The present disclosure relates generally to media presentations and, more particularly, to systems and methods for dynamically generating summarized versions of video content missed by a user while the user is viewing one or more different video streams.
Streaming media presentations, such as online videos, often include separate audio and video streams, or tracks. Some of these media presentations also include multiple video and/or audio streams that are played in parallel, so that a user can switch among the streams and continue playback of a new stream at the same point in time where he or she left off in the previous stream. However, if the user is only viewing one stream while multiple streams are playing in parallel, he will not see or hear the content in the other streams unless he watches every stream separately. The user must then spend unnecessary time and effort in order to feel that he has experienced all available content.
Systems and methods for dynamically generating summaries of media content are disclosed. In one aspect, a plurality of video streams that are synchronized to a common playback timeline are simultaneously received at, e.g., a video player application. The video streams can include content related to each other, such as a common storyline. At some point during the presentation of one of the video streams to the user, an instruction to switch to a second stream is received. Prior to switching to the second stream, a video summary of the second video stream is generated and presented to the user. The video summary is generated based on content in the second video stream that the user missed while watching the first video stream.
The video summary can be presented to the user directly after presentation of the first stream is stopped, and directly before presentation of the second stream begins. The video summary can also include a summary of content that the user will miss in the second stream while watching the video summary. The video summary can generally include content not previously viewed by the user.
In some implementations, the video summary includes video content from the second video stream presented at an increased playback speed. In other implementations, the video summary includes a selection of still images of video content in the second video stream. In further implementations, the video summary includes content from the second video stream previously designated as important or interesting.
In one implementation, each video stream is composed of multiple segments, each having an associated segment summary video and segment idle video. When generating the video summary, the segment summary videos associated with missed content segments in the second stream can be included in the video summary. Where padding is needed, one or more idle videos associated with a missed segment can be included in the summary as well.
In yet another implementation, the video summary is switched away from while it is being presented. If and when the user switches back to the second stream, a newly generated summary can include a summary of content corresponding to the portion of the previous video summary that was not viewed by the user.
In one implementation, an indicator can be presented that informs the user when an interesting event is occurring or has occurred on a video stream not currently being viewed by the user.
Other aspects of the inventions include corresponding systems and computer-readable media. The various aspects and advantages of the invention will become apparent from the following drawings, detailed description, and claims, all of which illustrate the principles of the invention, by way of example only.
A more complete appreciation of the invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Further, the drawings are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the invention.
Described herein are various implementations of methods and supporting systems for dynamically generating summaries of content in media presentations. The techniques described herein can be implemented in any suitable hardware or software. If implemented as software, the processes can execute on a system capable of running one or more custom operating systems or commercial operating systems such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like. The software can be implemented on a general purpose computing device in the form of a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
The system can include a plurality of software modules stored in a memory and executed on one or more processors. The modules can be in the form of a suitable programming language, which is converted to machine language or object code to allow the processor or processors to read the instructions. The software can be in the form of a standalone application, implemented in any suitable programming language or framework.
The application 112 can be a video player and/or editor that is implemented as a native application, web application, or other form of software. In some implementations, the application 112 is in the form of a web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the user device 110 and runs in conjunction with a web browser. The application 112 and the web browser can be part of a single client-server interface; for example, the application 112 can be implemented as a plugin to the web browser or to another framework or operating system. Any other suitable client software architecture, including but not limited to widget frameworks and applet technology can also be employed.
Media content can be provided to the user device 110 by content server 102, which can be a web server, media server, a node in a content delivery network, or other content source. In some implementations, the application 112 (or a portion thereof) is provided by application server 106. For example, some or all of the described functionality of the application 112 can be implemented in software downloaded to or existing on the user device 110 and, in some instances, some or all of the functionality exists remotely. For example, certain video encoding and processing functions can be performed on one or more remote servers, such as application server 106. In some implementations, the user device 110 serves only to provide output and input functionality, with the remainder of the processes being performed remotely.
The user device 110, content server 102, application server 106, and/or other devices and servers can communicate with each other through communications network 114. The communication can take place via any media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11, Bluetooth, GSM, CDMA, etc.), and so on. The network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between clients and servers can be communicated over such TCP/IP networks. The type of network is not a limitation, however, and any suitable network can be used.
Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
It should also be noted that the present implementations can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture can be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD-ROM, a CD-RW, a CD-R, a DVD-ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs can be implemented in any programming language. The software programs can be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file can then be stored on or in one or more of the articles of manufacture.
The media presentations referred to herein can be structured in various forms. For example, a particular media presentation can be an online streaming video having one video stream and one audio stream. In other implementations, a media presentation includes multiple tracks or streams that a user can switch among in real-time or near real-time. For example, a media presentation can be structured using parallel audio and/or video tracks as described in U.S. patent application Ser. No. 14/534,626, filed on Nov. 6, 2014, and entitled “Systems and Methods for Parallel Track Transitions,” the entirety of which is incorporated by reference herein. For example, a playing video file or stream can have one or more parallel tracks that can be switched among in real-time automatically and/or based on user interactions. In some implementations, such switches are made seamlessly and substantially instantaneously, such that the audio and/or video of the playing content can continue without any perceptible delays, gaps, or buffering. In further implementations, switches among tracks maintain temporal continuity; that is, the tracks can be synchronized to a common timeline so that there is continuity in audio and/or video content when switching from one track to another (e.g., the same song is played using different instruments on different audio tracks; same storyline performed by different characters on different video tracks, and the like).
To facilitate near-instantaneous switching among parallel tracks, multiple media tracks (e.g., video streams) can be downloaded simultaneously to user device 110. Upon selecting a streaming video to play, an upcoming portion of the video stream is typically buffered by a video player prior to commencing playing the video, and the video player can continue buffering as the video is playing. Accordingly, in one implementation, if an upcoming segment of a video presentation (including the beginning of the presentation) includes two or more parallel tracks, the application 112 (e.g., a video player) can initiate download of the upcoming parallel tracks substantially simultaneously. The application 112 can then simultaneously receive and/or retrieve video data portions of each track. The receipt and/or retrieval of upcoming video portions of each track can be performed prior to the playing of any particular parallel track as well as during the playing of a parallel track. The downloading of video data in parallel tracks can be achieved in accordance with smart downloading techniques such as those described in U.S. Pat. No. 8,600,220, issued on Dec. 3, 2013, and entitled “Systems and Methods for Loading More than One Video Content at a Time,” the entirety of which is incorporated by reference herein.
Upon reaching a segment of the video presentation that includes parallel tracks, the application 112 makes a determination of which track to play. The determination can be based on, for example, an interaction made or option selected by the user during a previous video segment, during a previous playback of a pre-recorded video presentation, prior to playing the video, and so on. Based on this determination, the current track either continues to play or the application 112 switches to a parallel track.
In some implementations, multiple users can view a media presentation simultaneously. For example, several users on different user devices can view a parallel track multimedia presentation in synchronization, and each user can have a unique experience by switching between tracks (e.g., content representing different plots, points of view, people, locations, commercials, etc.) at different times. In one example, three users (user 1, user 2, and user 3) view in sync a ten-minute media presentation that includes parallel tracks A, B, and C. Over the ten minutes, user 1 can view content from the tracks in the sequence B, A, B, C, B, A; while at the same time user 2 can view content from the tracks in the sequence A, C, B, A; while at the same time user 3 can view content only from track A. Ultimately, each user can simultaneously experience a presentation unique to them.
In other implementations, the media presentation takes the form of an interactive video based on a video tree, hierarchy, or other structure. Such interactive video structures are described in U.S. patent application Ser. No. 14/978,491, filed on Dec. 22, 2015, and entitled “Seamless Transitions in Large-Scale Video,” the entirety of which is incorporated by reference herein.
In STEP 208, a video summary is generated of content previously missed by the user in the new stream being switched to. Thus, for example, if the user had viewed Stream A between time 0 and time 10, and switched to Stream B at time 10, the generated summary would include Stream B content that had occurred between time 0 and time 10. The video summary can be generated on the client side or server side, for example, by application 112 and/or application server 106. To provide a seamless presentation, the video summary can be generated prior to a switch occurring. For example, video summaries of streams not being viewed can be proactively generated, with the expectation that the user may switch to one of those streams. The video summary further can be generated while one or more streams is being downloaded. In another implementation, the video summary can be generated in part or in full after the instruction for the switch is received. To increase responsiveness, a starting portion of the video summary can be generated and presented to the user and, while the summary is being presented, the remainder of the summary can be generated in real time. The generated summary is then presented in part or in full to the user (STEP 210) prior to switching to the new stream. In some implementations, the user can disable summary generation, and proceed directly to the switched-to track without interruption.
In some implementations, the user can switch back to the previously viewed stream (e.g., Stream A) or another stream (e.g., Stream C) while the video summary (e.g., of Stream B) is being presented (STEP 212). As will be described further below, this results in the need to track the portions of the summary that have been viewed or not viewed (STEP 214) so that, if the user returns to that stream (e.g., Stream B), the newly generated summary will include the summarized content that the user missed by switching from the previous summary prior to the completion of its presentation. If, on the other hand, the video summary plays in full, the switched-to stream (e.g., Stream B) then begins to be presented to the user (STEP 216). The process continues when the stream is next switched, if at all (return to STEP 206). When the presentation ends (or, in some instances, at any point in the presentation), the user can be provided with an opportunity to view summaries for some or all missed content.
In further detail,
Following the completion of playback of Track B summary 315, the playing video 300 transitions to Track B. The time that Track B summary 315 is presented to the user is also time during which Track A is not viewed. Accordingly, upon the user switching back to Track A, the video summary (Track A Summary 325) created for Track A includes content 320 from A Sum Start to A Sum End, which includes content occurring in Track A during playback of Track B summary 315, content occurring while presenting Track B, and content occurring while the user views Track A summary 325. Then, following presentation of Track A summary 325, the playing video 300 continues with presentation of Track A.
Various techniques for generating a summary are contemplated. In one implementation, the generation of a video summary is fully automated. In this instance, the summary of missed video content can include a version of the missed content presented at an increased speed (i.e., visibly fast-forwarded at 1.5×, 2×, 3×, or some other multiplier). The playback multiplier that is applied to the missed content can be constant or can vary (e.g., slower during more interesting parts). In one implementation, the playback multiplier is calculated to be a value that results in the summary being a particular length (e.g., a multiplier of 5× can be used to condense a 10-second video segment to 2 seconds). In another instance, the video summary includes individual static images from the missed content (e.g., individual frames or screenshots). The images selected can be random or predefined (e.g., designated by the video content creator), and there can be a random or fixed number of images selected per time period. The length of time between pictures and the length of time a picture stays on screen, as well as the minimum and/or maximum length of the summary itself, can be set by a content creator or content provider, or can be configurable within the video player.
In another implementation, the generation of a video summary is semi-automated. More specifically, interesting or important portions (e.g., still images, video clips, events, scenes, etc.) of the video content can be designated in advance by a content creator or other party. Then, when the video summary is generated, some or all of the designated portions are automatically compiled together for presentation to the user.
In a further implementation, video summary generation involves a more manual process, in which a specific summary is pre-constructed for each portion of a video stream. In one instance, for example, each video stream is divided into units referred to as “segments.” When the content for the video stream is created or compiled by a content creator, editor, or other third party, a separate summary video can also be provided and associated with each segment in the stream (or some of the segments). Thus, for example, a 30-second video segment can have an associated 3-second summary. Then, if missed content includes all or a portion of that 30-second segment, the corresponding segment summary can be included in the full video summary generated for the missed content. If the missed content includes multiple segments, multiple corresponding segment summaries can be combined together for the full summary.
In some implementations, one or more segments also include a respective idle video that can serve as filler content. An idle video can include predefined video content showing a loop or other content in which nothing significant occurs. The idle content can be related to content in the segment. For example, if the segment includes video of a soldier in a battle, the idle content can depict the soldier taking cover behind a wall and breathing heavily for a period of time. Idle videos are useful where stream playback begins at segment boundaries with segments of fixed (though not necessarily equal) lengths. When a switch between streams occurs and a video summary is generated and presented, the summary may be of a length such that its end does not correspond with the end of a segment. In other words, the summary ends before the beginning of the next segment. In this instance, an idle video can be used to pad the length of the video summary (repetitively, if needed) such that the video stream commences with the start of the next segment directly after completion of the video summary. In other implementations, if the presentation of a summary will result in only a small intrusion into the next segment (e.g., less than 3 seconds), rather than padding the summary with idle content, the summary can nonetheless be shown, and the user will miss a small portion of the beginning of that segment's content.
For audio content in a video summary, a predetermined or random selection of audio can be provided (e.g., background music, narration, dialogue or sound effects, etc.). In the case of manually generated summaries, the segment summary can include a prerecorded audio track. In other implementations, the audio for a particular portion of the summary is the same audio associated with the corresponding content in the full version of the content.
Example 2 in
In some implementations, the present system intelligently determines whether a switch to a different stream should result in a summary being generated and shown for a particular portion of content. In general, the system can track whether a particular segment or portion of content was presented to a user, and use this status as an initial threshold for determining whether the segment or content portion is eligible to be included in a summary. For example, the system can consider only missed content (i.e., content that was played on a parallel track not visible to the user while the user was watching a different track) to be eligible for inclusion.
In one implementation, whether missed content is included in a summary can depend on how recently the user was viewing the stream (e.g., don't generate a summary for missed content on Track A if the user was previously viewing Track A within the last 10 seconds, or other threshold value). Another factor can be the amount of time the user has spent viewing a stream over a particular time period or running window (e.g., don't generate a summary for missed content on Track A if the user has spent at least four minutes out of the last five minutes viewing content on Track A). Yet another factor, useful in semi-automated summary generation systems, as described above, is whether the user has been presented with a threshold amount of designated interesting or important scenes or events in the content (e.g., don't generate a summary for missed content on Track A if the user has seen at least 80% of the important events in the missed content; generate a summary for missed content on Track B if the user has missed more than 20 seconds of designated important scenes in the missed content). For a manual summary generation system, for example, the summary for a particular segment can be shown to the user if at least a threshold amount of the segment was missed (e.g., show segment summary if more than 40%, 50%, 60%, or other amount of the segment was missed).
In some implementations, the system supports switching to another stream while the video summary is being presented and prior to the video summary being completed. In such circumstances, the system tracks which parts of the summary were viewed, determines the content in the switched-to stream corresponding to the viewed summary portions, and ensures that the corresponding content will be summarized and included in the summary the next time the user switches to that stream, if at all. In one implementation, for fully- and semi-automated systems, the point in time at which the user stops viewing the summary is correlated to a point in time in the corresponding content in the switched-to stream. Then, if the user returns again to that stream, the generated summary can include missed content starting from that point in time in the stream and going forward. In another implementation, for manual systems, if a user views more than a threshold amount (e.g., 50%, 60%, 70%, 80%, 90%, etc.) of a segment summary associated with a particular segment, then that segment is considered viewed and need not be summarized if the user returns to the switched-to stream. If, on the other hand, the user's viewing of the segment summary does not meet the threshold amount, the segment summary will be included in the summary the next time the user returns to the switched-to stream. In such a case, the segment summary can be restarted or shown from the point where the user left off.
In
In one implementation, visual, audio, haptic, or other indicators are provided to the user to inform that user that something interesting or otherwise notable has happened, is happening, or will happen on a track not currently being viewed by the user. Such indicators can include, but are not limited to, sound clips, graphics, video or audio thumbnails from the interesting content, and the like. In some instances, a numerical indicator is used to inform the user of the number of scenes (interesting or otherwise) missed on each track. In other instances, an indicator can include other information about missed content, such as the length of time of missed content, level of importance, category, and so on. The foregoing indicators can be, for example, shown in a video player interface, overlaid on the video itself, and/or displayed on a player progress bar.
One will appreciate the near-limitless number of applications of the techniques described herein. As one illustrative example, a video presentation includes a story about two girls, each with a different camera following her. A user can switch from one following camera to the other by switching between tracks. When a switch is made from one girl to another, a summary of events that happened to that girl from the previous time that the user saw her can be shown, prior to switching to that girl's camera. In another example, a video presentation includes three soccer games being broadcast in parallel (live or prerecorded). Upon the user switching to a different match (different stream), a highlight summary of the match is dynamically generated and shown to the user based on what the user missed in that match.
Although the systems and methods described herein relate primarily to audio and video presentation, the invention is equally applicable to various streaming and non-streaming media, including animation, video games, interactive media, and other forms of content usable in conjunction with the present systems and methods. Further, there can be more than one audio, video, and/or other media content stream played in synchronization with other streams. Streaming media can include, for example, multimedia content that is continuously presented to a user while it is received from a content delivery source, such as a remote video server. If a source media file is in a format that cannot be streamed and/or does not allow for seamless connections between segments, the media file can be transcoded or converted into a format supporting streaming and/or seamless transitions.
While various implementations of the present invention have been described herein, it should be understood that they have been presented by example only. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps can be modified and that such modifications are in accordance with the given variations. For example, although various implementations have been described as having particular features and/or combinations of components, other implementations are possible having any combination or sub-combination of any features and/or components from any of the implementations described herein.
Number | Name | Date | Kind |
---|---|---|---|
4569026 | Best | Feb 1986 | A |
5161034 | Klappert | Nov 1992 | A |
5568602 | Callahan et al. | Oct 1996 | A |
5607356 | Schwartz | Mar 1997 | A |
5636036 | Ashbey | Jun 1997 | A |
5676551 | Knight et al. | Oct 1997 | A |
5734862 | Kulas | Mar 1998 | A |
5737527 | Shiels et al. | Apr 1998 | A |
5745738 | Ricard | Apr 1998 | A |
5754770 | Shiels et al. | May 1998 | A |
5818435 | Kozuka et al. | Oct 1998 | A |
5848934 | Shiels et al. | Dec 1998 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
6067400 | Saeki et al. | May 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6128712 | Hunt et al. | Oct 2000 | A |
6191780 | Martin et al. | Feb 2001 | B1 |
6222925 | Shiels et al. | Apr 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6298482 | Seidman et al. | Oct 2001 | B1 |
6657906 | Martin | Dec 2003 | B2 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6728477 | Watkins | Apr 2004 | B1 |
6801947 | Li | Oct 2004 | B1 |
7155676 | Land et al. | Dec 2006 | B2 |
7231132 | Davenport | Jun 2007 | B1 |
7310784 | Gottlieb et al. | Dec 2007 | B1 |
7379653 | Yap et al. | May 2008 | B2 |
7444069 | Bernsley | Oct 2008 | B1 |
7627605 | Lamere et al. | Dec 2009 | B1 |
7669128 | Bailey et al. | Feb 2010 | B2 |
7694320 | Yeo et al. | Apr 2010 | B1 |
7779438 | Davies | Aug 2010 | B2 |
7787973 | Lambert | Aug 2010 | B2 |
7917505 | van Gent et al. | Mar 2011 | B2 |
8024762 | Britt | Sep 2011 | B2 |
8065710 | Malik | Nov 2011 | B2 |
8151139 | Gordon | Apr 2012 | B1 |
8176425 | Wallace et al. | May 2012 | B2 |
8190001 | Bernsley | May 2012 | B2 |
8276058 | Gottlieb et al. | Sep 2012 | B2 |
8281355 | Weaver et al. | Oct 2012 | B1 |
8600220 | Bloch et al. | Dec 2013 | B2 |
8612517 | Yadid et al. | Dec 2013 | B1 |
8650489 | Baum et al. | Feb 2014 | B1 |
8826337 | Issa et al. | Sep 2014 | B2 |
8860882 | Bloch et al. | Oct 2014 | B2 |
8977113 | Rumteen et al. | Mar 2015 | B1 |
9009619 | Bloch et al. | Apr 2015 | B2 |
9021537 | Funge et al. | Apr 2015 | B2 |
9082092 | Henry | Jul 2015 | B1 |
9094718 | Barton et al. | Jul 2015 | B2 |
9190110 | Bloch | Nov 2015 | B2 |
9257148 | Bloch et al. | Feb 2016 | B2 |
9268774 | Kim et al. | Feb 2016 | B2 |
9271015 | Bloch et al. | Feb 2016 | B2 |
9390099 | Wang et al. | Jul 2016 | B1 |
9465435 | Zhang et al. | Oct 2016 | B1 |
9520155 | Bloch et al. | Dec 2016 | B2 |
9530454 | Bloch et al. | Dec 2016 | B2 |
9607655 | Bloch et al. | Mar 2017 | B2 |
9641898 | Bloch et al. | May 2017 | B2 |
9653115 | Bloch et al. | May 2017 | B2 |
9653116 | Paulraj et al. | May 2017 | B2 |
9672868 | Bloch et al. | Jun 2017 | B2 |
9792026 | Bloch et al. | Oct 2017 | B2 |
9792957 | Bloch et al. | Oct 2017 | B2 |
9826285 | Mishra | Nov 2017 | B1 |
20020086724 | Miyaki et al. | Jul 2002 | A1 |
20020091455 | Williams | Jul 2002 | A1 |
20020105535 | Wallace et al. | Aug 2002 | A1 |
20020106191 | Betz et al. | Aug 2002 | A1 |
20020120456 | Berg et al. | Aug 2002 | A1 |
20020124250 | Proehl et al. | Sep 2002 | A1 |
20020129374 | Freeman | Sep 2002 | A1 |
20020140719 | Amir et al. | Oct 2002 | A1 |
20020144262 | Plotnick et al. | Oct 2002 | A1 |
20020177914 | Chase | Nov 2002 | A1 |
20020194595 | Miller et al. | Dec 2002 | A1 |
20030007560 | Mayhew et al. | Jan 2003 | A1 |
20030148806 | Weiss | Aug 2003 | A1 |
20030159566 | Sater et al. | Aug 2003 | A1 |
20030183064 | Eugene et al. | Oct 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030221541 | Platt | Dec 2003 | A1 |
20040019905 | Fellenstein et al. | Jan 2004 | A1 |
20040034711 | Hughes | Feb 2004 | A1 |
20040091848 | Nemitz | May 2004 | A1 |
20040125124 | Kim et al. | Jul 2004 | A1 |
20040128317 | Sull et al. | Jul 2004 | A1 |
20040138948 | Loomis | Jul 2004 | A1 |
20040172476 | Chapweske | Sep 2004 | A1 |
20040194128 | McIntyre et al. | Sep 2004 | A1 |
20040194131 | Ellis et al. | Sep 2004 | A1 |
20050019015 | Ackley et al. | Jan 2005 | A1 |
20050055377 | Dorey et al. | Mar 2005 | A1 |
20050091597 | Ackley | Apr 2005 | A1 |
20050102707 | Schnitman | May 2005 | A1 |
20050107159 | Sato | May 2005 | A1 |
20050166224 | Ficco | Jul 2005 | A1 |
20050198661 | Collins et al. | Sep 2005 | A1 |
20050210145 | Kim et al. | Sep 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20060002895 | McDonnell et al. | Jan 2006 | A1 |
20060024034 | Filo et al. | Feb 2006 | A1 |
20060028951 | Tozun et al. | Feb 2006 | A1 |
20060064733 | Norton et al. | Mar 2006 | A1 |
20060150072 | Salvucci | Jul 2006 | A1 |
20060155400 | Loomis | Jul 2006 | A1 |
20060200842 | Chapman et al. | Sep 2006 | A1 |
20060222322 | Levitan | Oct 2006 | A1 |
20060224260 | Hicken et al. | Oct 2006 | A1 |
20070003149 | Nagumo et al. | Jan 2007 | A1 |
20070024706 | Brannon et al. | Feb 2007 | A1 |
20070033633 | Andrews et al. | Feb 2007 | A1 |
20070055989 | Shanks | Mar 2007 | A1 |
20070099684 | Butterworth | May 2007 | A1 |
20070101369 | Dolph | May 2007 | A1 |
20070118801 | Harshbarger et al. | May 2007 | A1 |
20070157261 | Steelberg et al. | Jul 2007 | A1 |
20070162395 | Ben-Yaacov et al. | Jul 2007 | A1 |
20070226761 | Zalewski et al. | Sep 2007 | A1 |
20070239754 | Schnitman | Oct 2007 | A1 |
20070253677 | Wang | Nov 2007 | A1 |
20070253688 | Koennecke | Nov 2007 | A1 |
20070263722 | Fukuzawa | Nov 2007 | A1 |
20080019445 | Aono et al. | Jan 2008 | A1 |
20080021874 | Dahl et al. | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080031595 | Cho | Feb 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086754 | Chen et al. | Apr 2008 | A1 |
20080091721 | Harboe et al. | Apr 2008 | A1 |
20080092159 | Dmitriev et al. | Apr 2008 | A1 |
20080148152 | Blinnikka et al. | Jun 2008 | A1 |
20080170687 | Moors et al. | Jul 2008 | A1 |
20080177893 | Bowra et al. | Jul 2008 | A1 |
20080178232 | Velusamy | Jul 2008 | A1 |
20080276157 | Kustka et al. | Nov 2008 | A1 |
20080300967 | Buckley et al. | Dec 2008 | A1 |
20080301750 | Silfvast et al. | Dec 2008 | A1 |
20080314232 | Hansson et al. | Dec 2008 | A1 |
20090022015 | Harrison | Jan 2009 | A1 |
20090022165 | Candelore et al. | Jan 2009 | A1 |
20090024923 | Hartwig et al. | Jan 2009 | A1 |
20090055880 | Batteram et al. | Feb 2009 | A1 |
20090063681 | Ramakrishnan et al. | Mar 2009 | A1 |
20090077137 | Weda | Mar 2009 | A1 |
20090116817 | Kim et al. | May 2009 | A1 |
20090191971 | Avent | Jul 2009 | A1 |
20090195652 | Gal | Aug 2009 | A1 |
20090199697 | Lehtiniemi et al. | Aug 2009 | A1 |
20090228572 | Wall et al. | Sep 2009 | A1 |
20090254827 | Gonze et al. | Oct 2009 | A1 |
20090258708 | Figueroa | Oct 2009 | A1 |
20090265746 | Halen et al. | Oct 2009 | A1 |
20090297118 | Fink et al. | Dec 2009 | A1 |
20090320075 | Marko | Dec 2009 | A1 |
20100017820 | Thevathasan et al. | Jan 2010 | A1 |
20100042496 | Wang et al. | Feb 2010 | A1 |
20100077290 | Pueyo | Mar 2010 | A1 |
20100088726 | Curtis et al. | Apr 2010 | A1 |
20100146145 | Tippin et al. | Jun 2010 | A1 |
20100153512 | Balassanian et al. | Jun 2010 | A1 |
20100161792 | Palm et al. | Jun 2010 | A1 |
20100162344 | Casagrande et al. | Jun 2010 | A1 |
20100167816 | Perlman et al. | Jul 2010 | A1 |
20100186032 | Pradeep et al. | Jul 2010 | A1 |
20100186579 | Schnitman | Jul 2010 | A1 |
20100210351 | Berman | Aug 2010 | A1 |
20100262336 | Rivas et al. | Oct 2010 | A1 |
20100267450 | McMain | Oct 2010 | A1 |
20100268361 | Mantel et al. | Oct 2010 | A1 |
20100278509 | Nagano et al. | Nov 2010 | A1 |
20100287033 | Mathur | Nov 2010 | A1 |
20100287475 | van Zwol et al. | Nov 2010 | A1 |
20100293455 | Bloch | Nov 2010 | A1 |
20100332404 | Valin | Dec 2010 | A1 |
20110000797 | Henry | Jan 2011 | A1 |
20110007797 | Palmer et al. | Jan 2011 | A1 |
20110010742 | White | Jan 2011 | A1 |
20110026898 | Lussier et al. | Feb 2011 | A1 |
20110033167 | Arling et al. | Feb 2011 | A1 |
20110041059 | Amarasingham et al. | Feb 2011 | A1 |
20110078023 | Aldrey et al. | Mar 2011 | A1 |
20110078740 | Bolyukh et al. | Mar 2011 | A1 |
20110096225 | Candelore | Apr 2011 | A1 |
20110126106 | Ben Shaul et al. | May 2011 | A1 |
20110131493 | Dahl | Jun 2011 | A1 |
20110138331 | Pugsley et al. | Jun 2011 | A1 |
20110163969 | Anzures et al. | Jul 2011 | A1 |
20110191684 | Greenberg | Aug 2011 | A1 |
20110191801 | Vytheeswaran | Aug 2011 | A1 |
20110197131 | Duffin et al. | Aug 2011 | A1 |
20110200116 | Bloch et al. | Aug 2011 | A1 |
20110202562 | Bloch et al. | Aug 2011 | A1 |
20110238494 | Park | Sep 2011 | A1 |
20110246885 | Pantos et al. | Oct 2011 | A1 |
20110252320 | Arrasvuori et al. | Oct 2011 | A1 |
20110264755 | Salvatore De Villiers | Oct 2011 | A1 |
20110282745 | Meoded et al. | Nov 2011 | A1 |
20110282906 | Wong | Nov 2011 | A1 |
20110307786 | Shuster | Dec 2011 | A1 |
20110307919 | Weerasinghe | Dec 2011 | A1 |
20110307920 | Blanchard et al. | Dec 2011 | A1 |
20120004960 | Ma et al. | Jan 2012 | A1 |
20120005287 | Gadel et al. | Jan 2012 | A1 |
20120017141 | Eelen et al. | Jan 2012 | A1 |
20120062576 | Rosenthal et al. | Mar 2012 | A1 |
20120081389 | Dilts | Apr 2012 | A1 |
20120089911 | Hosking et al. | Apr 2012 | A1 |
20120094768 | McCaddon et al. | Apr 2012 | A1 |
20120110618 | Kilar et al. | May 2012 | A1 |
20120110620 | Kilar et al. | May 2012 | A1 |
20120134646 | Alexander | May 2012 | A1 |
20120147954 | Kasai et al. | Jun 2012 | A1 |
20120179970 | Hayes | Jul 2012 | A1 |
20120198412 | Creighton et al. | Aug 2012 | A1 |
20120263263 | Olsen et al. | Oct 2012 | A1 |
20120308206 | Kulas | Dec 2012 | A1 |
20130028573 | Hoofien et al. | Jan 2013 | A1 |
20130031582 | Tinsman et al. | Jan 2013 | A1 |
20130039632 | Feinson | Feb 2013 | A1 |
20130046847 | Zavesky et al. | Feb 2013 | A1 |
20130054728 | Amir et al. | Feb 2013 | A1 |
20130055321 | Cline et al. | Feb 2013 | A1 |
20130061263 | Issa et al. | Mar 2013 | A1 |
20130097643 | Stone et al. | Apr 2013 | A1 |
20130117248 | Bhogal et al. | May 2013 | A1 |
20130125181 | Montemayor et al. | May 2013 | A1 |
20130129308 | Karn et al. | May 2013 | A1 |
20130177294 | Kennberg | Jul 2013 | A1 |
20130188923 | Hartley et al. | Jul 2013 | A1 |
20130204710 | Boland et al. | Aug 2013 | A1 |
20130219425 | Swartz | Aug 2013 | A1 |
20130254292 | Bradley | Sep 2013 | A1 |
20130259442 | Bloch et al. | Oct 2013 | A1 |
20130282917 | Reznik et al. | Oct 2013 | A1 |
20130308926 | Jang et al. | Nov 2013 | A1 |
20130328888 | Beaver et al. | Dec 2013 | A1 |
20140019865 | Shah | Jan 2014 | A1 |
20140025839 | Marko et al. | Jan 2014 | A1 |
20140040273 | Cooper et al. | Feb 2014 | A1 |
20140040280 | Slaney et al. | Feb 2014 | A1 |
20140078397 | Bloch et al. | Mar 2014 | A1 |
20140082666 | Bloch et al. | Mar 2014 | A1 |
20140094313 | Watson et al. | Apr 2014 | A1 |
20140101550 | Zises | Apr 2014 | A1 |
20140126877 | Crawford et al. | May 2014 | A1 |
20140129618 | Panje et al. | May 2014 | A1 |
20140152564 | Gulezian et al. | Jun 2014 | A1 |
20140178051 | Bloch et al. | Jun 2014 | A1 |
20140186008 | Eyer | Jul 2014 | A1 |
20140194211 | Chimes et al. | Jul 2014 | A1 |
20140237520 | Rothschild et al. | Aug 2014 | A1 |
20140245152 | Carter et al. | Aug 2014 | A1 |
20140270680 | Bloch et al. | Sep 2014 | A1 |
20140282013 | Amijee | Sep 2014 | A1 |
20140282642 | Needham et al. | Sep 2014 | A1 |
20140380167 | Bloch et al. | Dec 2014 | A1 |
20150007234 | Rasanen et al. | Jan 2015 | A1 |
20150012369 | Dharmaji et al. | Jan 2015 | A1 |
20150015789 | Guntur et al. | Jan 2015 | A1 |
20150046946 | Hassell et al. | Feb 2015 | A1 |
20150058342 | Kim et al. | Feb 2015 | A1 |
20150067723 | Bloch et al. | Mar 2015 | A1 |
20150104155 | Bloch et al. | Apr 2015 | A1 |
20150179224 | Bloch et al. | Jun 2015 | A1 |
20150181301 | Bloch et al. | Jun 2015 | A1 |
20150185965 | Belliveau et al. | Jul 2015 | A1 |
20150195601 | Hahm | Jul 2015 | A1 |
20150199116 | Bloch et al. | Jul 2015 | A1 |
20150201187 | Ryo | Jul 2015 | A1 |
20150258454 | King et al. | Sep 2015 | A1 |
20150293675 | Bloch et al. | Oct 2015 | A1 |
20150294685 | Bloch et al. | Oct 2015 | A1 |
20150304698 | Redol | Oct 2015 | A1 |
20150331942 | Tan | Nov 2015 | A1 |
20160062540 | Yang et al. | Mar 2016 | A1 |
20160104513 | Bloch et al. | Apr 2016 | A1 |
20160105724 | Bloch et al. | Apr 2016 | A1 |
20160132203 | Seto et al. | May 2016 | A1 |
20160170948 | Bloch | Jun 2016 | A1 |
20160173944 | Kilar et al. | Jun 2016 | A1 |
20160192009 | Sugio et al. | Jun 2016 | A1 |
20160217829 | Bloch et al. | Jul 2016 | A1 |
20160224573 | Shahraray et al. | Aug 2016 | A1 |
20160277779 | Zhang et al. | Sep 2016 | A1 |
20160303608 | Jossick | Oct 2016 | A1 |
20170062012 | Bloch et al. | Mar 2017 | A1 |
20170142486 | Masuda | May 2017 | A1 |
20170178409 | Bloch et al. | Jun 2017 | A1 |
20170178601 | Bloch et al. | Jun 2017 | A1 |
20170289220 | Bloch et al. | Oct 2017 | A1 |
20170295410 | Bloch et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2639491 | Mar 2010 | CA |
004038801 | Jun 1992 | DE |
10053720 | Apr 2002 | DE |
0965371 | Dec 1999 | EP |
1033157 | Sep 2000 | EP |
2104105 | Sep 2009 | EP |
2359916 | Sep 2001 | GB |
2428329 | Jan 2007 | GB |
2008005288 | Jan 2008 | JP |
20040005068 | Jan 2004 | KR |
20100037413 | Apr 2010 | KR |
WO-1996013810 | May 1996 | WO |
WO-2000059224 | Oct 2000 | WO |
WO-2007062223 | May 2007 | WO |
WO-2007138546 | Dec 2007 | WO |
WO-2008001350 | Jan 2008 | WO |
WO-2008052009 | May 2008 | WO |
WO-2008057444 | May 2008 | WO |
WO-2009137919 | Nov 2009 | WO |
Entry |
---|
An ffmpeg and SDL Tutorial, “Tutorial 05: Synching Video,” Retrieved from Internet on Mar. 15, 2013: <http://dranger.com/ffmpeg/tutorial05.html> (4 pages). |
Archos Gen 5 English User Manual Version 3.0, Jul. 26, 2007, p. 1-81. |
Bartlett, “iTunes 11: How to Queue Next Song,” Technipages, Oct. 6, 2008, pp. 1-8, Retrieved from the Internet on Dec. 26, 2013, http://www.technipages.com/itunes-queue-next-song.html. |
International Search Report and Written Opinion for International Patent Application PCT/IB2013/001000 dated Jul. 31, 2013 (11 pages). |
International Search Report for International Application PCT/IL2010/000362 dated Aug. 25, 2010 (6 pages). |
International Search Report for International Patent Application PCT/IL2012/000080 dated Aug. 9, 2012 (4 pages). |
International Search Report for International Patent Application PCT/IL2012/000081 dated Jun. 28, 2012 (4 pages). |
Labs.byHook: “Ogg Vorbis Encoder for Flash: Alchemy Series Part 1,” Retrieved from Internet on on Dec. 17, 2012: URL:http://labs.byhook.com/2011/02/15/ogg-vorbis-encoder-for-flash-alchem- y-series-part-1/, 2011, 6 pages. |
Miller, Gregor et al., “MiniDiver: A Novel Mobile Media Playback Interface for Rich Video Content on an iPhoneTM”, Entertainment Computing A ICEC 2009, Sep. 3, 2009, pp. 98-109. |
Sodagar, I., “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE Multimedia, IEEE Service Center, New York, NY US, (2011) 18(4): 62-67. |
Supplemental European Search Report for EP13184145 dated Jan. 30, 2014 (5 pages). |
Supplemental European Search Report for EP10774637.2 (PCT/IL2010/000362) dated Jun. 28, 2012 (6 pages). |
Yang, H, et al., “Time Stamp Synchronization in Video Systems,” Teletronics Technology Corporation, <http://www.ttcdas.com/products/daus_encoders/pdf/_tech_papers/tp_2010_time_stamp_video_system.pdf>, Abstract, (8 pages). |
Number | Date | Country | |
---|---|---|---|
20170374120 A1 | Dec 2017 | US |