |
60898870 | Feb 2007 | US | |
60880969 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13317158 | Oct 2011 | US |
Child | 15197247 | US | |
Parent | 12459492 | Jul 2009 | US |
Child | 13317158 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12156260 | May 2008 | US |
Child | 12459492 | US | |
Parent | 12148465 | Apr 2008 | US |
Child | 12156260 | US | |
Parent | 12006460 | Jan 2008 | US |
Child | 12148465 | US |