This invention relates generally to touch-sensitive displays, and more specifically to a new and useful dynamic tactile interface in the field of touch-sensitive displays.
The following description of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Dynamic Tactile Interface
As shown in
2. Applications
The dynamic tactile interface includes a fluid compensation device 170 that adjusts the configuration of the displacement device 160 in response to a change in the volume of fluid within a fluid circuit defined by the fluid vessel 140, the fluid channels, and the dynamic tactile layer 110. Generally, the dynamic tactile interface functions to compensate for fluid losses from the fluid circuit by adjusting a volume of the fluid circuit. The fluid compensation device adjusts the volume of the fluid circuit so that the displacement device can consistently transition the deformable region 118 between a retracted setting at a consistent height in an expanded setting at a second consistent height and maintains a consistent fluid pressure within the fluid circuit in order to prevent evaporation of the fluid, which causes the formation of bubbles.
The dynamic tactile interface functions as a tactilely dynamic interface surface for a device to provide intermittent tactile guidance to an input region on the device. For example, the dynamic tactile interface can be integrated or applied over a touchscreen of a mobile computing device to provide tactile guidance to a user interacting with the touchscreen to control the device. In one implementation, the deformable region 118 is planar or flush with the first region in the retracted setting and is raised above the first region to define a tactilely distinguishable feature on the tactile surface in the expanded setting. In this implementation, the deformable region 118 can coincide with (i.e. be arranged over) an input key rendered on a display of the device such that the deformable region 118 mimics a raised key in the expanded setting, thus tactilely guiding entry of the corresponding input key into a touch sensor of the device by a user. The deformable region 118 can then be retracted to yield a flush, smooth, and/or continuous surface and substantially minimal optical distortion across the first region 115 and the deformable region 118. For example, the displacement device 160 can transition the deformable region 118 into the expanded setting when the user is providing an input or has been prompted to provide an input to the touchscreen, such as with a finger, stylus, or any other suitable input object. Thus, the displacement device 160 can transition the deformable region 118 back to the retracted setting when the user is no longer providing an input to the touchscreen such that the tactile surface is substantially flush with the first region, thereby yielding reduced optical distortion of an image output by the display and transmitted through the tactile layer 110.
In particular, the dynamic tactile interface can incorporate a dynamic tactile layer 110 as described in U.S. patent application Ser. Nos. 11/969,848, 13/414,589, 13/456,010, 13/456,031, 13/465,737, and 13/465,772 and additional components to compensate for fluid loss from the fluid vessel 140 and the dynamic tactile layer 110 over time. For example, fluid displaced by the displacement device 160 to expand and retract one or more deformable regions within the dynamic tactile layer 110 can be absorbed into a substrate or a tactile layer 110 of the dynamic tactile layer 110 over time, thereby reducing a total volume of fluid available to the system over time (e.g., over several days, weeks, or months). The fluid channels, the fluid conduits, the fluid vessel 140, and the displacement device 160 of the dynamic tactile interface can cooperate to define a fluid circuit, and the total volume of available fluid within the fluid circuit of the dynamic tactile interface can thus decrease over time, thereby changing a maximum height, stiffness, or size of a deformable region 118 in the expanded setting, thereby yielding optical aberrations in the dynamic tactile layer 110, or producing other non-desirable tactile or visual changes within the dynamic tactile interface as fluid is pumped into the dynamic tactile layer 110 to expand one or more deformable regions. Such changes may adversely affect optical clarity or tactile feel of the dynamic tactile layer 110 and may therefore adversely affect the viewing experience of a user viewing an image rendered on a display behind the dynamic tactile layer 110 or the tactile experience of a user while interacting with a “button” (i.e. a deformable region 118 in the expanded setting) of the dynamic tactile interface. Thus, the compensation device 170 and the fluid vessel 140 can cooperate with the displacement device 160 to alter the effective volume and of, therefore, the effective pressure within the fluid circuit over time to compensate for fluid loss due to evaporation to ambient, absorption into the dynamic tactile layer 110 (and/or other components of the dynamic tactile interface), slow leakage from the fluid circuit, etc.
In order to retract the deformable region 118 from the expanded setting to the retracted setting, the displacement device 160 can draw fluid from the dynamic tactile interface layer into a fluid vessel 140. At an initial time, the fluid circuit, which includes the fluid channels, fluid conduits, fluid vessel 140, and dynamic tactile interface layer, contains an initial volume of fluid at an initial pressure. Over time, fluid loss yields a smaller volume of fluid within the fluid circuit. When the displacement device 160 draws fluid back into the fluid vessel 140 to retract the deformable region 118, at the initial time, the displacement device 160 can return a constant volume of fluid from the fluid channel back to the fluid vessel 140. However, when fluid is lost from the fluid circuit due to absorption, evaporation, and/or leakage and the volume of the fluid within the fluid circuit thus decreases, the act of drawing a constant volume of fluid back into the fluid vessel 140 may yield a new pressure within the fluid vessel 140 lower than the initial pressure within the fluid vessel 140. The new lower pressure in combination with the same ambient temperature may thus cause dissolved gas in the fluid to come out of solution Boiling of fluid within the fluid circuit can cause the formation of bubbles in the fluid, which can cause optical aberrations, yield inefficient expansion and retraction of the deformable region 118, affect the lifespan of the constituent hardware of the dynamic tactile interface device, etc.
3. Displacement Device
The dynamic tactile interface incorporates a displacement device actuated as described in U.S. Patent Application No. 61/727,083, which is incorporated in its entirety by this reference. The displacement device 160 includes a fluid vessel 140 that contains fluid and an actuator that displaces fluid to and from the fluid vessel 140. In particular the displacement device 160 of the dynamic tactile interface displaces fluid from the fluid vessel 140 into the dynamic tactile layer 110 to transition a deformable region 118 from the retracted setting into the expanded setting and displaces fluid out of the dynamic tactile layer no to transition the deformable region 118 from the expanded setting into the retracted setting. Generally, the displacement device 160 functions to control a vertical position of one or more deformable regions of the dynamic tactile layer no by pumping fluid into and out of the dynamic tactile layer no, thereby modulating fluid pressure within the dynamic tactile layer no to expand and retract one or more deformable regions, such as described in U.S. patent application Ser. Nos. 11/969,848, 13/414,589, 13/456,010, 13/456,737, 13/465,772, which are herein incorporated in their entireties by this reference.
In one implementation, the displacement device 160 is coupled to an elongated tubular fluid vessel 140 with a flexible and substantially impermeable membrane and an actuator that twists the tubular fluid vessel 140 to displace fluid out of the fluid vessel 140 and into the dynamic tactile layer 110, such as described in U.S. patent application Ser. No. 14/081,519, which is incorporated herein in its entirety by this reference. Subsequently, to return fluid from the dynamic tactile layer 110 back into the fluid vessel 140, the actuator can return to an initial state, and, through its resilience, the fluid vessel 140 can transition back to its initial form, thereby drawing a vacuum within the fluid circuit to draw fluid out of the dynamic tactile layer 110 back into the fluid vessel 140.
In another implementation, the displacement device 160 is coupled to an elongated fluid vessel 140 including a flexible and substantially impermeable membrane and an actuator that runs along the axis of the elongated fluid vessel 140 to displace fluid out of the fluid vessel 140, such as described in U.S. Patent Application No. 61/907,534, which is incorporated in its entirety by this reference. The actuator displaces fluid by applying pressure on the membrane of the elongated fluid vessel 140. The pressure displaces fluid from the elongated fluid vessel 140 by modifying the external pressure surrounding the fluid vessel 140. Alternatively, the displacement device actuator can apply pressure directly to the fluid in the fluid vessel 140 displacing the fluid itself rather than a membrane directly surrounding the fluid. For example, the displacement device 160 can include an actuator coupled to a pair of platens, and the fluid vessel 140 can be sandwiched between the pair of platens such that actuation of the actuator compresses the fluid vessel 140 to displace fluid into the fluid channel. Alternatively, the displacement device 160 can include an actuator coupled to a single platen such that the fluid vessel 140 can be sandwiched between the platen and an interior surface of a chamber that houses the displacement device 160. A user interfacing with the displacement device 160 can press, move, and/or rotate the platen to press the fluid vessel 140 against the interior surface, and the increased external pressure of the platen on the fluid vessel 140 can cause displacement of the fluid from the fluid vessel 140 into the dynamic tactile interface layer.
In an example implementation of the displacement device 160, the actuator includes a piston coupled to a lever or other actuation mechanism suitable to drive the piston to compress the elongated fluid vessel 140 in a direction toward an opening in the fluid vessel 140, thereby emitting fluid from the fluid vessel 140, and the actuator can drive the piston away from the opening to receive fluid back into the fluid vessel 140. For example, the opening in the fluid vessel 140 can be coupled to a fluid channel that leads to the dynamic tactile interface layer.
However, the displacement device 160 (e.g., the fluid vessel 140 and the actuator) can be of any other form and can be actuated in any other suitable way to pump fluid between the dynamic tactile layer no and the fluid vessel 140.
4. Fluid Compensation Device
The fluid compensation device 170 of the dynamic tactile interface is coupled to the displacement device 160 and adjusts a configuration of the displacement device 160 in response to a change in a volume of fluid contained within the fluid vessel 140.
4.1 Modifying Effective Volume of Fluid Vessel
In one implementation, the fluid compensation device 170 enables a user to compensate for fluid lost from the fluid circuit by manually modifying the volume of the fluid vessel 140. In particular, in the event that fluid is lost from the fluid circuit due to evaporation, absorption, and/or leakage, etc., the reduced volume of fluid may cause a drop in fluid pressure within the fluid circuit, and the fluid compensation device 170 can therefore reduce the volume of the fluid circuit by compressing the fluid vessel 140, thereby reducing the volume of the fluid vessel 140, to return the fluid circuit to an initial (or previous) fluid pressure. For example, the fluid compensation device 170 can reduce the volume of the fluid circuit (e.g., the fluid vessel 140, the fluid channels, and the dynamic tactile layer no) by a magnitude proportional to the volume of fluid loss, thereby causing the fluid pressure within the fluid circuit to rise, such as to match ambient pressure for the deformable region in the retracted setting.
In one example, the fluid compensation device can compensate for fluid loss from the fluid circuit by compressing the fluid vessel 140, causing the volume of the fluid vessel 140 to decrease by a volume proportional to the volume of fluid loss. As shown in
In a similar example, the compensation device includes a bladder that surrounds the fluid vessel 140. By increasing the volume of the bladder, the inner diameter of the bladder contracts around the outer diameter of the fluid vessel 140, thereby reducing the volume of the fluid vessel 140 and raising the pressure within the fluid vessel 140 (and, therefore, within the fluid circuit). Thus, the compensation device can maintain the pressure within the fluid circuit, preventing boiling of the fluid due to lower pressure within the fluid circuit due to a decreased fluid volume therein.
In another implementation, the fluid compensation device 170 compensates for fluid loss from the fluid circuit by reducing the volume of the fluid vessel 140 and/or the volume of the fluid circuit by implementing stop gates that prevent fluid from flowing into a portion of the fluid vessel 140, and/or blocking off a portion of the fluid vessel 140 to fluid flow. As shown in
In one example of the foregoing implementation, the compensation device 170 includes a fluid-tight gate and a pump, which can displace fluid from one side of the fluid-tight gate to the opposite side, that are coupled to the fluid vessel 140 with a substantially rigid membrane. The fluid-tight gates can hinge from an interior surface of the fluid vessel 140 and lock into place, thereby preventing the flow of fluid passed the gate. The fluid-tight hinge gates can lie substantially flush with the interior surface of the fluid vessel 140 when not used to define the active volume of the fluid vessel. The fluid tight gates can be situated at intervals along the length of the fluid vessel 140 so that the gates can be deployed to set a desired volume of the fluid vessel 140, such as to compensate for previous fluid loss from the fluid circuit. For example, the gate that can reduce the volume of the fluid vessel 140 (e.g., the gate nearest the end of an elongate fluid vessel 140 that is opposite the end of the fluid vessel 140 coupled to the fluid channel) can deploy first. As the fluid circuit loses more fluid, gates that reduce the volume of the fluid vessel can be deployed.
Alternatively, the fluid-tight gate can include a barrier of substantially the same size and shape as the inner size and shape of the fluid vessel 140. A seal (e.g., an o-ring) can be arranged about a perimeter of the fluid-tight gate to seal the fluid tight gate against the interior surface of the fluid vessel. For example, a first gate that can be set to a new position closer to a second (fixed or movable) gate within the fluid vessel 140 to reduce the total effective volume of the fluid vessel 140. As additional fluid is lost from the fluid circuit over time, the first gate can be manually shifted closer to the second gate, thereby further reducing the effective volume of the fluid vessel to compensate for fluid loss over time. The fluid-tight gate can lock into place with a shaft, pin, ratchet, detent, or other suitable locking mechanism. Alternatively, the seal can apply sufficient friction on the interior wall of the fluid vessel 140 to prevent the gate from moving from a set location. For example, the seal can be hydraulically or pneumatically deflated to allow the gate to slide to a desired location when the seal is substantially deflated and inflated to lock the gate in place due to frictional contact between the seal and the interior wall of the fluid vessel 140. The pump can be a manually-operated hand pump and can pump air or any other suitable fluid into an active portion of the fluid vessel 140, from which fluid flows into the fluid circuit, from an inactive portion of the fluid vessel 140 on a side of the fluid-tight gate opposite the active portion of the fluid vessel 140. Alternatively, the pump can include any other pump suitable for displacing fluid into the fluid vessel 140, such as an automatic and/or electro-mechanically actuated pump. In order to compensate for fluid loss, the compensation device can pump air or any other suitable fluid into the fluid vessel 140 through the pump, thereby displacing the fluid of the fluid circuit into the desired, and now reduced, portion of the fluid vessel 140. Alternatively, compensation device can displace fluid from a portion of the fluid vessel 140 into which the gate prevents fluid flowing into a portion of the fluid vessel 140 from which the fluid flows to and from the rest of the fluid circuit.
In another implementation, the compensation device can include a contraction device, such as a band, belt, strap, clamp, etc., that contracts the fluid vessel 140 and/or displaces fluid out of a portion of the fluid vessel 140, thereby reducing the volume of the fluid vessel 140 and, therefore, the volume of the fluid circuit. The contraction device can wrap around all or a portion of the fluid vessel 140. In this implementation, the fluid vessel 140 can include a malleable membrane that can contract to reduce the volume of the fluid vessel 140 to compensate for the reduced volume of the fluid within the fluid vessel 140. The compensation device can include a set of contraction devices of various fixed sizes, inner diameters, and/or any other contraction dimensions that define various sizes to which the fluid vessel 140 can be contracted. In order to vary the magnitude of fluid compensation, the compensation device can include a device that selects from the set of contraction devices the size a particular contraction device required to compensate for a current state of fluid loss and that places the particular contraction device in a position to contract the fluid vessel to the desired volume. Alternatively, each contractive device in the set of contraction devices can be selected manually by a user and applied to the fluid vessel 140 to achieve the desired fluid vessel volume 140. Yet, alternatively, the contraction device can be actuated by a compensation device actuator, which alters the contraction size of the compensation device 170. Thus, as the fluid loss from the fluid circuit increases, the contraction size can vary according to the variable volume of fluid within the fluid circuit.
In one example, the compensation device include a sleeve with an inner diameter approximately that of the outer diameter of a collapsed membrane of the fluid vessel 140 when fluid has been displaced from the portion of the fluid vessel 140 over which the sleeve is situated. Thus, when an actuator or a user slides the sleeve over the fluid vessel 140, fluid is displaced from the portion of the fluid vessel 140, over which the sleeve is situated. For example, the contraction device can function like a peristaltic mechanism using a sleeve of a small fixed inner diameter and moving the sleeve along the length of an elongated fluid vessel, the sleeve displaces fluid and resists the flow of fluid from the portion of the fluid vessel on one side of the sleeve to the portion of the fluid vessel on the opposite side of the sleeve, thereby reducing an effective volume of the fluid vessel. An actuator moves the sleeve from an end of the fluid vessel 140 opposite the end of the fluid vessel 140 coupled to the fluid channel of the dynamic tactile layer. By moving the sleeve from an end of the fluid vessel 140 toward the opposite end of the fluid vessel 140, the sleeve closes off a portion of the fluid vessel 140, and blocks fluid flow back into this portion of the fluid vessel 140. Thus, in this example, a fixed-size contraction device can couple to the fluid vessel to reduce the volume of the fluid vessel 140.
4.2 Modifying Range of Displacement Device
In another implementation, the compensation device compensates for fluid loss by modifying actuation of the displacement device 160. In this implementation, at an initial time, the fluid circuit is filled with a first volume of fluid and the displacement device 160 is calibrated to define initial and final actuator positions. In particular, the deformable region can be substantially flush with the first region of the tactile layer when the displacement device 160 is in the initial actuator position, and the deformable region can be consistently offset above the first region by a target distance when the displacement device 160 is in the final actuator position. The displacement device can thus displace a target volume of fluid as required to provide a predetermined amount of deformation (i.e., expansion) of the deformable region 118, such as to a desired height above the first region of the tactile layer. Over time, the volume of fluid within the fluid circuit decreases due to evaporation, absorption, leakage, or other fluid losses from the fluid circuit, and thus the initial calibrated displacement of the displacement device 160 from the first actuator position to the second actuator position no longer achieves the target offset height of the deformable region given such fluid loss. In order to again obtain the desired deformation of the deformable region 118 and displacement of the target volume of fluid, the compensation device can alter the initial position, the final position, and/or the calibrated distance between the initial and final positions of the displacement device. In particular, the compensation device can compensate for fluid loss by changing the initial and final position of the displacement device actuator.
In one example, the displacement device can include a slide actuator that moves along a substantially linear path (as shown in
In the foregoing example, the compensation device 170 can include a device that dictates the initial position and final position of a linear slide actuator, such as stops or gates arranged along track that define a range for the slide actuator, such as shown in
In the foregoing example, the compensation device can additionally or alternatively include a nut that defines the bounds of the displacement device movement by threading onto a lead screw, which runs through a hole in the displacement device 160. As shown in
In another example similar to the foregoing, the compensation device includes a rotary displacement device slide actuator that rotates about a central axis. As shown in
In a similar example, the compensation device 170 includes a clutch that functions to provide tactile indications notifying a user of the location of the boundaries of the displacement device movement rather than defined boundaries that substantially prevent the user from moving the displacement device beyond the boundaries defined by the compensation device. The clutch can provide feedback to a user operating the displacement device 160 in the form of a click, beep, etc. to indicate the boundaries of the displacement device 160. A user can move the displacement device beyond the boundaries defined by the clutch. However, tactile indicators can indicate to the user the location of the boundaries and may not substantially resist movement beyond the boundaries. The compensation device can alter the location of the boundaries indicated by the clutch such that the compensation device alters the initial and final positions of the displacement device.
In another example, the compensation device 170 can includes a device that changes the displacement distance of the slide actuator by altering the final position of the displacement device and maintaining the initial position. The slide actuator can travel a greater distance than the initial calibrated displacement distance in order to displace the required volume of fluid. In this implementation, the compensation device 170 can maintain the initial position of the displacement device 160 and vary the final position of the displacement device 160 as required to maintain the volume required to transition the deformable region 118. In this example, the displacement distance changes by defining a new final position of the displacement device and maintaining the initial position.
In another implementation, the compensation device 170 can include a ratcheting device that indexes a gear set in order to alter the effective volume of the fluid circuit or shift the range of the displacement device with each actuation of the displacement device. The ratcheting device can be coupled to the displacement device such that, over time, the ratcheting device restricts the movement of the displacement device. As shown in
In another example, additionally or alternatively, the compensation device 170 can include a device coupled to the displacement device 160 that deposits material, such as graphite, oil, glass, etc., that, overtime, substantially restricts the movement of the displacement device 160. The compensation device 170 of this implementation can thus deposit material on the track on which the slide actuator slides, such that the deposits alter the initial and final position of the displacement device actuator, and a rate at which the compensation device thus deposits material can corresponds to a rate at which fluid is lost from the fluid circuit. The displacement device can deposit material automatically or following an event, wherein the user indicates the displacement device can deposit material in order to restrict the movement of the displacement device. For example, the displacement device can include a chamber that contains graphite. The chamber can include a port that remains closed until the user actuates the port open with a switch coupled to the displacement device and a cover arranged over the port. When the port is open, graphite within the chamber can exit the chamber, thereby depositing material on the track on which the slide actuator slides.
In another example, the fluid vessel 140 includes a tube with a first end coupled to a substrate, and the displacement device 160 includes a rotary actuator 170 coupled to the second end of the tube which is remote from the first end, the rotary actuator able to adjust the volume of the fluid vessel 140 by winding the tube to decrease the volume of the tube. The decreased volume resulting from rotating the rotary actuator 170 can directly correlate to the volume of fluid lost over a period of time in the fluid circuit.
For example, in this variation, the fluid vessel 140 of the dynamic tactile interface includes a tube including a first end and a second end opposite the first end, the first end constrained and defining an outlet, and a cap coupled to the second end of the tube. In this example, the volume of fluid 170 is arranged within the tube 341. Furthermore, the displacement device 140 includes: a rotary actuator 170 including an output shaft 146 coupled to the second end of the tube and configured to wind the tube to displace a portion of the volume of fluid from the tube. The actuator can be coupled to the tube and configured to change the volume of the tube in response to a loss of fluid by winding the tube to reduce the volume of fluid by an amount correlating to the loss of fluid.
The winding of the tube can be achieved by rotating a dial coupled to the remote end of the tube, the dial coupled to the tube through a circular jagged edge, the jagged edge of the dial conforming to and configured to engage a jagged edge of the remote end of the tube. When at rest, the dial and remote end of the tube are resting flush against each other. As the dial with the jagged edge is rotated, it will momentarily be forced away from the remote end of the tube as the jagged edges or teeth of the dial and tube end are not aligned. Once the dial and tube end are aligned, the dial will again rest flush with the remote end of the tube after causing a wind in the tube. The jagged edge keeps the dial in place, and the tube winding in place, counteracting any unwinding force applied to the dial by the tube. The displacement device 160 may also include a mechanism, such as a spring coupled to the dial actuator, configured to retract the actuator along a linear track and unwind the tube. In the example using a spring, the spring can be configured to balance a torque applied by the tube to an output shaft of the rotary actuator. The stored energy of the spring may slowly and automatically, and passively, compress the bladder. In an implementation, other mechanisms may be used, including a button. In an implementation using a button, the button may be physically depressed by a user to reset the winding/reservoir system, unwinding the tube, but would also reset the spring. By resetting the spring, the button would compress the spring to store energy that could be used to compress a bladder or otherwise reduce the volume of the fluid circuit. Thus, the mechanical action of a person depressing a button may be used to reset the spring as well as rest the winding in the tube. The mechanical action could be performed using other mechanisms as well, such as for example a slider that, when slid, would reset the spring as well as rest the winding in the tube. The dynamic tactile interface may incorporates a displacement device actuating a tube as described in U.S. patent application Ser. No. 14/081,519, which is incorporated in its entirety by this reference.
At an initial time, the rotary actuator 170 is calibrated to displace the volume of fluid required to expand the deformable region 118, for example, with minimal or no windings in a tube that implements fluid vessel 140. However, at a subsequent time after the initial time, if the volume of fluid has decreased due to fluid losses, the volume of fluid in the fluid vessel and throughout the dynamic tactile interface fluid circuit will decrease. As shown in
In an implementation, the dynamic tactile interface may include a visual indicator. The visual indicator may indicate when fluid has been lost within the fluid circuit of the dynamic tactile interface, signaling that a user should engage an actuator to adjust the volume of a fluid vessel to compensate for the fluid loss, thereby allowing the actuator to property displace fluid to expand the deformable region 118 to an expanded setting and retract the deformable region 118 to a retracted setting. As shown in
The visual indicator can be positioned within an optically transparent portion of the tube, wherein a user may see a first visual indication of the fluid volume within the tube when the tube is full of fluid and a second visual indication of the fluid volume within the tube when the tube is not full of fluid, such that, as shown in
For example, while pressing the fluid adjustment button 176 and watching the visual indicator, a user may gradually see a visual indicator disappear or otherwise indicate that the dynamic tactile interface is property calibrated. Depression of the fluid adjustment button by a user allows for the fluid vessel volume to be adjusted, where the adjustment is caused by a spring that pushes a fluid vessel actuator or cap to decrease the volume of the fluid vessel while the volume adjustment button is depressed, the visual indicator transitioning from the second visual indicator to the first indicator when the volume adjustment button is depressed while the visual indicator provides a second visual indication.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made in the foregoing embodiments of the invention without departing from the scope of this invention as defined in the following claims.
The application claims the benefit of U.S. Provisional Patent Application No. 62/028,203, filed on 23 Jul. 2014, which is incorporated in its entirety by this reference. This application is related to U.S. patent application Ser. No. 11/969,848, filed on 4 Jan. 2008, U.S. patent application Ser. No. 13/414,589, filed 7 Mar. 2012, U.S. patent application Ser. No. 13/456,010, filed 25 Apr. 2012, U.S. patent application Ser. No. 13/456,031, filed 25 Apr. 2012, U.S. patent application Ser. No. 13/465,737, filed 7 May 2012, U.S. patent application Ser. No. 13/465,772, filed 7 May 2012, and U.S. Patent Application No. 61/727,083, filed on 15 Nov. 2012, all of which are incorporated in their entireties by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2885967 | Vogel | May 1959 | A |
3034628 | Wadey | May 1962 | A |
3441111 | Spalding | Apr 1969 | A |
3453967 | Durfee | Jul 1969 | A |
3490733 | Berthaud | Jan 1970 | A |
3659354 | Sutherland | May 1972 | A |
3759108 | Borom et al. | Sep 1973 | A |
3780236 | Gross | Dec 1973 | A |
3818487 | Brody et al. | Jun 1974 | A |
4109118 | Kley | Aug 1978 | A |
4181476 | Malbec | Jan 1980 | A |
4209819 | Seignemartin | Jun 1980 | A |
4290343 | Gram | Sep 1981 | A |
4307268 | Harper | Dec 1981 | A |
4467321 | Volnak | Aug 1984 | A |
4477700 | Balash et al. | Oct 1984 | A |
4517421 | Margolin | May 1985 | A |
4543000 | Hasenbalg | Sep 1985 | A |
4584625 | Kellogg | Apr 1986 | A |
4700025 | Hatayama et al. | Oct 1987 | A |
4743895 | Alexander | May 1988 | A |
4772205 | Chlumsky et al. | Sep 1988 | A |
4920343 | Schwartz | Apr 1990 | A |
4940734 | Ley et al. | Jul 1990 | A |
4980646 | Zemel | Dec 1990 | A |
5090297 | Paynter | Feb 1992 | A |
5194852 | More et al. | Mar 1993 | A |
5195659 | Eiskant | Mar 1993 | A |
5212473 | Louis | May 1993 | A |
5222895 | Fricke | Jun 1993 | A |
5286199 | Kipke | Feb 1994 | A |
5346476 | Elson | Sep 1994 | A |
5369228 | Faust | Nov 1994 | A |
5412189 | Cragun | May 1995 | A |
5459461 | Crowley et al. | Oct 1995 | A |
5470212 | Pearce | Nov 1995 | A |
5488204 | Mead et al. | Jan 1996 | A |
5496174 | Garner | Mar 1996 | A |
5666112 | Crowley et al. | Sep 1997 | A |
5717423 | Parker | Feb 1998 | A |
5729222 | Iggulden et al. | Mar 1998 | A |
5742241 | Crowley et al. | Apr 1998 | A |
5754023 | Roston et al. | May 1998 | A |
5766013 | Vuyk | Jun 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5835080 | Beeteson et al. | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5917906 | Thornton | Jun 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5977867 | Blouin | Nov 1999 | A |
5982304 | Selker et al. | Nov 1999 | A |
6067116 | Yamano et al. | May 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6154201 | Levin et al. | Nov 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6169540 | Rosenberg et al. | Jan 2001 | B1 |
6187398 | Eldridge | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6218966 | Goodwin et al. | Apr 2001 | B1 |
6243074 | Fishkin et al. | Jun 2001 | B1 |
6243078 | Rosenberg | Jun 2001 | B1 |
6268857 | Fishkin et al. | Jul 2001 | B1 |
6271828 | Rosenberg et al. | Aug 2001 | B1 |
6278441 | Gouzman et al. | Aug 2001 | B1 |
6300937 | Rosenberg | Oct 2001 | B1 |
6310614 | Maeda et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6337678 | Fish | Jan 2002 | B1 |
6354839 | Schmidt et al. | Mar 2002 | B1 |
6356259 | Maeda et al. | Mar 2002 | B1 |
6359572 | Vale | Mar 2002 | B1 |
6366272 | Rosenberg et al. | Apr 2002 | B1 |
6369803 | Brisebois et al. | Apr 2002 | B2 |
6384743 | Vanderheiden | May 2002 | B1 |
6414671 | Gillespie et al. | Jul 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6437771 | Rosenberg et al. | Aug 2002 | B1 |
6462294 | Davidson et al. | Oct 2002 | B2 |
6469692 | Rosenberg | Oct 2002 | B2 |
6486872 | Rosenberg et al. | Nov 2002 | B2 |
6498353 | Nagle et al. | Dec 2002 | B2 |
6501462 | Garner | Dec 2002 | B1 |
6509892 | Cooper et al. | Jan 2003 | B1 |
6529183 | MacLean et al. | Mar 2003 | B1 |
6573844 | Venolia et al. | Jun 2003 | B1 |
6636202 | Ishmael et al. | Oct 2003 | B2 |
6639581 | Moore et al. | Oct 2003 | B1 |
6655788 | Freeman | Dec 2003 | B1 |
6657614 | Ito et al. | Dec 2003 | B1 |
6667738 | Murphy | Dec 2003 | B2 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6683627 | Ullmann et al. | Jan 2004 | B1 |
6686911 | Levin et al. | Feb 2004 | B1 |
6697086 | Rosenberg et al. | Feb 2004 | B2 |
6700556 | Richley et al. | Mar 2004 | B2 |
6703924 | Tecu et al. | Mar 2004 | B2 |
6743021 | Prince et al. | Jun 2004 | B2 |
6788295 | Inkster | Sep 2004 | B1 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6850222 | Rosenberg | Feb 2005 | B1 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6877986 | Fournier et al. | Apr 2005 | B2 |
6881063 | Yang | Apr 2005 | B2 |
6930234 | Davis | Aug 2005 | B2 |
6937225 | Kehlstadt et al. | Aug 2005 | B1 |
6975305 | Yamashita | Dec 2005 | B2 |
6979164 | Kramer | Dec 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
6995745 | Boon et al. | Feb 2006 | B2 |
7004655 | Ferrara | Feb 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7027032 | Rosenberg et al. | Apr 2006 | B2 |
7056051 | Fiffie | Jun 2006 | B2 |
7061467 | Rosenberg | Jun 2006 | B2 |
7064655 | Murray et al. | Jun 2006 | B2 |
7079111 | Ho | Jul 2006 | B2 |
7081888 | Cok et al. | Jul 2006 | B2 |
7096852 | Gregorio | Aug 2006 | B2 |
7102541 | Rosenberg | Sep 2006 | B2 |
7104152 | Levin et al. | Sep 2006 | B2 |
7106305 | Rosenberg | Sep 2006 | B2 |
7106313 | Schena et al. | Sep 2006 | B2 |
7109967 | Hioki et al. | Sep 2006 | B2 |
7112737 | Ramstein | Sep 2006 | B2 |
7113166 | Rosenberg et al. | Sep 2006 | B1 |
7116317 | Gregorio et al. | Oct 2006 | B2 |
7124425 | Anderson, Jr. et al. | Oct 2006 | B1 |
7129854 | Arneson et al. | Oct 2006 | B2 |
7131073 | Rosenberg et al. | Oct 2006 | B2 |
7136045 | Rosenberg et al. | Nov 2006 | B2 |
7138977 | Kinerk et al. | Nov 2006 | B2 |
7138985 | Nakajima | Nov 2006 | B2 |
7143785 | Maerkl et al. | Dec 2006 | B2 |
7144616 | Unger et al. | Dec 2006 | B1 |
7148875 | Rosenberg et al. | Dec 2006 | B2 |
7151432 | Tierling | Dec 2006 | B2 |
7151527 | Culver | Dec 2006 | B2 |
7151528 | Taylor et al. | Dec 2006 | B2 |
7154470 | Tierling | Dec 2006 | B2 |
7158112 | Rosenberg et al. | Jan 2007 | B2 |
7159008 | Wies et al. | Jan 2007 | B1 |
7161276 | Face | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7168042 | Braun et al. | Jan 2007 | B2 |
7176903 | Katsuki et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7191191 | Peurach et al. | Mar 2007 | B2 |
7193607 | Moore et al. | Mar 2007 | B2 |
7195170 | Matsumoto et al. | Mar 2007 | B2 |
7196688 | Schena | Mar 2007 | B2 |
7198137 | Olien | Apr 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7205981 | Cunningham | Apr 2007 | B2 |
7208671 | Chu | Apr 2007 | B2 |
7209028 | Boronkay et al. | Apr 2007 | B2 |
7209113 | Park | Apr 2007 | B2 |
7209117 | Rosenberg et al. | Apr 2007 | B2 |
7209118 | Shahoian et al. | Apr 2007 | B2 |
7210160 | Anderson, Jr. et al. | Apr 2007 | B2 |
7215326 | Rosenberg | May 2007 | B2 |
7216671 | Unger et al. | May 2007 | B2 |
7218310 | Tierling et al. | May 2007 | B2 |
7218313 | Marcus et al. | May 2007 | B2 |
7233313 | Levin et al. | Jun 2007 | B2 |
7233315 | Gregorio et al. | Jun 2007 | B2 |
7233476 | Goldenberg et al. | Jun 2007 | B2 |
7236157 | Schena et al. | Jun 2007 | B2 |
7245202 | Levin | Jul 2007 | B2 |
7245292 | Custy | Jul 2007 | B1 |
7249951 | Bevirt et al. | Jul 2007 | B2 |
7250128 | Unger et al. | Jul 2007 | B2 |
7253803 | Schena et al. | Aug 2007 | B2 |
7253807 | Nakajima | Aug 2007 | B2 |
7265750 | Rosenberg | Sep 2007 | B2 |
7280095 | Grant | Oct 2007 | B2 |
7283120 | Grant | Oct 2007 | B2 |
7283123 | Braun et al. | Oct 2007 | B2 |
7283696 | Ticknor et al. | Oct 2007 | B2 |
7289106 | Bailey et al. | Oct 2007 | B2 |
7289111 | Asbill | Oct 2007 | B2 |
7307619 | Cunningham et al. | Dec 2007 | B2 |
7308831 | Cunningham et al. | Dec 2007 | B2 |
7319374 | Shahoian | Jan 2008 | B2 |
7336260 | Martin et al. | Feb 2008 | B2 |
7336266 | Hayward et al. | Feb 2008 | B2 |
7339572 | Schena | Mar 2008 | B2 |
7339580 | Westerman et al. | Mar 2008 | B2 |
7342573 | Ryynaenen | Mar 2008 | B2 |
7355595 | Bathiche et al. | Apr 2008 | B2 |
7369115 | Cruz-Hernandez et al. | May 2008 | B2 |
7382357 | Panotopoulos et al. | Jun 2008 | B2 |
7390157 | Kramer | Jun 2008 | B2 |
7391861 | Levy | Jun 2008 | B2 |
7397466 | Bourdelais et al. | Jul 2008 | B2 |
7403191 | Sinclair | Jul 2008 | B2 |
7432910 | Shahoian | Oct 2008 | B2 |
7432911 | Skarine | Oct 2008 | B2 |
7432912 | Cote et al. | Oct 2008 | B2 |
7433719 | Dabov | Oct 2008 | B2 |
7453442 | Poynter | Nov 2008 | B1 |
7471280 | Prins | Dec 2008 | B2 |
7489309 | Levin et al. | Feb 2009 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7522152 | Olien et al. | Apr 2009 | B2 |
7545289 | Mackey et al. | Jun 2009 | B2 |
7548232 | Shahoian et al. | Jun 2009 | B2 |
7551161 | Mann | Jun 2009 | B2 |
7561142 | Shahoian et al. | Jul 2009 | B2 |
7567232 | Rosenberg | Jul 2009 | B2 |
7567243 | Hayward | Jul 2009 | B2 |
7589714 | Funaki | Sep 2009 | B2 |
7592999 | Rosenberg et al. | Sep 2009 | B2 |
7605800 | Rosenberg | Oct 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7659885 | Kraus et al. | Feb 2010 | B2 |
7671837 | Forsblad et al. | Mar 2010 | B2 |
7679611 | Schena | Mar 2010 | B2 |
7679839 | Polyakov et al. | Mar 2010 | B2 |
7688310 | Rosenberg | Mar 2010 | B2 |
7701438 | Chang et al. | Apr 2010 | B2 |
7728820 | Rosenberg et al. | Jun 2010 | B2 |
7733575 | Heim et al. | Jun 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7755602 | Tremblay et al. | Jul 2010 | B2 |
7808488 | Martin et al. | Oct 2010 | B2 |
7834853 | Finney et al. | Nov 2010 | B2 |
7843424 | Rosenberg et al. | Nov 2010 | B2 |
7864164 | Cunningham et al. | Jan 2011 | B2 |
7869589 | Tuovinen | Jan 2011 | B2 |
7890257 | Fyke et al. | Feb 2011 | B2 |
7890863 | Grant et al. | Feb 2011 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7924145 | Yuk et al. | Apr 2011 | B2 |
7944435 | Rosenberg et al. | May 2011 | B2 |
7952498 | Higa | May 2011 | B2 |
7956770 | Klinghult et al. | Jun 2011 | B2 |
7973773 | Pryor | Jul 2011 | B2 |
7978181 | Westerman | Jul 2011 | B2 |
7978183 | Rosenberg et al. | Jul 2011 | B2 |
7978186 | Vassallo et al. | Jul 2011 | B2 |
7979797 | Schena | Jul 2011 | B2 |
7982720 | Rosenberg et al. | Jul 2011 | B2 |
7986303 | Braun et al. | Jul 2011 | B2 |
7986306 | Eich et al. | Jul 2011 | B2 |
7989181 | Blattner et al. | Aug 2011 | B2 |
7999660 | Cybart et al. | Aug 2011 | B2 |
8002089 | Jasso et al. | Aug 2011 | B2 |
8004492 | Kramer et al. | Aug 2011 | B2 |
8013843 | Pryor | Sep 2011 | B2 |
8020095 | Braun et al. | Sep 2011 | B2 |
8022933 | Hardacker et al. | Sep 2011 | B2 |
8031181 | Rosenberg et al. | Oct 2011 | B2 |
8044826 | Yoo | Oct 2011 | B2 |
8047849 | Ahn et al. | Nov 2011 | B2 |
8049734 | Rosenberg et al. | Nov 2011 | B2 |
8059104 | Shahoian et al. | Nov 2011 | B2 |
8059105 | Rosenberg et al. | Nov 2011 | B2 |
8063892 | Shahoian et al. | Nov 2011 | B2 |
8063893 | Rosenberg et al. | Nov 2011 | B2 |
8068605 | Holmberg | Nov 2011 | B2 |
8077154 | Emig et al. | Dec 2011 | B2 |
8077440 | Krabbenborg et al. | Dec 2011 | B2 |
8077941 | Assmann | Dec 2011 | B2 |
8094121 | Obermeyer et al. | Jan 2012 | B2 |
8094806 | Levy | Jan 2012 | B2 |
8103472 | Braun et al. | Jan 2012 | B2 |
8106787 | Nurmi | Jan 2012 | B2 |
8115745 | Gray | Feb 2012 | B2 |
8116831 | Meitzler et al. | Feb 2012 | B2 |
8123660 | Kruse et al. | Feb 2012 | B2 |
8125347 | Fahn | Feb 2012 | B2 |
8125461 | Weber et al. | Feb 2012 | B2 |
8130202 | Levine et al. | Mar 2012 | B2 |
8144129 | Hotelling et al. | Mar 2012 | B2 |
8144271 | Han | Mar 2012 | B2 |
8154512 | Olien et al. | Apr 2012 | B2 |
8154527 | Ciesla et al. | Apr 2012 | B2 |
8159461 | Martin et al. | Apr 2012 | B2 |
8162009 | Chaffee | Apr 2012 | B2 |
8164573 | Dacosta et al. | Apr 2012 | B2 |
8166649 | Moore | May 2012 | B2 |
8169306 | Schmidt et al. | May 2012 | B2 |
8169402 | Shahoian et al. | May 2012 | B2 |
8174372 | Da Costa | May 2012 | B2 |
8174495 | Takashima et al. | May 2012 | B2 |
8174508 | Sinclair et al. | May 2012 | B2 |
8174511 | Takenaka et al. | May 2012 | B2 |
8178808 | Strittmatter | May 2012 | B2 |
8179375 | Ciesla et al. | May 2012 | B2 |
8179377 | Ciesla et al. | May 2012 | B2 |
8188989 | Levin et al. | May 2012 | B2 |
8195243 | Kim et al. | Jun 2012 | B2 |
8199107 | Xu et al. | Jun 2012 | B2 |
8199124 | Ciesla et al. | Jun 2012 | B2 |
8203094 | Mittleman et al. | Jun 2012 | B2 |
8203537 | Tanabe et al. | Jun 2012 | B2 |
8207950 | Ciesla et al. | Jun 2012 | B2 |
8212772 | Shahoian | Jul 2012 | B2 |
8217903 | Ma et al. | Jul 2012 | B2 |
8217904 | Kim | Jul 2012 | B2 |
8223278 | Kim et al. | Jul 2012 | B2 |
8224392 | Kim et al. | Jul 2012 | B2 |
8228305 | Pryor | Jul 2012 | B2 |
8232976 | Yun et al. | Jul 2012 | B2 |
8243038 | Ciesla et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8253703 | Eldering | Aug 2012 | B2 |
8279172 | Braun et al. | Oct 2012 | B2 |
8279193 | Birnbaum et al. | Oct 2012 | B1 |
8294557 | Saddik et al. | Oct 2012 | B1 |
8310458 | Faubert et al. | Nov 2012 | B2 |
8345013 | Heubel et al. | Jan 2013 | B2 |
8350820 | Deslippe et al. | Jan 2013 | B2 |
8362882 | Heubel et al. | Jan 2013 | B2 |
8363008 | Ryu et al. | Jan 2013 | B2 |
8367957 | Strittmatter | Feb 2013 | B2 |
8368641 | Tremblay et al. | Feb 2013 | B2 |
8378797 | Pance et al. | Feb 2013 | B2 |
8384680 | Paleczny et al. | Feb 2013 | B2 |
8390594 | Modarres et al. | Mar 2013 | B2 |
8390771 | Sakai et al. | Mar 2013 | B2 |
8395587 | Cauwels et al. | Mar 2013 | B2 |
8395591 | Kruglick | Mar 2013 | B2 |
8400402 | Son | Mar 2013 | B2 |
8400410 | Taylor et al. | Mar 2013 | B2 |
8547339 | Ciesla | Oct 2013 | B2 |
8570295 | Ciesla et al. | Oct 2013 | B2 |
8587541 | Ciesla et al. | Nov 2013 | B2 |
8587548 | Ciesla et al. | Nov 2013 | B2 |
8749489 | Ito et al. | Jun 2014 | B2 |
8856679 | Sirpal et al. | Oct 2014 | B2 |
8922503 | Ciesla et al. | Dec 2014 | B2 |
8922510 | Ciesla et al. | Dec 2014 | B2 |
8928621 | Ciesla et al. | Jan 2015 | B2 |
8970403 | Ciesla et al. | Mar 2015 | B2 |
9035898 | Ciesla | May 2015 | B2 |
9075429 | Karakotsios | Jul 2015 | B1 |
9116617 | Ciesla et al. | Aug 2015 | B2 |
9128525 | Yairi et al. | Sep 2015 | B2 |
9274612 | Ciesla et al. | Mar 2016 | B2 |
9274635 | Birnbaum | Mar 2016 | B2 |
9372539 | Ciesla et al. | Jun 2016 | B2 |
20010008396 | Komata | Jul 2001 | A1 |
20010043189 | Brisebois et al. | Nov 2001 | A1 |
20020063694 | Keely et al. | May 2002 | A1 |
20020104691 | Kent et al. | Aug 2002 | A1 |
20020106614 | Prince et al. | Aug 2002 | A1 |
20020110237 | Krishnan | Aug 2002 | A1 |
20020125084 | Kreuzer et al. | Sep 2002 | A1 |
20020149570 | Knowles et al. | Oct 2002 | A1 |
20020180620 | Gettemy et al. | Dec 2002 | A1 |
20030087698 | Nishiumi et al. | May 2003 | A1 |
20030117371 | Roberts et al. | Jun 2003 | A1 |
20030179190 | Franzen | Sep 2003 | A1 |
20030184517 | Senzui et al. | Oct 2003 | A1 |
20030206153 | Murphy | Nov 2003 | A1 |
20030223799 | Pihlaja | Dec 2003 | A1 |
20030234769 | Cross et al. | Dec 2003 | A1 |
20040001589 | Mueller et al. | Jan 2004 | A1 |
20040056876 | Nakajima | Mar 2004 | A1 |
20040056877 | Nakajima | Mar 2004 | A1 |
20040106360 | Farmer et al. | Jun 2004 | A1 |
20040114324 | Kusaka et al. | Jun 2004 | A1 |
20040164968 | Miyamoto | Aug 2004 | A1 |
20040178006 | Cok | Sep 2004 | A1 |
20050007339 | Sato | Jan 2005 | A1 |
20050007349 | Vakil et al. | Jan 2005 | A1 |
20050020325 | Enger et al. | Jan 2005 | A1 |
20050030292 | Diederiks | Feb 2005 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050073506 | Durso | Apr 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050162408 | Martchovsky | Jul 2005 | A1 |
20050164148 | Sinclair | Jul 2005 | A1 |
20050212773 | Asbill | Sep 2005 | A1 |
20050231489 | Ladouceur et al. | Oct 2005 | A1 |
20050253816 | Himberg et al. | Nov 2005 | A1 |
20050270444 | Miller et al. | Dec 2005 | A1 |
20050285846 | Funaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060053387 | Ording | Mar 2006 | A1 |
20060087479 | Sakurai et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060098148 | Kobayashi et al. | May 2006 | A1 |
20060118610 | Pihlaja et al. | Jun 2006 | A1 |
20060119586 | Grant et al. | Jun 2006 | A1 |
20060152474 | Saito et al. | Jul 2006 | A1 |
20060154216 | Hafez et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060214923 | Chiu et al. | Sep 2006 | A1 |
20060238495 | Davis | Oct 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060238517 | King et al. | Oct 2006 | A1 |
20060256075 | Anastas et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20070013662 | Fauth | Jan 2007 | A1 |
20070036492 | Lee | Feb 2007 | A1 |
20070085837 | Ricks et al. | Apr 2007 | A1 |
20070108032 | Matsumoto et al. | May 2007 | A1 |
20070122314 | Strand et al. | May 2007 | A1 |
20070130212 | Peurach et al. | Jun 2007 | A1 |
20070152982 | Kim et al. | Jul 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070165004 | Seelhammer et al. | Jul 2007 | A1 |
20070171210 | Chaudhri et al. | Jul 2007 | A1 |
20070182718 | Schoener et al. | Aug 2007 | A1 |
20070229233 | Dort | Oct 2007 | A1 |
20070229464 | Hotelling et al. | Oct 2007 | A1 |
20070236466 | Hotelling | Oct 2007 | A1 |
20070236469 | Woolley et al. | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070254411 | Uhland et al. | Nov 2007 | A1 |
20070257634 | Leschin et al. | Nov 2007 | A1 |
20070273561 | Philipp | Nov 2007 | A1 |
20070296702 | Strawn et al. | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20080010593 | Uusitalo et al. | Jan 2008 | A1 |
20080024459 | Poupyrev et al. | Jan 2008 | A1 |
20080054875 | Saito | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080131624 | Egami et al. | Jun 2008 | A1 |
20080136791 | Nissar | Jun 2008 | A1 |
20080138774 | Ahn et al. | Jun 2008 | A1 |
20080143693 | Schena | Jun 2008 | A1 |
20080150911 | Harrison | Jun 2008 | A1 |
20080165139 | Hotelling et al. | Jul 2008 | A1 |
20080174321 | Kang et al. | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080202251 | Serban et al. | Aug 2008 | A1 |
20080238448 | Moore et al. | Oct 2008 | A1 |
20080248836 | Caine | Oct 2008 | A1 |
20080249643 | Nelson | Oct 2008 | A1 |
20080251368 | Holmberg et al. | Oct 2008 | A1 |
20080252607 | De et al. | Oct 2008 | A1 |
20080266264 | Lipponen et al. | Oct 2008 | A1 |
20080286447 | Alden et al. | Nov 2008 | A1 |
20080291169 | Brenner et al. | Nov 2008 | A1 |
20080297475 | Woolf et al. | Dec 2008 | A1 |
20080303796 | Fyke | Dec 2008 | A1 |
20080312577 | Drasler et al. | Dec 2008 | A1 |
20080314725 | Karhiniemi et al. | Dec 2008 | A1 |
20090002140 | Higa | Jan 2009 | A1 |
20090002205 | Klinghult et al. | Jan 2009 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090009480 | Heringslack | Jan 2009 | A1 |
20090015547 | Franz et al. | Jan 2009 | A1 |
20090028824 | Chiang et al. | Jan 2009 | A1 |
20090033617 | Lindberg et al. | Feb 2009 | A1 |
20090059495 | Matsuoka | Mar 2009 | A1 |
20090066672 | Tanabe et al. | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090106655 | Grant et al. | Apr 2009 | A1 |
20090115733 | Ma et al. | May 2009 | A1 |
20090115734 | Fredriksson et al. | May 2009 | A1 |
20090128376 | Caine et al. | May 2009 | A1 |
20090128503 | Grant et al. | May 2009 | A1 |
20090129021 | Dunn | May 2009 | A1 |
20090132093 | Arneson et al. | May 2009 | A1 |
20090135145 | Chen et al. | May 2009 | A1 |
20090140989 | Ahlgren | Jun 2009 | A1 |
20090160813 | Takashima et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090167567 | Halperin et al. | Jul 2009 | A1 |
20090167677 | Kruse et al. | Jul 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090174673 | Ciesla | Jul 2009 | A1 |
20090174687 | Ciesla et al. | Jul 2009 | A1 |
20090181724 | Pettersson | Jul 2009 | A1 |
20090182501 | Fyke et al. | Jul 2009 | A1 |
20090191402 | Beiermann et al. | Jul 2009 | A1 |
20090195512 | Pettersson | Aug 2009 | A1 |
20090207148 | Sugimoto et al. | Aug 2009 | A1 |
20090215500 | You et al. | Aug 2009 | A1 |
20090231305 | Hotelling et al. | Sep 2009 | A1 |
20090243998 | Wang | Oct 2009 | A1 |
20090250267 | Heubel et al. | Oct 2009 | A1 |
20090254053 | Svensby | Oct 2009 | A1 |
20090256817 | Perlin et al. | Oct 2009 | A1 |
20090273578 | Kanda et al. | Nov 2009 | A1 |
20090289922 | Henry | Nov 2009 | A1 |
20090303022 | Griffin et al. | Dec 2009 | A1 |
20090309616 | Klinghult | Dec 2009 | A1 |
20100043189 | Fukano | Feb 2010 | A1 |
20100045613 | Wu et al. | Feb 2010 | A1 |
20100073241 | Ayala et al. | Mar 2010 | A1 |
20100078231 | Yeh et al. | Apr 2010 | A1 |
20100079404 | Degner et al. | Apr 2010 | A1 |
20100090814 | Cybart et al. | Apr 2010 | A1 |
20100097323 | Edwards et al. | Apr 2010 | A1 |
20100103116 | Leung et al. | Apr 2010 | A1 |
20100103137 | Ciesla et al. | Apr 2010 | A1 |
20100109486 | Polyakov et al. | May 2010 | A1 |
20100121928 | Leonard | May 2010 | A1 |
20100141608 | Huang et al. | Jun 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100171719 | Craig et al. | Jul 2010 | A1 |
20100171720 | Craig et al. | Jul 2010 | A1 |
20100171729 | Chun | Jul 2010 | A1 |
20100177050 | Heubel et al. | Jul 2010 | A1 |
20100182135 | Moosavi | Jul 2010 | A1 |
20100182245 | Edwards et al. | Jul 2010 | A1 |
20100225456 | Eldering | Sep 2010 | A1 |
20100232107 | Dunn | Sep 2010 | A1 |
20100237043 | Garlough | Sep 2010 | A1 |
20100238367 | Montgomery et al. | Sep 2010 | A1 |
20100253633 | Nakayama et al. | Oct 2010 | A1 |
20100283731 | Grant et al. | Nov 2010 | A1 |
20100295820 | Kikin-Gil | Nov 2010 | A1 |
20100296248 | Campbell et al. | Nov 2010 | A1 |
20100298032 | Lee et al. | Nov 2010 | A1 |
20100302199 | Taylor et al. | Dec 2010 | A1 |
20100321335 | Lim et al. | Dec 2010 | A1 |
20110001613 | Ciesla et al. | Jan 2011 | A1 |
20110011650 | Klinghult | Jan 2011 | A1 |
20110012851 | Ciesla et al. | Jan 2011 | A1 |
20110018813 | Kruglick | Jan 2011 | A1 |
20110028305 | Lim et al. | Feb 2011 | A1 |
20110029862 | Scott et al. | Feb 2011 | A1 |
20110043457 | Oliver et al. | Feb 2011 | A1 |
20110060998 | Schwartz et al. | Mar 2011 | A1 |
20110074691 | Causey et al. | Mar 2011 | A1 |
20110102462 | Birnbaum | May 2011 | A1 |
20110120784 | Osoinach et al. | May 2011 | A1 |
20110148793 | Ciesla et al. | Jun 2011 | A1 |
20110148807 | Fryer | Jun 2011 | A1 |
20110157056 | Karpfinger | Jun 2011 | A1 |
20110157080 | Ciesla et al. | Jun 2011 | A1 |
20110163978 | Park et al. | Jul 2011 | A1 |
20110175838 | Higa | Jul 2011 | A1 |
20110175844 | Berggren | Jul 2011 | A1 |
20110181530 | Park et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110194230 | Hart et al. | Aug 2011 | A1 |
20110227872 | Huska et al. | Sep 2011 | A1 |
20110234502 | Yun et al. | Sep 2011 | A1 |
20110241442 | Mittleman et al. | Oct 2011 | A1 |
20110242749 | Huang et al. | Oct 2011 | A1 |
20110248947 | Krahenbuhl et al. | Oct 2011 | A1 |
20110248987 | Mitchell | Oct 2011 | A1 |
20110254672 | Ciesla et al. | Oct 2011 | A1 |
20110254709 | Ciesla et al. | Oct 2011 | A1 |
20110254789 | Ciesla et al. | Oct 2011 | A1 |
20110306931 | Kamen et al. | Dec 2011 | A1 |
20120032886 | Ciesla et al. | Feb 2012 | A1 |
20120038583 | Westhues et al. | Feb 2012 | A1 |
20120043191 | Kessler et al. | Feb 2012 | A1 |
20120044277 | Adachi | Feb 2012 | A1 |
20120056846 | Zaliva | Mar 2012 | A1 |
20120062483 | Ciesla et al. | Mar 2012 | A1 |
20120080302 | Kim et al. | Apr 2012 | A1 |
20120098789 | Ciesla et al. | Apr 2012 | A1 |
20120105333 | Maschmeyer et al. | May 2012 | A1 |
20120120357 | Jiroku | May 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120162774 | Ishida et al. | Jun 2012 | A1 |
20120193211 | Ciesla et al. | Aug 2012 | A1 |
20120200528 | Ciesla et al. | Aug 2012 | A1 |
20120200529 | Ciesla et al. | Aug 2012 | A1 |
20120206364 | Ciesla et al. | Aug 2012 | A1 |
20120218213 | Ciesla et al. | Aug 2012 | A1 |
20120218214 | Ciesla et al. | Aug 2012 | A1 |
20120223914 | Ciesla et al. | Sep 2012 | A1 |
20120235935 | Ciesla et al. | Sep 2012 | A1 |
20120242607 | Ciesla et al. | Sep 2012 | A1 |
20120306787 | Ciesla et al. | Dec 2012 | A1 |
20130019207 | Rothkopf et al. | Jan 2013 | A1 |
20130127790 | Wassvik | May 2013 | A1 |
20130141118 | Guard | Jun 2013 | A1 |
20130215035 | Guard | Aug 2013 | A1 |
20130241718 | Wang et al. | Sep 2013 | A1 |
20130275888 | Williamson et al. | Oct 2013 | A1 |
20140034469 | Krumpelman | Feb 2014 | A1 |
20140043291 | Ciesla et al. | Feb 2014 | A1 |
20140132532 | Yairi et al. | May 2014 | A1 |
20140160044 | Yairi | Jun 2014 | A1 |
20140160063 | Yairi et al. | Jun 2014 | A1 |
20140160064 | Yairi et al. | Jun 2014 | A1 |
20140176489 | Park | Jun 2014 | A1 |
20150009150 | Cho et al. | Jan 2015 | A1 |
20150015573 | Burtzlaff et al. | Jan 2015 | A1 |
20150029658 | Yairi et al. | Jan 2015 | A1 |
20150064405 | Koch et al. | Mar 2015 | A1 |
20150070836 | Yairi et al. | Mar 2015 | A1 |
20150091834 | Johnson | Apr 2015 | A1 |
20150091870 | Ciesla et al. | Apr 2015 | A1 |
20150138110 | Yairi et al. | May 2015 | A1 |
20150145657 | Levesque et al. | May 2015 | A1 |
20150177839 | Ciesla et al. | Jun 2015 | A1 |
20150205419 | Calub et al. | Jul 2015 | A1 |
20150293591 | Yairi et al. | Oct 2015 | A1 |
20150293633 | Ray et al. | Oct 2015 | A1 |
20150331525 | Yairi | Nov 2015 | A1 |
20160187981 | Ray | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1260525 | Jul 2000 | CN |
1530818 | Sep 2004 | CN |
1882460 | Dec 2006 | CN |
201130336 | Oct 2008 | CN |
2000884 | Dec 2008 | EP |
2348801 | Jul 2011 | EP |
2936476 | Oct 2015 | EP |
190403152 | Dec 1904 | GB |
108771 | Aug 1917 | GB |
1242418 | Aug 1971 | GB |
S63164122 | Jul 1988 | JP |
06125188 | Jun 1994 | JP |
10255106 | Sep 1998 | JP |
H10255106 | Sep 1998 | JP |
2004111829 | Apr 2004 | JP |
2004178117 | Jun 2004 | JP |
2004303268 | Oct 2004 | JP |
2006053914 | Jan 2005 | JP |
2006268068 | Oct 2006 | JP |
2006285785 | Oct 2006 | JP |
200964357 | Mar 2009 | JP |
2009064357 | Mar 2009 | JP |
2010039602 | Feb 2010 | JP |
2010072743 | Apr 2010 | JP |
2011508935 | Mar 2011 | JP |
2014526106 | Oct 2014 | JP |
20000010511 | Feb 2000 | KR |
100677624 | Jan 2007 | KR |
20070047767 | May 2007 | KR |
20090023364 | Nov 2012 | KR |
2004028955 | Apr 2004 | WO |
2006082020 | Aug 2006 | WO |
2008037275 | Apr 2008 | WO |
2009002605 | Dec 2008 | WO |
2009044027 | Apr 2009 | WO |
2009067572 | May 2009 | WO |
2009088985 | Jul 2009 | WO |
2010077382 | Jul 2010 | WO |
2010078596 | Jul 2010 | WO |
2010078597 | Jul 2010 | WO |
2011003113 | Jan 2011 | WO |
2011087816 | Jul 2011 | WO |
2011087817 | Jul 2011 | WO |
2011108382 | Sep 2011 | WO |
2011112984 | Sep 2011 | WO |
2011118382 | Sep 2011 | WO |
2011133604 | Oct 2011 | WO |
2011133605 | Oct 2011 | WO |
2012054781 | Apr 2012 | WO |
2013022805 | Feb 2013 | WO |
2013173624 | Nov 2013 | WO |
2014047656 | Mar 2014 | WO |
2014095935 | Jun 2014 | WO |
Entry |
---|
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html. |
Essilor. “Ophthalmic Optic Files Materials,” Essilor International, Ser 145 Paris France, Mar. 1997, pp. 1-29, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <http://www.essiloracademy.eu/sites/default/files/9.Materials.pdf>. |
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 pages. |
Lind. “Two Decades of Negative Thermal Expansion Research: Where Do We Stand?” Department of Chemistry, the University of Toledo, Materials 2012, 5, 1125-1154; doi:10.3390/ma5061125, Jun. 20, 2012 (Jun. 20, 2012) pp. 1125-1154, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=materials-05-01125.pdf>. |
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011. |
Number | Date | Country | |
---|---|---|---|
20160187980 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62028203 | Jul 2014 | US |