This invention relates generally to touch-sensitive displays, and more specifically to a new and useful dynamic tactile interface in the field of touch-sensitive displays.
The following description of the embodiment of the invention is not intended to limit the invention to these embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Dynamic Tactile Interface
As shown in
2. Applications
The dynamic tactile interface functions as a tactilely dynamic interface surface for an electronic device to provide intermittent tactile guidance to an input region on the device. For example, the dynamic tactile interface can be integrated or applied over a touchscreen of a mobile computing device to provide tactile guidance to a user interacting with the touchscreen to control the device. In one implementation, the deformable region 122 is planar or flush with the peripheral region 121 in the retracted setting, and raised above the peripheral region 121 to define a tactilely distinguishable feature on the tactile surface in the expanded setting. In this implementation, the deformable region 122 can coincide with (i.e., be arranged over) an input key rendered on a display 150 of the device such that the deformable region 122 mimics a raised physical hard key in the expanded setting, thus tactilely guiding selection of the corresponding input key into a touch sensor of the device. The deformable region 122 can then be retracted to yield a flush, smooth, and/or continuous surface and substantially minimal optical distortion across the deformable and peripheral regions. For example, the displacement device 140 can transition the deformable region 122 into the expanded setting when the user is providing or has been prompted to provide an input into the touchscreen, such as with a finger or with a stylus. In this example, the displacement device 140 can then transition the deformable region 122 back to the retracted setting when the user is no longer providing or has not been prompted to provide an input into the touchscreen—or when the input key is no longer display adjacent the deformable region 122—such that the tactile surface is substantially planar or flush with the peripheral region, thereby yielding reduced optical distortion of an image output by the display 150 and transmitted through the tactile layer 120.
In various examples, the dynamic tactile interface can be integrated or applied over a display 150 of a mobile computing device, such as over a touchscreen of a tablet, smartphone, laptop computer, desktop computer, personal data assistant (PDA), personal music player (e.g., MP3 player), etc. The dynamic tactile interface can also be incorporated into an automotive dashboard display or console, a television, a personal navigation device, a watch, a home stereo system interface, a lighting or thermostat control system, a machine tool controller, a computer mouse, a computer touchpad, a keyboard or keypad, a gaming controller or console, cooking equipment, or any other suitable electronic and/or digital computing device.
3. Substrate and Tactile Layer
As shown in
The tactile layer 120 of the dynamic tactile interface includes a deformable region 122 and a peripheral region 121 coupled to the substrate 110. The deformable region 122 is arranged over the fluid conduit 114, is disconnected from the substrate 110, and is operable between a retracted setting and an expanded setting. In the retracted setting, the deformable region 122 can be substantially flush with the adjacent peripheral region, and the deformable region 122 can expand outward when fluid is pumped through the fluid channel 112 and the fluid conduit 114 toward the deformable region 122. The deformable region 122 can therefore by elevated above the peripheral region 121 in the expanded setting.
The substrate 110 can also include a support member 116 adjacent the deformable region 122 and configured to support the deformable region 122 against inward deformation, such as in response to an input or other force applied to the tactile surface at the deformable region 122. In this implementation, the support member 116 can define the fluid conduit 114, as shown in
The tactile layer 120 and substrate can be implemented as described in U.S. patent application Ser. Nos. 11/969,848, 13/414,589, 13/456,010, 13/456,031, 13/465,737, and/or 13/465,772.
However, the tactile layer 120 and the substrate 110 can be of any other form and function in any other way to define the deformable region 122 and to communicate fluid between the deformable region 122 and the displacement device 140 and/or the reservoir 130 to transition the deformable region 122 between the expanded and retracted settings.
4. Displacement Device and Reservoir
The reservoir 130 functions to hold a portion of the volume of fluid 170, and the displacement device 140 functions to displace fluid from the reservoir 130 into the fluid channel 112 to transition the deformable region 122 into the expanded setting. The reservoir 130 can further receive fluid back from the fluid channel 112 to transition the deformable region 122 from the expanded setting back into the retracted setting. The volume of fluid can be water, alcohol, silicone oil, air, or any other suitable type of fluid (e.g., gas or liquid).
The dynamic tactile interface can be a standalone, self-contained system configured for integrated over a touchscreen of a mobile computing device, such as a tablet or a smartphone. Generally, capacitive touchscreens, which commonly incorporate both a capacitive touch sensor and a display 150, may require numerous electrical connections (e.g., electrodes) for column-wise and row-wise sensor traces and for column-wise and row-wise pixel control traces. In this example, these connections may be made along one vertical edge and one horizontal edge of the touchscreen, which yields asymmetric touchscreen layout, as shown in
4.1 Bladder Reservoir
In one variation of the dynamic tactile interface shown in
Generally, in this variation, the displacement device 140 functions to manipulate the reservoir 130 to displace fluid therefore, thereby transitioning the deformable region 122 from the retracted setting to the expanded setting. For example, the displacement device 140 can compress, clamp, stretch, or otherwise deform the reservoir 130 to adjust its internal volume. The reservoir 130 can be a substantially thin-walled, elastic bladder that yields under compression and/or that stretches under tension. Furthermore, the bladder can be substantially resilient to repeated tension and compression cycles. For example, the reservoir 130 can define an elastomeric bladder, such as a silicone rubber, urethane, or PVC bladder.
The reservoir 130 can also be sized for a prescribed maximum displacement volume to transition the deformable region 122 and/or one or more additional deformable regions of the tactile layer 120 from the retracted setting to a fully-expanded setting. For example, the tactile layer 120 can include a set of twenty-six substantially identical deformable regions arranged in a keyboard layer, each fluidly coupled to the fluid channel 112 via a corresponding fluid conduit. The displacement device 140 can thus manipulate the reservoir 130 to displace fluid into the fluid channel 112, thereby substantially simultaneously transitioning the twenty-six deformable regions from the retracted setting to the expanded setting. In this example, each deformable region in the set can correspond to one alphabetical character (i.e. ‘a’ through ‘z’) in an alphabet and to one associated area of a touch sensor coupled to the substrate 110. In this example, displacement of ˜0.05 mL of fluid can be prescribed for full transition of one deformable region from the retracted setting to the expanded setting, and the displacement device 140 and the reservoir 130 can therefore be sized to displace a maximum volume of fluid 170 of at least 1.3 mL. Furthermore, the reservoir 130 can be sized for a maximum reduction in internal volume of 50%, such as to extend the life of the reservoir 130 through expansion and retracted cycles. Therefore, in the foregoing example, the reservoir 130 can be configured to contain a maximum of at least 2.6 mL of fluid.
The displacement device 140 can include an actuator coupled to a pair of platens, and the bladder can be sandwiched between the pair of platens such that actuation of the actuator compresses the bladder to displace fluid into the fluid channel 112. Each platen can be substantially rigid, such as defining a stamped steel plate or a molded plastic platter with strengthening ribs. In this implementation, a first platen 141 of the pair can be fixed or otherwise rigidly coupled to the substrate 110, a touchscreen, a housing of the device, or an other component within the device, and the actuator can move the second platen 142 (e.g., in translation) toward the first platen to displace fluid out of the bladder, thereby increasing pressure within the fluid system and transitioning the deformable region 122 from the retracted setting into the expanded setting. Alternatively, both platens (and additionally platens) in the set can be movable relative to each other and/or to the substrate 110 to similarly deform the bladder.
In this foregoing implementation, the bladder can be glued, clamped, adhered, or otherwise mechanically fastened to each of the platens, as shown in
Alternatively, the displacement device 140 can include an actuator coupled to a single platen, and the bladder can be sandwiched between the platen and an interior surface of the substrate 110 opposite the tactile layer 120. In this implementation, actuation of the actuator can compress the bladder to displace fluid into the fluid channel 112 (e.g., through the via in the substrate 110), thereby transitioning the deformable region 122 from the retracted setting into the expanded setting. As in the foregoing implementation, in this implementation, the bladder can be glued, adhered, fastened, or otherwise attached to the interior surface of the substrate 110 and/or to the platen. The portion of the substrate 110 can thus function as the second platen 142 described above and cooperate with the first platen to compress, stretch, or otherwise manipulate the bladder when the displacement device 140 is actuated.
However, the bladder can be arranged between a platen and any other surface within the electronic device incorporating the dynamic tactile interface. For example, the bladder can be arranged between a single platen and a planar surface of a battery, a back surface of a touchscreen, or an internal surface of a housing of the device, and the displacement device 140 can compress the bladder and any of the foregoing surfaces to displace fluid out of and/or into the bladder.
As shown in
As shown in
4.1.A Bladder Reservoir & Cam Block 148
In a first implementation of the reservoir 130 that includes a bladder arranged between a first and a second platen 142, the displacement device 140 includes a cam block 148 defining a guide channel, a drive screw that engages the cam, and a rotary actuator 143 (e.g., a motor) configured to drive the cam block 148 along the drive screw by rotating the drive screw. As shown in
In this implementation, the drive screw can be a single lead acme screw, a double lead acme screw, or any other suitable type of screw. The drive screw can be directly or indirectly coupled to the actuator on one end, such as with a flex coupling or a universal joint. The drive screw can be further supported on an opposite end by a bushing or bearing, such as mounted to the substrate 110 opposite the tactile layer 120 or mounted to the housing of the electronic device that includes the dynamic tactile interface. The cam block 148 can include a circumferential or partial nut that engages one or more threads of the drive screw, or the cam block 148 can include a tab 147 that engages a trough in the lead screw thread to drive the cam block 148 fore and aft as the drive screw rotates. The actuator can be rigidly mounted to the substrate 110 opposite the tactile layer 120 or mounted to the housing of the electronic device that includes the dynamic tactile interface. For example, the actuator can be bonded to the back of the substrate 110 with an epoxy-based adhesive. Alternatively, the actuator can be flexibly mounted, such as retained by a soft (e.g., rubber) motor mount that accommodates blemishes within the drive train as the lead screw 145 rotates. However, the lead screw 145, cam block 148, and actuator can interface and can be mounted in any other suitable way within the dynamic tactile interface and/or within the electronic device to manipulate fluid into and/or out of the fluid channel 112.
In this implementation, the actuator can be an electric motor selected to meet a requisite torque required to compress and/or stretch the reservoir 130, to meet a requisite transition time between the retracted and expanded settings for one or more deformable regions, for a peak or constant supplied voltage, current, or power limit from the electronic device, to limit stress on the reservoir 130 or the substrate 110, etc. For example, the actuator can be selected to enable transition between the retracted and expanded setting at the deformable region 122 within two seconds. Alternatively, the actuator can be selected to enable displacement of 1 mL per second, to match a 3V nominal power supply within the electronic device, for a maximum stall current of 100 mA, or for a peak torque of 1 mNm. The actuator can also be an electric gearhead motor with a gear ratio matched to the pitch of the drive screw to meet one or more of the foregoing criteria. For example, the drive screw 145 can be a lead screw with a 0.025″ pitch and the motor can include a planetary gearhead that converts a nominal motor speed of 20,000 rpm to 400 rpm, thus displacing the cam block 148.5″ every three seconds. Alternatively, the actuator can be a shape memory alloy (e.g., nitinol) motor, a piezoelectric motor, or any other suitable type or size of actuator with or without a geared output.
As described above, the guide channel 146 can be a linear guide channel. Alternatively, the guide channel 146 can be curvilinear or sinusoidal. For example, the guide channel 146 can include a half-sinusoid section that terminates at each end with a linear segment, as shown in
4.1.B Bladder Reservoir & Hinged Platens
In a second implementation of the reservoir 130 that includes a bladder arranged between a first and a second platen 142, the displacement device 140 includes an electric gearhead motor with an eccentric drive pin 241 configured to engage an elongated slot 242 in a tab 147 extending from a first platen 141 pivotably mounted to the second platen 142 (or to another component within the dynamic tactile interface and/or electronic device), as shown in
In this implementation, the length of the elongated slot 242 and the position of the centerline of the motor relative to the slot can be such that the eccentric drive pin 241 reaches a linear displacement limit within the elongated slot 242 at the outmost end of the elongated slot 242 at the first position and the second position that is 180° offset from the first position. The elongated stop can thus brake the motor at the limits of the expanded and retracted settings. As shown in
In this implementation, the length of the elongated slot 242 and the position of the centerline of the motor relative to the slot can also be such that the eccentric drive pin 241 is limited to less than 180° of rotation. Generally, the length of the elongated slot 242 and the position of the centerline of the motor relative to the slot can define maximum travel limits of the eccentric drive pin 241 such that a force applied to the first platen 141 by the reservoir 130 translates into substantially no torque applied to the eccentric drive pin 241 by the tab 147 or the elongated slot 242 in either the expanded or retracted settings. This configuration can enable the displacement device 140 to maintain both the expanded and retracted settings substantially without additional power draw from the motor.
The gearhead motor can be configured to move from one extreme travel position to an opposite extreme travel position (e.g., 180° of rotation or less) within a desired setting transition time. For example, the gearhead motor can complete a full rotation in six seconds and slightly less than 180° of rotation slightly less than three seconds. In this example, the motor can include a gearhead that converts a nominal motor speed of ˜20,000 rpm to ˜360 rpm with a 56:1 planetary gear set.
4.1.C Bladder Reservoir & Four-Bar Linkage
In a third implementation of the reservoir 130 that includes a bladder arranged between a first and a second platen 142, the displacement device 140 includes a set of linkages that couple to the first and second platen to form a bar linkage such that the first platen 141 moves parallel to the second platen 142 as the displacement device 140 transitions the deformable region 122 between settings. The displacement device 140 further includes a rotary actuator 143, a lever arm, and a lead screw coupled to the lever arm via a nut 144, and the lead screw and the lever arm can to translate rotary motion of the actuator into translation of the first platen 141 relative the second platen 142, as shown in
4.1.D Bladder Reservoir & Guide Channel
In a fourth implementation similar to the third implementation of the reservoir 130 that includes a bladder arranged between a first and a second platen 142, the displacement device 140 includes a carriage with offset guide channels 144, each guide channel 144 configured to engage a tab 147 extending from the first platen 141. The displacement device 140 further includes a motor, lead screw, lever arm, and/or nut 144 configured to displace the first platen 141 along the guide channel 144 to reduce or increase the distance between the parallel faces of the first and second platens, thus compressing and stretching the reservoir 130, respectively, as shown in
As described above, the guide channels 144 can define linear guide channels 144. Alternatively, the guide channels 144 can be curvilinear or sinusoidal in section, such as described above. The guide channels 144 can also be identical and offset to enable broad faces of the first and second platens to remain parallel between settings, or the guide channels 144 can be dissimilar such that broad faces of the first and second platens translate linearly and arcuately between settings.
In the third and forth implementations of the first variation, the actuator can be an electric gearhead motor or any other suitable type of motor, and the drive screw can be an acme lead screw or any other suitable type of lead screw. The motor can be directly or indirectly coupled to the drive screw (e.g., via a flex coupling or a universal joint), and the drive screw can directly engage the carriage or the first platen 141 or engage the first platen 141 via a lever arm, nut 144, or other suitable component.
However, the displacement device 140 of the foregoing implementations can include any other component and define any other configuration to manipulate the reservoir 130 to thereby transition the deformable region 122 between retracted and expanded settings. The dynamic tactile interface can also include any number of similar or dissimilar displacement devices and/or reservoirs configured to transition a multiple fluidly coupled or fluidly discrete deformable regions between expanded and retracted settings.
4.2 Bellows
In another variation of the dynamic tactile interface, the reservoir 130 includes a bellows 245 configured to hold fluid, as shown in
In one implementation, the bellows 245 includes a metallic structure, such as a stainless steel, electron-beam welded structure. Alternatively, the bellows 245 can be a plastic or polymer structure, such as a blow-molded PVC structure. The bellows 245 can be circular in cross section, rectangular in cross section, or of any other suitable cross section. The bellows 245 can also be elongated, squat, or of any other suitable form or geometry. Furthermore, like the bladder described above, the bellows 245 can be sized for a requisite total fluid displacement between retracted and expanded settings.
In this second variation of the reservoir 130 that includes a bellows 245, the displacement device 140 can include a linear actuator that advances and retracts the bellows 245 to expand and retract the deformable region 122, respectively. The linear actuator of the displacement device 140 can include a rotary actuator 143 coupled to any one or more of a bellcrank, a cam, a lead screw paired with a nut 144, or any other suitable device configured to translate rotary motion into linear motion, as shown in
The displacement device 140 can also include a carriage that maintains alignment of the bellows 245 throughout its travel. The carriage, bellows 245, and/or linear actuator (e.g., rotary actuator 143 and mechanism) can further include a mechanical stop at each end of a desired travel limit such that a linear actuator controller (and/or processer) can monitor current draw of the linear actuator to determine the position thereof, as described above. In one example, the bellows 245 can be a squat round bellows 245 coupled to a rotary actuator 143 via a lead screw and bellcrank, wherein endstops arranged on the lead screw define travel limits of the displacement device 140 and bellows 245. In another example, a first end of the bellows 245 is fixed (e.g., rigidly coupled to the substrate 110, such as through the touch sensor and/or the display 150), and a second end of the bellows 245 opposite the first end runs in a track parallel to the axis of the bellows 245. In this example, a lead screw is arranged parallel and offset from the track, is supported near the first end of the bellow, and runs through a nut 144 coupled to the second end of the bellows 245. Thus, in this example, the actuator 143 spins the lead screw to drive the second end of the bellows 245 toward and away from the first end to expanded and retract the deformable region 122, respectively.
However, the reservoir 130 that includes a bellows 245 can be implemented in any other way and can be manipulated between settings in any other way and by any other suitable displacement device to transition the deformable region 122 between settings.
4.3 Coiled Tube
In another variation of the dynamic tactile interface, the reservoir 130 includes a tube defining a first end fluidly coupled to the fluid channel 112 and constrained relative to the substrate 110, and the displacement device 140 includes a rotary actuator 143 coupled to the tube 341 remote from the first end and configured to transition the deformable region 122 from the retracted setting to the expanded setting by winding the tube 341 to displace a portion of the volume of fluid 170 within the tube 341 into the fluid channel 112.
For example, in this variation, the reservoir 130 of the dynamic tactile interface includes: a tube 341 including a first end and a second end opposite the first end, the first end constrained and defining an outlet; a cap 349 coupled to the second end of the tube 341. In this example, the volume of fluid 170 is arranged within the tube 341. Furthermore, the displacement device 140 includes: a rotary actuator 143 including an output shaft 146 coupled to the second end of the tube 341 and configured to wind the tube 341 to displace a portion of the volume of fluid 170 from the tube 341; and a balance spring 247 coupled to the second end of the tube 341 and configured to balance a torque applied by the tube 341 to the output shaft 146 of the rotary actuator 143.
In this third variation of the dynamic tactile interface, the tube 341 can be fluidly coupled at the first end to the fluid channel 112 via a barb, junction block 343, or secondary tube, etc. to define a sealed and enclosed fluid system with the fluid channel 112, the fluid conduit 114, and the deformable region 122, as shown in
In one example implementation, the tube 341 defines a smooth tube of a constant circular cross section and wall thickness along its length. In another example implementation, the tube 341 is internally and/or externally ribbed or corrugated, which aids the tube 341 in returning to an initial uncoiled (i.e., untwisted) state. In yet another example implementation, the tube 341 includes an elastic tubular core inset within a metallic coil spring. In a similar example implementation, the tube 341 includes a metallic coil spring encased in an elastomer to enclose an internal inside the metallic coil spring. For example, the tube 341 can include an internal or external stent configured that winds with the tube 341 and is configured to return the tube 341 to an unwound state once a torque is released from the tube 341. The tube 341 can similarly include linear and/or coiled shape memory elements embedded within a pliable tubular core of one or more elastomeric materials. For example, the tube 341 can be a silicone rubber tube with a shape-memory alloy (SMA) wire coil shallowly embedded in the external surface of the tube 341.
The tube 341 can also define a varying cross-section and/or geometry along its length to control location of an initial fold (i.e., coil) in the tube 341 as the actuator 143 begins to wind the tube 341 from a fully-uncoiled position. The cross-section and/or geometry of the tube 341 can further control propagation of folds along the tube 341 as the actuator 143 further winds the tube 341. In particular, the cross-section and/or geometry of the tube 341 can initiate a first fold at the second end of the tube 341 with each subsequent fold propagating sequentially and adjacent a previous fold as the tube 341 is wound, thereby displacing fluid fully from the second end of the tube 341 to the first end of the tube 341 and into the fluid channel 112. Such cross-section and/or geometry can substantially prevent capture of fluid between two folds in the tube 341, which may otherwise limit the maximum displacement capacity of the tube 341 and/or cause the tube 341 to rupture from increased fluid pressure between two folds.
In one example implementation, the tube 341 defines a circular cross-section along its length with a flat section of a second width on the exterior of the tube 341 at its second end. In this example implementation, the flat section tapers down to a first width less than the second width proximal the first end of the tube 341. Thus, in this example implementation, the maximum hoop stress that the tube 341 can withstand before buckling can be less at the second end than at the first end such that the tube 341 first buckles—to yield a first fold—at the second end and continues to buckle along sequential sections of the tube 341. In this example implementation, the tube 341 can define additional tapered planar sections along its exterior (and/or interior). For example, the tube 341 can define an octagonal external cross-section at the second end, which transitions into a circular external cross-section at the first end.
In another example implementation, the tube 341 defines a trough or U-shaped cross-section at the second end, which transitions into a square or circular cross-section toward the first end of the tube 341. In this implementation, the trough can create a weakest region in the tube 341 (e.g., a linear section of the tube 341 capable of a maximum hoop stress less than any other linear section of the tube 341) proximal at the second end such that the second end of the tube 341 is first to buckle or coil as the actuator 143 winds the tube 341 from a fully-unwound state.
In yet another example implementation, the tube 341 defines a circular cross-section that tapers from a first external diameter at the first end to a second external diameter less than the first external diameter at the second end. In this example implementation, the tube 341 can define a constant wall thickness along its length. Furthermore, the wall thickness of the tube 341 can taper from a first thickness proximal the first end to a second thickness less than the first thickness proximal the second end. In this example implementation, the tube 341 can thus be ‘weakest’ at the second end can capable of withstanding a maximum hoop stress before buckling that increases along the length of the tube 341 from the second end toward the first end. This configuration can thus yield preferential coiling of the tube 341 starting at the second end of the tube 341 and moving linearly along the tube 341 toward the first end as the actuator 143 winds the tube 341.
In the foregoing example implementation, the internal diameter of the tube 341 can taper from a first diameter at the first end to a second diameter less than the first diameter at the second end. Alternatively, the internal diameter of the tube 341 can taper from a first diameter at the first end to a second diameter greater than the first diameter at the second end. In this implementation, the tube 341 can displace a volume of fluid 170 per coil or per linear section of the tube 341 that is greater at the second end than at the first end of the tube 341. Thus, as the actuator 143 winds the tube 341, the resolution of volume displacement from the tube 341 can increase as additional fluid is pumped out of the tube 341 and into the fluid channel 112. In particular, the actuator 143 can rotate (at substantially constant speed) to first coil the second end of the tube 341 to quickly inflate the deformable region 122 from the retracted setting and then progressively coil subsequent sections of the tube 341 toward the first end to achieve a specific volume displacement from the tube 341 with smaller and smaller volumes of fluid displaced as additional sections of the tube 341 are coiled.
In yet another implementation, the tube 341 is pinched proximal the second end. For example, the reservoir 130 can include a crimp, a clamp, or a band that constricts the tube 341 locally proximal the second end to cause the tube 341 to wind first at the second end. Alternatively, the tube 341 can be formed or reformed with a first coil proximal the second end. However, the tube 341 and/or the reservoir 130 can include any other feature or be of any other geometry to control a site of first coiling on the tube 341 when the displacement device 140 first winds to the tube 341 to transition the deformable region 122 from the retracted setting to the expanded setting.
The tube 341 can also be of a coiled geometry, such as a densely-wrapped coil or a loosely-wrapped coil. Furthermore, the tube 341 can also be housed in a substantially rigid sheath or coil that prevents the tube 341 from folding over itself when twisted and/or released. For example, the tube 341 can be arranged within an elongated housing of internal cross-section that accommodates enough offset from the tube 341 to allow the tube 341 to coil once when twisted but that prevents the coiled section of the tube 341 from coiling back on themselves. For example, the internal width and/or diameter of the housing can be approximately twice the external diameter of the tube 341. As described above, the reservoir 130 can also include a cap 349 that closes the second end of the tube 341 and functions as a junction between the tube 341 and the rotary actuator 143. For example, the cap 349 can include a crimp fitting that locks into the second end of the tube 341, and the cap 349 can further include a keyed or splined bore that slips over an output shaft 146 of the actuator 143 to transfer torque from the actuator 143 into the tube 341. However, the tube 341 can be of any other form, geometry, cross section, and/or material.
As described above, in this variation, the displacement device 140 includes a rotary actuator 143 configured to twists the tube 341, thereby displacing fluid out of the tube 341 and into the fluid channel 112. For example, the actuator 143 can include a gearhead motor with output shaft 146 coupled to the tube 341, such as via the cap. Actuation of the gearhead motor in a first arcuate direction can thus twist the tube 341, causing it to coil and reducing its internal volume. Similarly, actuation of the gearhead motor in a second—opposite—arcuate direction can unwind the tube 341, enabling fluid to flow back into the tube 341. The actuator 143 can be an electric motor, an electric gearhead motor, a rotary solenoid, a stack of doped latex tubes, or any other suitable actuator.
Alternatively, in an application of the dynamic tactile interface 100 within a computing device defining multiple configurations (e.g., a “flip phone” or a “slide phone”), a hinge, track, or other mechanism within the computing device can be coupled to the second end of the tube 341. Thus, in this application, a force or torque applied (e.g., manually) to the computing device to transition the computing device between configurations can be transmitted into the tube 341 to twist the tube, thereby transitioning the deformable region between settings. The second end of the tube 341 can also be coupled to a power transmission component that translates a manual input directly into the tube 341 to manipulate fluid into and/or out of the tube. However, the second end of the tube can be coupled to any other type of manual, electromechanical, pneumatic, or other actuator or power transmission component.
In one example implementation, the actuator 143 is mounted at a fixed distance from the first end of the tube 341 such that the length of the tube 341 remains substantially constant as it is coiled and uncoiled. Alternatively, the actuator 143 can be configured to move along a linear slide parallel to an axis of the tube 341 to accommodate a change in length of the tube 341 as the tube 341 is coiled and uncoiled, thereby limiting axial tension in the tube 341, as shown in
The displacement device 140 can also include a balance spring 247 configured to balance a torque applied by the tube 341 to an output shaft 146 of the rotary actuator 143. In particular, the balance spring 247 can apply a moment to the output shaft 146 of the actuator 143 that is substantially equal and opposite to a moment applied to the output shaft 146 of the actuator 143 for at least one uncoiled positions of the tube 341. For example, when the tube 341 is in half-coiled state (i.e., tube is wound along half of its length), the balance spring 247 can fully balance a torque applied to the output shaft 146 of the actuator 143 by the tube 341. Thus, the balance spring 247 can reduce (e.g., halve) a maximum torque that the actuator 143 must output to wind the tube 341 throughout the possible coiled and uncoiled positions of the tube 341.
In one configuration, the actuator 143 includes an electric motor with a common output shaft 146 passing through end of the motor. In this configuration, the tube 341 is coupled to output shaft 146 at a first side of the motor, and the balance spring 247 is coupled to the output shaft 146 at the opposite end of the motor and fixed at a far end remote from the first end of the tube 341 with the axis of the balance spring 247 substantially coincident with the axis of the tube 341. During installation, with the tube 341 fully unwound, the balance spring 247 can be preloaded to apply a torque to the output shaft 146 of the actuator 143 such that the balance spring 247 cancels a torque applied to the actuator by the tube 341 when the tube 341 is half-coiled. In this configuration, the balance spring 247 can include a second tube 342, such as substantially similar to the (first) tube—which contains fluid, though the second tube 342 can be devoid of fluid. Alternatively, the balance spring 247 can include a metallic coil spring, though the balance spring 247 can include any other suitable type of spring of any other suitable material.
In a similar configuration, the balance spring 247 can be directly coupled to the second end of the tube 341. For example, the cap 349 of the tube 341 can define a junction between the tube 341 and the balance spring 247. In one example implementation, the cap 349 defines a toothed gear, and the output shaft 146 of the actuator 143 is coupled to a pinion that engages the toothed gear to wind the tube 341 and the balance spring 247, as shown in
In another configuration, the balance spring 247 includes a second tube 342 substantially identical to the (first) tube but, unlike the tube 341, devoid of fluid. In this configuration, the first end of the tube 341 is coupled to a junction block 343 via a barb in fluid communication with the fluid channel 112, and the second tube 342 is preloaded and similarly coupled to the junction block 343 at a first end. The output shaft 146 of the actuator 143 is further coupled directly to the cap 349 at the second end of the tube 341, and the cap 349 (or the output shaft 146) includes (or is coupled to) a first pinion that engages a second pinion coupled to a second end of the second tube 342 adjacent the second end of the (first) tube. In this example, the first and second pinions can include an identical number of gears to yield a gear ratio of 1:1. Thus, as the actuator 143 twists the (first) tube in a first direction to wind the tube 341, the second tube 342 can be equally unwound in an opposite direction to balance a torque applied to the actuator 143 by the (first) tube.
In this foregoing configuration, the balance spring 247 can alternatively include a coil spring (shown in
As shown in
In another implementation, the displacement device 140 includes a static endplate 542 and a friction plate 541 that cooperate to lock the arcuate position of the output shaft 146 of the actuator 143 and therefore the wound position of the tube 341 in the expanded setting, as shown in
In this implementation, the initial distance between the friction plate 541 and the endplate 542 in the fully-unwound position of the tube 341 can define a preset number of rotations of the output shaft 146 before the friction plate 541 locks to the endplate 542—and therefore a preset or target number of coils or windings in the tube 341 in the expanded setting. Furthermore, in this implementation, the position of the endplate 542 and/or the position of the friction plate 541 can be set and adjusted manually. For example, a set screw can be accessed with a wrench through a external housing or body of the electronic device incorporating the dynamic tactile interface, and the set screw can be rotated to linearly translate the endplate 542 toward or away from the friction plate 541 or to adjust the arcuate position of the friction plate 541 on the threaded shaft 145. Alternatively, this adjustment can be made during initial assembly of the electronic device or after disassembly of the electronic device to tune the height, size, shape, and/or firmness, etc. of the deformable region 122 in the expanded setting, as the position of the friction plate 541 relative to the endplate 542—and therefore the number of turns of the second end of the tube 341 to drive the friction plate 541 into endplate 542—defines a maximum displacement of fluid from the tube 341. Also, in this implementation, the dynamic tactile interface can include a second endplate 542 arranged adjacent the friction plate 541 opposite the endplate 542, which can similarly define an arcuate position of the second end of the tube 341 in the retracted setting as the friction plate 541 is driven away from the endplate 542 and into the second endplate 542. However, the friction plate 541 and the endplate 542, etc. can be arranged in any other configuration and can function in any other way to latch an arcuate position of the output shaft 146 of the actuator 143 and therefore a coiled position of the tube 341 to maintain the deformable region 122 in the expanded setting.
In the foregoing variations, the dynamic tactile interface can includes a motor controller 148 (and/or processor) configured to monitor current draw of the actuator 143 and to correlate the current draw with a coiled position of the tube 341. In particular, the motor controller 148 can correlate a current draw from the actuator 143 with a volume of fluid 170 displaced from the tube 341 and control an arcuate position of the output shaft 146 of the actuator 143 accordingly. For example, the motor controller 148 (and/or processor) can implement a lookup table to associate a particular current draw or range of current draws at the actuator 143 with a particular volume of fluid 170 displacement from the tube 341. Alternatively, in the implementations above in which the dynamic tactile interface includes a friction plate 541 and an endplate 542, the motor controller 148 can correlate a rapid increase in current draw at the actuator 143 with engagement of the friction plate 541 with the endplate 542 and cut power to the actuator 143 accordingly. Similarly, the motor controller 148 can implement closed loop feedback control to move the output shaft 146 of the actuator 143 to an arcuate position associated with a minimal current draw, which can correspond to a fully-unwound state of the tube 341—and the retracted position at the deformable region 122. Additionally or alternatively, the motor controller 148 can interface with a pressure sensor fluidly coupled to he fluid channel to monitor fluid pressure with the fluid channel 112, to estimate the volume of fluid 170 displacement from the reservoir 130 accordingly, and the control the position of the actuator 143 based on the estimate fluid displacement. However, the motor controller 148 (and/or the processor) can function in any other way to control the actuator 143 to achieve a target volume displacement from the tube 341 and/or target fluid pressure within the fluid channel 112.
Furthermore, the displacement device 140 can incorporate any combination of the foregoing components or subsystems, such a pawl 345 and ratchet mechanism with a balance spring 247 or a friction plate 541 and endplate 542 with a rotary actuator 143 that translates linearly along linear track 248. However, in this variation of the reservoir 130 that includes a tube 341, the reservoir 130 and the displacement device 140 can be of any other form and/or geometry and include any other component or subsystem to displace fluid out of the reservoir 130 and into the fluid channel 112 to transition the deformable region 122 from the retracted setting to the expanded setting.
4.4 Coiled Tube Variations
In a variation similar to the foregoing, the reservoir 130 includes a linear tube coupled at a first end to an inlet of the fluid channel 112 and coupled at a second end to an outlet of the fluid channel 112, wherein the fluid conduit 114 is arranged between the inlet and the outlet of the fluid channel 112. A valve (e.g., a check valve, a one-way valve, a bi-state valve) can be arranged at each of the first end and the second end of the tube 341, and the valves can be fixed to enable fluid to fluid into the second end and out of the first end of the tube 341 such that the output shaft 146 of the actuator 143 can oscillate (e.g., clockwise 360° and then counterclockwise 360° and back) to induce flow through the tube 341. For example, the first end of the tube 341 can be fixed to the substrate 110, such as via a junction block 343, and the second end of the tube 341 can be coupled to a geared barb such that the actuator 143 can apply a torque to the barb to twist the tube 341. The tube 341, valves, and rotary actuator 143 can thus cooperate to produce continuous circulating flow. In this configuration, the displacement device can include a bi- or tri-state valve that opens one end of the tube 341 to a second reservoir or to ambient air such that the tube 341 can draw fluid or air from the second reservoir or ambient, respectively, and into the fluid channel to transition the deformable region 122 into the expanded setting. Selective actuation of the valves can also enable the displacement device to pump fluid or air out of the fluid channel and into the second reservoir or exhausted to ambient to transition the deformable region back into the retracted setting.
In a similar configuration, valves can be transiently set in a first state to enable flow only out of the tube 341. In this configuration, the tube 341 can include any of the foregoing features described above to yield preferential initial buckling and coiling of the tube 341 near its longitudinal center such that, when the actuator 143 first applies a torque to the tube 341, the tube 341 coils at its longitudinal center with additional coils subsequently forming on each side of the longitudinal center to drive fluid out of each end of the tube 341. Thus, once the deformable region 122 is fully expanded, power to the actuator 143 can be cut, as the valves prevent fluid from draining back into the tube 341. (At this stage, the actuator 143 can also be actively driven in reverse to control uncoiling of the tube 341.) To retract the deformable region 122, the state of the valves can be switched to allow fluid only to drain back into the tube 341, and the actuator 143 can also be actively driven in reverse to uncoil the tube 341, or the tube 341 can uncoil passively to draw fluid back from the fluid channel 112. Therefore, in this configuration, fluid can be pumped from the tube 341 into the multiple inlets at the substrate 110, which can yield more uniform flow of fluid through the fluid channel 112. Furthermore, for the tactile layer 120 that includes multiple deformable regions, each arranged over a fluid conduit coupled to the fluid channel 112, this configuration can further yield more uniform transition of the deformable region(s) 122 as more uniform fluid flow, higher flow rates, and/or higher fluid pressures may be enabled by the two fluid inlets over the single fluid inlet described above.
For example, in the previous configuration(s), a first valve can be arranged between ambient air and the tube, and a second valve can be arranged between the tube and the fluid channel. To pump fluid into the fluid channel to expand the deformable region, within the tube fully unwound, the first valve can be opened and the second valve closed to enable air to fill the tube. The states of the valves can then switch, and the actuator can wind the tube to displace air into the fluid channel. (The actuator can also begin to wind the tube before the valve states switch to pre-pressurize the tube.) Once the tube is sufficiently wound, the second valve to switch to a closed state to hold air in the fluid channel. To pump additional air into the fluid channel, the first valve can open and the actuator can actively or passively unwind the tube to allow additional air to fill the unwound tube. The first valve can then close, the second valve then opened, and the tube further wound to displace additional air into the fluid channel. To passively remove air from the fluid channel, the actuator can unwind the tube with the first and second valves open to exhaust air back to ambient. However, to actively pump air out of the fluid channel, the dynamic tactile interface can reverse the foregoing series of steps.
In another configuration, the second end of the tube 341 is open to ambient air, and the actuator 143 winds the tube 341 to pump air from outside the electronic device into the fluid channel 112 to transition the deformable region 122 between settings. Once wound, the tube 341 can seal air inside the fluid channel to maintain the deformable region 122 in the expanded setting, and the actuator 143 can release the tube, and the tube can unwind to release air from the fluid channel 112, thereby releasing the deformable region 122 to transition back to the retracted setting.
In the foregoing implementations, the valve(s) can be any other suitable type of valve, such as a standard electromechanical bi-state (i.e., open or closed) valve. However, the tube 341 can support fluid flow through each of its first and second ends and can cooperate in any other way with the rotary actuator 143, valve(s), etc. to displace fluid into and/or out of the fluid channel 112 to transition the deformable region 122 between settings.
Generally, manipulation of the tube as described above functions to both decrease an internal volume of the tube and to store potential energy in the wall(s) of the tube (or attached mechanical structure). In particular, by decreasing the internal volume of the tube, fluid is displaced out of the tube and into the fluid channel to transition the deformable region into the expanded setting. Furthermore, by storing energy in the wall(s) of the tube (and/or an attached mechanical structure), the tube unwinds itself once torque or tension on the tube is released, thereby returning to a larger-volume state (and drawing fluid back into the tube). The tube can therefore be manipulated as described above by twisting the tube about the tube's axis. Alternatively, the actuator can stretch the tube along its axis (or perpendicular to its axis), the internal volume of the tube thereby decreasing and the tube storing potential energy from the displacement. In this configuration, once the tube is released, energy stored in the walls of the tube can move the tube back to its original length, thereby drawing fluid back into the tube. In yet another configuration, the tube can be wound about an axis perpendicular to the axis of the tube. For example, the tube can be wound around a spool like a fire hose to displace fluid out of the tube, and the energy stored in the wall of the tube can cause the tube to unwind from the spool once torque or tension on the spool is released. However, the dynamic tactile interface can include any other actuator that manipulates the tube in any other way to change the internal volume of the tube and to store energy in the wall of the tube and/or a connected mechanical structure (e.g., a spring, etc.).
4.4 Peristaltic Pump
In a fourth variation of the dynamic tactile interface, the reservoir 130 includes any of a fluid bladder, a tube 341, a diaphragm, a bellows 245, a static vessel, or any other suitable vessel or container configured to hold fluid. The reservoir 130 is fluidly coupled to the fluid channel 112 via the displacement device 140, which includes a peristaltic pump configured to displace fluid into and out of the reservoir 130 to transition the deformable region 122 between the expanded and retracted settings, respectively.
In one example implementation, the reservoir 130 is partially defined by a portion of the substrate 110 opposite the tactile layer 120. For example, the portion of the substrate 110 can include a recessed area or valley. A first open stage channel 442 connects the portion of the substrate 110 to a first holding cavity 441 on the back surface of the substrate 110 proximal the portion of the substrate 110. A second open stage channel 442 further connects the first holding cavity 441 to a second holding cavity 441, and a third open stage channel 442 connects the second holding cavity 441 to a third holding cavity 441. The holding cavities are arranged equidistant from a common point, and the last (e.g., third) holding cavity 441 is fluidly coupled to the fluid channel 112, such as with a fluid via 446 that passes through the substrate 110 to meet the fluid channel 112, such as shown in
In this example implementation, the displacement device 140 further includes one tappet 443 retained over each holding cavity 441, a displacement plate 447, and a rotary actuator 143. The displacement plate 447 defines a channel in the form of a ring torus canted off-axis from an axis of rotation of the displacement plate 447, such as shown in
This example implementation of the displacement device 140 can include additional stages, such as a fourth stage with a fourth stage channel 442 that fluidly couples a fourth holding cavity 441 to the third holding cavity 441, such as shown in
The holding cavities can be hemispherical, such as with a spherical radius substantially equivalent to the sum of the spherical radius of a tappet 443 and the thickness of the elastomer layer 445, such as shown in
The size and geometry of the tappets 443 can be matched to the size and geometry of the holding cavities and/or the thickness of the elastomer layer 445 over the holding cavities. Generally, a tappet 443 can be sized for substantially minimal clearance between the elastomer layer 445 and the corresponding holding cavity 441 such that fluid leakage past the holding cavity 441 is substantially minimized when the tappet 443 is fully depressed, such as in during a steady-state position (e.g., a fully-retracted setting, a fully-expanded setting). The tappets 443 can also be of a substantially hard material. For example, for the holding cavity 441 that is substantially hemispherical, the tappets 443 can be stainless steel or casehardened chromium-molybdenum steel ballbearings. Alternatively, the tappets 443 can be cylindrical, conical, frustoconical, or any other suitable shape to match the geometry of the holding cavities.
In a similar configuration, the displacement plate 447 is inverted and fixed with two stage channels 442 fluidly coupled to an inlet and to an outlet through the displacement plate 447. A second actuator plate is arranged over the displacement plate 447, rotates around a center of the stationary displacement plate 447, and retains tappets 443 (e.g., ball bearings) at a specific radius from the center such that the tappets 443 fall into tracks on the displacement plate 447. As the tappets 443 are forced around the stationary displacement plate 447, a moving seal is formed which forces fluid into the inlet, around the channels, and out of the outlet of the displacement plate 447. However, in various configurations of this variation, the displacement device 140 can include any other component or feature of any other suitable material or geometry and can cooperate with the substrate 110 and/or reservoir in nay other way to transition the deformable region 122 between the retracted setting and expanded setting.
In the foregoing variations, implementations, example implementations, and examples, the steady-state position of the displacement device 140 and/or actuator can yield a positive pressure (i.e., greater than atmospheric pressure) within the reservoir 130, fluid channel, and cavity in and/or during a transition into the expanded setting and a negative pressure (i.e. vacuum, or less than atmospheric pressure) within the reservoir 130, fluid channel, and cavity in and/or during a transition into the retracted setting. Positive pressure in the enclosed fluid system (relative to atmospheric pressure) in the expanded setting can enable the deformable region 122 to rise above the peripheral region 121 to create a tactilely distinguishable feature on the tactile surface. Furthermore, negative pressure in the enclosed fluid system (relative to atmospheric pressure) in the retracted setting can draw fluid out of the cavity to substantially ensure that the deformable region 122 transitions to a position that is substantially flush with the peripheral region 121 to effectively eliminate a feature tactilely distinguishable from the peripheral region 121 on the tactile surface. For example, the displacement device 140 can maintain a pressure of 15 psi above atmospheric pressure within the enclosed fluid system in the expanded setting, and the displacement device 140 can maintain a pressure of 5 psi below atmospheric pressure within the enclosed fluid system in the retracted setting. However, the dynamic tactile interface can function in any other way to transition the deformable region 122 between retracted and expanded settings.
5. Sensor and Display
As shown in
As shown in
However, a sensor 160 and/or the display 150 can be implemented as described in U.S. patent application Ser. Nos. 11/969,848, 13/414,589, 13/456,010, 13/456,031, 13/465,737, and/or 13/465,772.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made in the foregoing embodiments of the invention without departing from the scope of this invention as defined in the following claims.
The application is a continuation of co-pending U.S. patent application Ser. No. 14/081,519, filed 15 Nov. 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/727,083, filed on 15 Nov. 2012, both of which are incorporated in their entirety by this reference. This application is further related to U.S. patent application Ser. No. 11/969,848, filed on 4 Jan. 2008, U.S. patent application Ser. No. 13/414,589, filed 7 Mar. 2012, U.S. patent application Ser. No. 13/456,010, filed 25 Apr. 2012, U.S. patent application Ser. No. 13/456,031, filed 25 Apr. 2012, U.S. patent application Ser. No. 13/465,737, filed 7 May 2012, and U.S. patent application Ser. No. 13/465,772, filed 7 May 2012, all of which are incorporated in their entireties by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2885967 | C et al. | May 1959 | A |
3034628 | Wadey | May 1962 | A |
3441111 | P | Apr 1969 | A |
3453967 | Durfee | Jul 1969 | A |
3490733 | Jean | Jan 1970 | A |
3659354 | Sutherland | May 1972 | A |
3759108 | Borom et al. | Sep 1973 | A |
3780236 | Gross | Dec 1973 | A |
3818487 | Brody et al. | Jun 1974 | A |
4109118 | Kley | Aug 1978 | A |
4181476 | Malbec | Jan 1980 | A |
4209819 | Seignemartin | Jun 1980 | A |
4290343 | Gram | Sep 1981 | A |
4307268 | Harper | Dec 1981 | A |
4467321 | Volnak | Aug 1984 | A |
4477700 | Balash et al. | Oct 1984 | A |
4517421 | Margolin | May 1985 | A |
4543000 | Hasenbalg | Sep 1985 | A |
4584625 | Kellogg | Apr 1986 | A |
4700025 | Hatayama et al. | Oct 1987 | A |
4743895 | Alexander | May 1988 | A |
4772205 | Chlumsky et al. | Sep 1988 | A |
4920343 | Schwartz | Apr 1990 | A |
4940734 | Ley et al. | Jul 1990 | A |
5090297 | Paynter | Feb 1992 | A |
5194852 | More et al. | Mar 1993 | A |
5195659 | Eiskant | Mar 1993 | A |
5212473 | Louis | May 1993 | A |
5222895 | Fricke | Jun 1993 | A |
5286199 | Kipke | Feb 1994 | A |
5346476 | Elson | Sep 1994 | A |
5369228 | Faust | Nov 1994 | A |
5412189 | Cragun | May 1995 | A |
5459461 | Crowley et al. | Oct 1995 | A |
5470212 | Pearce | Nov 1995 | A |
5488204 | Mead et al. | Jan 1996 | A |
5496174 | Garner | Mar 1996 | A |
5496175 | Oyama et al. | Mar 1996 | A |
5666112 | Crowley et al. | Sep 1997 | A |
5717423 | Parker | Feb 1998 | A |
5729222 | Iggulden et al. | Mar 1998 | A |
5742241 | Crowley et al. | Apr 1998 | A |
5754023 | Roston et al. | May 1998 | A |
5766013 | Vuyk | Jun 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5835080 | Beeteson et al. | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5917906 | Thornton | Jun 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5977867 | Blouin | Nov 1999 | A |
5982304 | Selker et al. | Nov 1999 | A |
6067116 | Yamano et al. | May 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6154201 | Levin et al. | Nov 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6169540 | Rosenberg et al. | Jan 2001 | B1 |
6187398 | Eldridge | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6218966 | Goodwin et al. | Apr 2001 | B1 |
6243074 | Fishkin et al. | Jun 2001 | B1 |
6243078 | Rosenberg | Jun 2001 | B1 |
6268857 | Fishkin et al. | Jul 2001 | B1 |
6271828 | Rosenberg et al. | Aug 2001 | B1 |
6278441 | Gouzman et al. | Aug 2001 | B1 |
6300937 | Rosenberg | Oct 2001 | B1 |
6310614 | Maeda et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6337678 | Fish | Jan 2002 | B1 |
6354839 | Schmidt et al. | Mar 2002 | B1 |
6356259 | Maeda et al. | Mar 2002 | B1 |
6359572 | Vale | Mar 2002 | B1 |
6366272 | Rosenberg et al. | Apr 2002 | B1 |
6369803 | Brisebois et al. | Apr 2002 | B2 |
6384743 | Vanderheiden | May 2002 | B1 |
6414671 | Gillespie et al. | Jul 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6437771 | Rosenberg et al. | Aug 2002 | B1 |
6462294 | Davidson et al. | Oct 2002 | B2 |
6469692 | Rosenberg | Oct 2002 | B2 |
6486872 | Rosenberg et al. | Nov 2002 | B2 |
6498353 | Nagle et al. | Dec 2002 | B2 |
6501462 | Garner | Dec 2002 | B1 |
6509892 | Cooper et al. | Jan 2003 | B1 |
6529183 | MacLean et al. | Mar 2003 | B1 |
6573844 | Venolia et al. | Jun 2003 | B1 |
6636202 | Ishmael et al. | Oct 2003 | B2 |
6639581 | Moore et al. | Oct 2003 | B1 |
6655788 | Freeman | Dec 2003 | B1 |
6657614 | Ito et al. | Dec 2003 | B1 |
6667738 | Murphy | Dec 2003 | B2 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6683627 | Ullmann et al. | Jan 2004 | B1 |
6686911 | Levin et al. | Feb 2004 | B1 |
6697086 | Rosenberg et al. | Feb 2004 | B2 |
6700556 | Richley et al. | Mar 2004 | B2 |
6703924 | Tecu et al. | Mar 2004 | B2 |
6743021 | Prince et al. | Jun 2004 | B2 |
6788295 | Inkster | Sep 2004 | B1 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6850222 | Rosenberg | Feb 2005 | B1 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6877986 | Fournier et al. | Apr 2005 | B2 |
6881063 | Yang | Apr 2005 | B2 |
6930234 | Davis | Aug 2005 | B2 |
6937225 | Kehlstadt et al. | Aug 2005 | B1 |
6975305 | Yamashita | Dec 2005 | B2 |
6979164 | Kramer | Dec 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
6995745 | Boon et al. | Feb 2006 | B2 |
7004655 | Ferrara | Feb 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7027032 | Rosenberg et al. | Apr 2006 | B2 |
7056051 | Fiffie | Jun 2006 | B2 |
7061467 | Rosenberg | Jun 2006 | B2 |
7064655 | Murray et al. | Jun 2006 | B2 |
7079111 | Ho | Jul 2006 | B2 |
7081888 | Cok et al. | Jul 2006 | B2 |
7096852 | Gregorio | Aug 2006 | B2 |
7102541 | Rosenberg | Sep 2006 | B2 |
7104152 | Levin et al. | Sep 2006 | B2 |
7106305 | Rosenberg | Sep 2006 | B2 |
7106313 | Schena et al. | Sep 2006 | B2 |
7109967 | Hioki et al. | Sep 2006 | B2 |
7112737 | Ramstein | Sep 2006 | B2 |
7113166 | Rosenberg et al. | Sep 2006 | B1 |
7116317 | Gregorio et al. | Oct 2006 | B2 |
7124425 | Anderson, Jr. et al. | Oct 2006 | B1 |
7129854 | Arneson et al. | Oct 2006 | B2 |
7131073 | Rosenberg et al. | Oct 2006 | B2 |
7136045 | Rosenberg et al. | Nov 2006 | B2 |
7138977 | Kinerk et al. | Nov 2006 | B2 |
7138985 | Nakajima | Nov 2006 | B2 |
7143785 | Maerkl et al. | Dec 2006 | B2 |
7144616 | Unger et al. | Dec 2006 | B1 |
7148875 | Rosenberg et al. | Dec 2006 | B2 |
7151432 | Tierling | Dec 2006 | B2 |
7151527 | Culver | Dec 2006 | B2 |
7151528 | Taylor et al. | Dec 2006 | B2 |
7154470 | Tierling | Dec 2006 | B2 |
7158112 | Rosenberg et al. | Jan 2007 | B2 |
7159008 | Wies et al. | Jan 2007 | B1 |
7161276 | Face | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7168042 | Braun et al. | Jan 2007 | B2 |
7176903 | Katsuki et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7191191 | Peurach et al. | Mar 2007 | B2 |
7193607 | Moore et al. | Mar 2007 | B2 |
7195170 | Matsumoto et al. | Mar 2007 | B2 |
7196688 | Schena | Mar 2007 | B2 |
7198137 | Olien | Apr 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7205981 | Cunningham | Apr 2007 | B2 |
7208671 | Chu | Apr 2007 | B2 |
7209028 | Boronkay et al. | Apr 2007 | B2 |
7209113 | Park | Apr 2007 | B2 |
7209117 | Rosenberg et al. | Apr 2007 | B2 |
7209118 | Shahoian et al. | Apr 2007 | B2 |
7210160 | Anderson, Jr. et al. | Apr 2007 | B2 |
7215326 | Rosenberg | May 2007 | B2 |
7216671 | Unger et al. | May 2007 | B2 |
7218310 | Tierling et al. | May 2007 | B2 |
7218313 | Marcus et al. | May 2007 | B2 |
7233313 | Levin et al. | Jun 2007 | B2 |
7233315 | Gregorio et al. | Jun 2007 | B2 |
7233476 | Goldenberg et al. | Jun 2007 | B2 |
7236157 | Schena et al. | Jun 2007 | B2 |
7245202 | Levin | Jul 2007 | B2 |
7245292 | Custy | Jul 2007 | B1 |
7249951 | Bevirt et al. | Jul 2007 | B2 |
7250128 | Unger et al. | Jul 2007 | B2 |
7253803 | Schena et al. | Aug 2007 | B2 |
7253807 | Nakajima | Aug 2007 | B2 |
7265750 | Rosenberg | Sep 2007 | B2 |
7280095 | Grant | Oct 2007 | B2 |
7283120 | Grant | Oct 2007 | B2 |
7283123 | Braun et al. | Oct 2007 | B2 |
7283696 | Ticknor et al. | Oct 2007 | B2 |
7289106 | Bailey et al. | Oct 2007 | B2 |
7289111 | Asbill | Oct 2007 | B2 |
7307619 | Cunningham et al. | Dec 2007 | B2 |
7308831 | Cunningham et al. | Dec 2007 | B2 |
7319374 | Shahoian | Jan 2008 | B2 |
7336260 | Martin et al. | Feb 2008 | B2 |
7336266 | Hayward et al. | Feb 2008 | B2 |
7339572 | Schena | Mar 2008 | B2 |
7339580 | Westerman et al. | Mar 2008 | B2 |
7342573 | Ryynaenen | Mar 2008 | B2 |
7355595 | Bathiche et al. | Apr 2008 | B2 |
7369115 | Cruz-Hernandez et al. | May 2008 | B2 |
7382357 | Panotopoulos et al. | Jun 2008 | B2 |
7390157 | Kramer | Jun 2008 | B2 |
7391861 | Levy | Jun 2008 | B2 |
7397466 | Bourdelais et al. | Jul 2008 | B2 |
7403191 | Sinclair | Jul 2008 | B2 |
7432910 | Shahoian | Oct 2008 | B2 |
7432911 | Skarine | Oct 2008 | B2 |
7432912 | Cote et al. | Oct 2008 | B2 |
7433719 | Dabov | Oct 2008 | B2 |
7453442 | Poynter | Nov 2008 | B1 |
7471280 | Prins | Dec 2008 | B2 |
7489309 | Levin et al. | Feb 2009 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7522152 | Olien et al. | Apr 2009 | B2 |
7545289 | Mackey et al. | Jun 2009 | B2 |
7548232 | Shahoian et al. | Jun 2009 | B2 |
7551161 | Mann | Jun 2009 | B2 |
7561142 | Shahoian et al. | Jul 2009 | B2 |
7567232 | Rosenberg | Jul 2009 | B2 |
7567243 | Hayward | Jul 2009 | B2 |
7589714 | Funaki | Sep 2009 | B2 |
7592999 | Rosenberg et al. | Sep 2009 | B2 |
7605800 | Rosenberg | Oct 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7659885 | Kraus et al. | Feb 2010 | B2 |
7671837 | Forsblad et al. | Mar 2010 | B2 |
7679611 | Schena | Mar 2010 | B2 |
7679839 | Polyakov et al. | Mar 2010 | B2 |
7688310 | Rosenberg | Mar 2010 | B2 |
7701438 | Chang et al. | Apr 2010 | B2 |
7728820 | Rosenberg et al. | Jun 2010 | B2 |
7733575 | Heim et al. | Jun 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7755602 | Tremblay et al. | Jul 2010 | B2 |
7808488 | Martin et al. | Oct 2010 | B2 |
7834853 | Finney et al. | Nov 2010 | B2 |
7843424 | Rosenberg et al. | Nov 2010 | B2 |
7864164 | Cunningham et al. | Jan 2011 | B2 |
7869589 | Tuovinen | Jan 2011 | B2 |
7890257 | Fyke et al. | Feb 2011 | B2 |
7890863 | Grant et al. | Feb 2011 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7924145 | Yuk et al. | Apr 2011 | B2 |
7944435 | Rosenberg et al. | May 2011 | B2 |
7952498 | Higa | May 2011 | B2 |
7956770 | Klinghult et al. | Jun 2011 | B2 |
7973773 | Pryor | Jul 2011 | B2 |
7978181 | Westerman | Jul 2011 | B2 |
7978183 | Rosenberg et al. | Jul 2011 | B2 |
7978186 | Vassallo et al. | Jul 2011 | B2 |
7979797 | Schena | Jul 2011 | B2 |
7982720 | Rosenberg et al. | Jul 2011 | B2 |
7986303 | Braun et al. | Jul 2011 | B2 |
7986306 | Eich et al. | Jul 2011 | B2 |
7989181 | Blattner et al. | Aug 2011 | B2 |
7999660 | Cybart et al. | Aug 2011 | B2 |
8002089 | Jasso et al. | Aug 2011 | B2 |
8004492 | Kramer et al. | Aug 2011 | B2 |
8013843 | Pryor | Sep 2011 | B2 |
8020095 | Braun et al. | Sep 2011 | B2 |
8022933 | Hardacker et al. | Sep 2011 | B2 |
8031181 | Rosenberg et al. | Oct 2011 | B2 |
8044826 | Yoo | Oct 2011 | B2 |
8047849 | Ahn et al. | Nov 2011 | B2 |
8049734 | Rosenberg et al. | Nov 2011 | B2 |
8059104 | Shahoian et al. | Nov 2011 | B2 |
8059105 | Rosenberg et al. | Nov 2011 | B2 |
8063892 | Shahoian et al. | Nov 2011 | B2 |
8063893 | Rosenberg et al. | Nov 2011 | B2 |
8068605 | Holmberg | Nov 2011 | B2 |
8077154 | Emig et al. | Dec 2011 | B2 |
8077440 | Krabbenborg et al. | Dec 2011 | B2 |
8077941 | Assmann | Dec 2011 | B2 |
8094121 | Obermeyer et al. | Jan 2012 | B2 |
8094806 | Levy | Jan 2012 | B2 |
8103472 | Braun et al. | Jan 2012 | B2 |
8106787 | Nurmi | Jan 2012 | B2 |
8115745 | Gray | Feb 2012 | B2 |
8116831 | Meitzler et al. | Feb 2012 | B2 |
8123660 | Kruse et al. | Feb 2012 | B2 |
8125347 | Fahn | Feb 2012 | B2 |
8125461 | Weber et al. | Feb 2012 | B2 |
8130202 | Levine et al. | Mar 2012 | B2 |
8144129 | Hotelling et al. | Mar 2012 | B2 |
8144271 | Han | Mar 2012 | B2 |
8154512 | Olien et al. | Apr 2012 | B2 |
8154527 | Ciesla et al. | Apr 2012 | B2 |
8159461 | Martin et al. | Apr 2012 | B2 |
8162009 | Chaffee | Apr 2012 | B2 |
8164573 | Dacosta et al. | Apr 2012 | B2 |
8166649 | Moore | May 2012 | B2 |
8169306 | Schmidt et al. | May 2012 | B2 |
8169402 | Shahoian et al. | May 2012 | B2 |
8174372 | Da Costa | May 2012 | B2 |
8174495 | Takashima et al. | May 2012 | B2 |
8174508 | Sinclair et al. | May 2012 | B2 |
8174511 | Takenaka et al. | May 2012 | B2 |
8178808 | Strittmatter | May 2012 | B2 |
8179375 | Ciesla et al. | May 2012 | B2 |
8179377 | Ciesla et al. | May 2012 | B2 |
8188989 | Levin et al. | May 2012 | B2 |
8195243 | Kim et al. | Jun 2012 | B2 |
8199107 | Xu et al. | Jun 2012 | B2 |
8199124 | Ciesla et al. | Jun 2012 | B2 |
8203094 | Mittleman et al. | Jun 2012 | B2 |
8203537 | Tanabe et al. | Jun 2012 | B2 |
8207950 | Ciesla et al. | Jun 2012 | B2 |
8212772 | Shahoian | Jul 2012 | B2 |
8217903 | Ma et al. | Jul 2012 | B2 |
8217904 | Kim | Jul 2012 | B2 |
8223278 | Kim et al. | Jul 2012 | B2 |
8224392 | Kim et al. | Jul 2012 | B2 |
8228305 | Pryor | Jul 2012 | B2 |
8232976 | Yun et al. | Jul 2012 | B2 |
8243038 | Ciesla et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8253703 | Eldering | Aug 2012 | B2 |
8279172 | Braun et al. | Oct 2012 | B2 |
8279193 | Birnbaum et al. | Oct 2012 | B1 |
8310458 | Faubert et al. | Nov 2012 | B2 |
8345013 | Heubel et al. | Jan 2013 | B2 |
8350820 | Deslippe et al. | Jan 2013 | B2 |
8362882 | Heubel et al. | Jan 2013 | B2 |
8363008 | Ryu et al. | Jan 2013 | B2 |
8367957 | Strittmatter | Feb 2013 | B2 |
8368641 | Tremblay et al. | Feb 2013 | B2 |
8378797 | Pance et al. | Feb 2013 | B2 |
8384680 | Paleczny et al. | Feb 2013 | B2 |
8390594 | Modarres et al. | Mar 2013 | B2 |
8390771 | Sakai et al. | Mar 2013 | B2 |
8395587 | Cauwels et al. | Mar 2013 | B2 |
8395591 | Kruglick | Mar 2013 | B2 |
8400402 | Son | Mar 2013 | B2 |
8400410 | Taylor et al. | Mar 2013 | B2 |
8547339 | Ciesla | Oct 2013 | B2 |
8587541 | Ciesla et al. | Nov 2013 | B2 |
8587548 | Ciesla et al. | Nov 2013 | B2 |
8749489 | Ito et al. | Jun 2014 | B2 |
8856679 | Sirpal et al. | Oct 2014 | B2 |
8922503 | Ciesla et al. | Dec 2014 | B2 |
8922510 | Ciesla et al. | Dec 2014 | B2 |
8928621 | Ciesla et al. | Jan 2015 | B2 |
8970403 | Ciesla et al. | Mar 2015 | B2 |
9035898 | Ciesla | May 2015 | B2 |
9075429 | Karakotsios | Jul 2015 | B1 |
9116617 | Ciesla et al. | Aug 2015 | B2 |
9128525 | Yairi | Sep 2015 | B2 |
9274612 | Ciesla et al. | Mar 2016 | B2 |
9274635 | Birnbaum | Mar 2016 | B2 |
20010008396 | Komata | Jul 2001 | A1 |
20010043189 | Brisebois et al. | Nov 2001 | A1 |
20020063694 | Keely et al. | May 2002 | A1 |
20020104691 | Kent et al. | Aug 2002 | A1 |
20020106614 | Prince et al. | Aug 2002 | A1 |
20020110237 | Krishnan | Aug 2002 | A1 |
20020125084 | Kreuzer et al. | Sep 2002 | A1 |
20020149570 | Knowles et al. | Oct 2002 | A1 |
20020180620 | Gettemy et al. | Dec 2002 | A1 |
20030087698 | Nishiumi et al. | May 2003 | A1 |
20030117371 | Roberts et al. | Jun 2003 | A1 |
20030179190 | Franzen | Sep 2003 | A1 |
20030206153 | Murphy | Nov 2003 | A1 |
20030223799 | Pihlaja | Dec 2003 | A1 |
20040001589 | Mueller et al. | Jan 2004 | A1 |
20040056876 | Nakajima | Mar 2004 | A1 |
20040056877 | Nakajima | Mar 2004 | A1 |
20040106360 | Farmer et al. | Jun 2004 | A1 |
20040114324 | Kusaka et al. | Jun 2004 | A1 |
20040164968 | Miyamoto | Aug 2004 | A1 |
20040178006 | Cok | Sep 2004 | A1 |
20050007339 | Sato | Jan 2005 | A1 |
20050007349 | Vakil et al. | Jan 2005 | A1 |
20050020325 | Enger et al. | Jan 2005 | A1 |
20050030292 | Diederiks | Feb 2005 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050073506 | Durso | Apr 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050162408 | Martchovsky | Jul 2005 | A1 |
20050212773 | Asbill | Sep 2005 | A1 |
20050231489 | Ladouceur et al. | Oct 2005 | A1 |
20050253816 | Himberg et al. | Nov 2005 | A1 |
20050270444 | Miller et al. | Dec 2005 | A1 |
20050285846 | Funaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060053387 | Ording | Mar 2006 | A1 |
20060087479 | Sakurai et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060098148 | Kobayashi et al. | May 2006 | A1 |
20060118610 | Pihlaja et al. | Jun 2006 | A1 |
20060119586 | Grant et al. | Jun 2006 | A1 |
20060152474 | Saito et al. | Jul 2006 | A1 |
20060154216 | Hafez et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060214923 | Chiu et al. | Sep 2006 | A1 |
20060238495 | Davis | Oct 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060238517 | King et al. | Oct 2006 | A1 |
20060256075 | Anastas et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20070013662 | Fauth | Jan 2007 | A1 |
20070036492 | Lee | Feb 2007 | A1 |
20070085837 | Ricks et al. | Apr 2007 | A1 |
20070108032 | Matsumoto et al. | May 2007 | A1 |
20070122314 | Strand et al. | May 2007 | A1 |
20070130212 | Peurach et al. | Jun 2007 | A1 |
20070152982 | Kim et al. | Jul 2007 | A1 |
20070152983 | Mckillop et al. | Jul 2007 | A1 |
20070165004 | Seelhammer et al. | Jul 2007 | A1 |
20070171210 | Chaudhri et al. | Jul 2007 | A1 |
20070182718 | Schoener et al. | Aug 2007 | A1 |
20070229233 | Dort | Oct 2007 | A1 |
20070229464 | Hotelling et al. | Oct 2007 | A1 |
20070236466 | Hotelling | Oct 2007 | A1 |
20070236469 | Woolley et al. | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070257634 | Leschin et al. | Nov 2007 | A1 |
20070273561 | Philipp | Nov 2007 | A1 |
20070296702 | Strawn et al. | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20080010593 | Uusitalo et al. | Jan 2008 | A1 |
20080024459 | Poupyrev et al. | Jan 2008 | A1 |
20080054875 | Saito | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080136791 | Nissar | Jun 2008 | A1 |
20080138774 | Ahn et al. | Jun 2008 | A1 |
20080143693 | Schena | Jun 2008 | A1 |
20080150911 | Harrison | Jun 2008 | A1 |
20080165139 | Hotelling et al. | Jul 2008 | A1 |
20080174321 | Kang et al. | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080202251 | Serban et al. | Aug 2008 | A1 |
20080238448 | Moore et al. | Oct 2008 | A1 |
20080248836 | Caine | Oct 2008 | A1 |
20080249643 | Nelson | Oct 2008 | A1 |
20080251368 | Holmberg et al. | Oct 2008 | A1 |
20080252607 | De Jong et al. | Oct 2008 | A1 |
20080266264 | Lipponen et al. | Oct 2008 | A1 |
20080286447 | Alden et al. | Nov 2008 | A1 |
20080291169 | Brenner et al. | Nov 2008 | A1 |
20080297475 | Woolf et al. | Dec 2008 | A1 |
20080303796 | Fyke | Dec 2008 | A1 |
20080312577 | Drasler et al. | Dec 2008 | A1 |
20080314725 | Karhiniemi et al. | Dec 2008 | A1 |
20090002140 | Higa | Jan 2009 | A1 |
20090002205 | Klinghult et al. | Jan 2009 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090009480 | Heringslack | Jan 2009 | A1 |
20090015547 | Franz et al. | Jan 2009 | A1 |
20090028824 | Chiang et al. | Jan 2009 | A1 |
20090033617 | Lindberg et al. | Feb 2009 | A1 |
20090059495 | Matsuoka | Mar 2009 | A1 |
20090066672 | Tanabe et al. | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090106655 | Grant et al. | Apr 2009 | A1 |
20090115733 | Ma et al. | May 2009 | A1 |
20090115734 | Fredriksson et al. | May 2009 | A1 |
20090128376 | Caine et al. | May 2009 | A1 |
20090128503 | Grant et al. | May 2009 | A1 |
20090129021 | Dunn | May 2009 | A1 |
20090132093 | Arneson et al. | May 2009 | A1 |
20090135145 | Chen et al. | May 2009 | A1 |
20090140989 | Ahlgren | Jun 2009 | A1 |
20090160813 | Takashima et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090167567 | Halperin et al. | Jul 2009 | A1 |
20090167677 | Kruse et al. | Jul 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090174673 | Ciesla | Jul 2009 | A1 |
20090174687 | Ciesla | Jul 2009 | A1 |
20090181724 | Pettersson | Jul 2009 | A1 |
20090182501 | Fyke et al. | Jul 2009 | A1 |
20090195512 | Pettersson | Aug 2009 | A1 |
20090207148 | Sugimoto et al. | Aug 2009 | A1 |
20090215500 | You et al. | Aug 2009 | A1 |
20090231305 | Hotelling et al. | Sep 2009 | A1 |
20090243998 | Wang | Oct 2009 | A1 |
20090250267 | Heubel et al. | Oct 2009 | A1 |
20090256817 | Perlin et al. | Oct 2009 | A1 |
20090273578 | Kanda et al. | Nov 2009 | A1 |
20090289922 | Henry | Nov 2009 | A1 |
20090303022 | Griffin et al. | Dec 2009 | A1 |
20090309616 | Klinghult | Dec 2009 | A1 |
20100043189 | Fukano | Feb 2010 | A1 |
20100045613 | Wu et al. | Feb 2010 | A1 |
20100073241 | Ayala Vazquez et al. | Mar 2010 | A1 |
20100078231 | Yeh et al. | Apr 2010 | A1 |
20100079404 | Degner et al. | Apr 2010 | A1 |
20100090814 | Cybart et al. | Apr 2010 | A1 |
20100097323 | Edwards et al. | Apr 2010 | A1 |
20100103116 | Leung et al. | Apr 2010 | A1 |
20100103137 | Ciesla et al. | Apr 2010 | A1 |
20100109486 | Polyakov et al. | May 2010 | A1 |
20100121928 | Leonard | May 2010 | A1 |
20100141608 | Huang et al. | Jun 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100171719 | Craig et al. | Jul 2010 | A1 |
20100171720 | Craig et al. | Jul 2010 | A1 |
20100171729 | Chun | Jul 2010 | A1 |
20100177050 | Heubel et al. | Jul 2010 | A1 |
20100182135 | Moosavi | Jul 2010 | A1 |
20100182245 | Edwards et al. | Jul 2010 | A1 |
20100225456 | Eldering | Sep 2010 | A1 |
20100232107 | Dunn | Sep 2010 | A1 |
20100237043 | Garlough | Sep 2010 | A1 |
20100238367 | Montgomery et al. | Sep 2010 | A1 |
20100295820 | Kikin-Gil | Nov 2010 | A1 |
20100296248 | Campbell et al. | Nov 2010 | A1 |
20100298032 | Lee et al. | Nov 2010 | A1 |
20100302199 | Taylor et al. | Dec 2010 | A1 |
20100321335 | Lim et al. | Dec 2010 | A1 |
20110001613 | Ciesla et al. | Jan 2011 | A1 |
20110011650 | Klinghult | Jan 2011 | A1 |
20110012851 | Ciesla et al. | Jan 2011 | A1 |
20110018813 | Kruglick | Jan 2011 | A1 |
20110029862 | Scott et al. | Feb 2011 | A1 |
20110043457 | Oliver et al. | Feb 2011 | A1 |
20110060998 | Schwartz et al. | Mar 2011 | A1 |
20110074691 | Causey et al. | Mar 2011 | A1 |
20110102462 | Birnbaum | May 2011 | A1 |
20110120784 | Osoinach et al. | May 2011 | A1 |
20110148793 | Ciesla et al. | Jun 2011 | A1 |
20110148807 | Fryer | Jun 2011 | A1 |
20110157056 | Karpfinger | Jun 2011 | A1 |
20110157080 | Ciesla et al. | Jun 2011 | A1 |
20110163978 | Park et al. | Jul 2011 | A1 |
20110175838 | Higa | Jul 2011 | A1 |
20110175844 | Berggren | Jul 2011 | A1 |
20110181530 | Park et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110194230 | Hart et al. | Aug 2011 | A1 |
20110234502 | Yun et al. | Sep 2011 | A1 |
20110241442 | Mittleman et al. | Oct 2011 | A1 |
20110242749 | Huang et al. | Oct 2011 | A1 |
20110248987 | Mitchell | Oct 2011 | A1 |
20110254672 | Ciesla et al. | Oct 2011 | A1 |
20110254709 | Ciesla et al. | Oct 2011 | A1 |
20110254789 | Ciesla et al. | Oct 2011 | A1 |
20110306931 | Kamen et al. | Dec 2011 | A1 |
20120032886 | Ciesla et al. | Feb 2012 | A1 |
20120038583 | Westhues et al. | Feb 2012 | A1 |
20120043191 | Kessler et al. | Feb 2012 | A1 |
20120044277 | Adachi | Feb 2012 | A1 |
20120056846 | Zaliva | Mar 2012 | A1 |
20120062483 | Ciesla et al. | Mar 2012 | A1 |
20120080302 | Kim et al. | Apr 2012 | A1 |
20120098789 | Ciesla et al. | Apr 2012 | A1 |
20120105333 | Maschmeyer et al. | May 2012 | A1 |
20120120357 | Jiroku | May 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120193211 | Ciesla et al. | Aug 2012 | A1 |
20120200528 | Ciesla et al. | Aug 2012 | A1 |
20120200529 | Ciesla et al. | Aug 2012 | A1 |
20120206364 | Ciesla et al. | Aug 2012 | A1 |
20120218213 | Ciesla et al. | Aug 2012 | A1 |
20120218214 | Ciesla et al. | Aug 2012 | A1 |
20120223914 | Ciesla et al. | Sep 2012 | A1 |
20120235935 | Ciesla et al. | Sep 2012 | A1 |
20120242607 | Ciesla et al. | Sep 2012 | A1 |
20120306787 | Ciesla et al. | Dec 2012 | A1 |
20130019207 | Rothkopf et al. | Jan 2013 | A1 |
20130127790 | Wassvik | May 2013 | A1 |
20130141118 | Guard | Jun 2013 | A1 |
20130215035 | Guard | Aug 2013 | A1 |
20130275888 | Williamson et al. | Oct 2013 | A1 |
20140043291 | Ciesla et al. | Feb 2014 | A1 |
20140132532 | Yairi et al. | May 2014 | A1 |
20140160044 | Yairi et al. | Jun 2014 | A1 |
20140160063 | Yairi et al. | Jun 2014 | A1 |
20140160064 | Yairi et al. | Jun 2014 | A1 |
20140176489 | Park | Jun 2014 | A1 |
20150009150 | Cho et al. | Jan 2015 | A1 |
20150015573 | Burtzlaff et al. | Jan 2015 | A1 |
20150091834 | Johnson | Apr 2015 | A1 |
20150091870 | Ciesla et al. | Apr 2015 | A1 |
20150138110 | Yairi et al. | May 2015 | A1 |
20150145657 | Levesque et al. | May 2015 | A1 |
20150205419 | Calub et al. | Jul 2015 | A1 |
20150293591 | Yairi et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1260525 | Jul 2000 | CN |
1530818 | Sep 2004 | CN |
1882460 | Dec 2006 | CN |
2000884 | Dec 2008 | EP |
190403152 | Dec 1904 | GB |
108771 | Aug 1917 | GB |
1242418 | Aug 1971 | GB |
S63164122 | Jul 1988 | JP |
10255106 | Sep 1998 | JP |
H10255106 | Sep 1998 | JP |
2006268068 | Oct 2006 | JP |
2006285785 | Oct 2006 | JP |
200964357 | Mar 2009 | JP |
2009064357 | Mar 2009 | JP |
2010039602 | Feb 2010 | JP |
2010072743 | Apr 2010 | JP |
2011508935 | Mar 2011 | JP |
20000010511 | Feb 2000 | KR |
100677624 | Jan 2007 | KR |
20090023364 | Nov 2012 | KR |
2004028955 | Apr 2004 | WO |
2006082020 | Aug 2006 | WO |
2008037275 | Apr 2008 | WO |
2009002605 | Dec 2008 | WO |
2009044027 | Apr 2009 | WO |
2009067572 | May 2009 | WO |
2009088985 | Jul 2009 | WO |
2010077382 | Jul 2010 | WO |
2010078596 | Jul 2010 | WO |
2010078597 | Jul 2010 | WO |
2011003113 | Jan 2011 | WO |
2011087816 | Jul 2011 | WO |
2011087817 | Jul 2011 | WO |
2011108382 | Sep 2011 | WO |
2011112984 | Sep 2011 | WO |
2011118382 | Sep 2011 | WO |
2011133604 | Oct 2011 | WO |
2011133605 | Oct 2011 | WO |
2013173624 | Nov 2013 | WO |
2014047656 | Mar 2014 | WO |
Entry |
---|
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html. |
Essilor. “Ophthalmic Optic Files Materials,” Essilor International, Ser 145 Paris France, Mar. 1997, pp. 1-29, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <http://www.essiloracademy.eu/sites/default/files/9. Materials.pdf>. |
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 Pages. |
Lind. “Two Decades of Negative Thermal Expansion Research: Where Do We Stand?” Department of Chemistry, the University of Toledo, Materials 2012, 5, 1125-1154; doi:10.3390/ma5061125, Jun. 20, 2012 (Jun. 20, 2012) pp. 1125-1154, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <https://www.google.com/webhp? sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=materials-05-01125.pdf> . |
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011. |
Number | Date | Country | |
---|---|---|---|
20150331525 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61727083 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14081519 | Nov 2013 | US |
Child | 14807750 | US |