This invention pertains to methods and apparatus for accurately determining mass-related properties of an article, such as weight or moment of inertia, and more specifically it pertains to weighing articles that are in motion.
Many weighing systems are known, some dating back to biblical times. More recently, weighing systems have been developed for weighing each one of a stream of articles, such as mail pieces or parcels moving through a transport or mail sorting system. Prior art systems of that type are shown, for example, in U.S. Pat. Nos. 7,096,152 and 3,648,839.
Some known systems rely on back-EMF or “Electro Magnetic Force Restoration” principles. According to one vendor, “an applied load is compensated for by an electromagnetically produced counterforce. A precision position control (optical) keeps the system stable. The slightest movement is detected, initiates a feedback circuit to run current through a coil and causes the load to be returned to its original position. The coil current, which is proportional to the weight, is transmitted to an internal A/D converter then processed in the microprocessor.”
Commonly-owned U.S. Pat. No. 7,687,727 discloses an improved in-line scale for very fast, accurate measurement of moving items such as mailpieces moving along a transport system. However, inaccuracies in such measurements can result from variations in the thickness of the items under measurement. The need remains for improvements in in-line weighing systems.
In one class of embodiments, an article whose mass-related property is to be measured is presented, for example by entering a “weighing station” via a transport mechanism such as a belt transport. Details of such transport mechanisms are well known in various contexts, including mail sorting machines. In alternative embodiments, the weighing apparatus might be used separately, for example in a machine arranged to apply the correct postage to a mail piece.
In some embodiments, a weighing apparatus in accordance with the present disclosure receives an article that has a measured or otherwise known initial state of movement (or rest). There is also a predetermined or “commanded” final state of movement (or rest) of the article. And finally, a mechanism is provided that applies an impulse to move the object from its initial state to the commanded final state. (The term “mechanism” is used in this application in a broad sense. It is not limited to purely mechanical contrivances; to the contrary, it refers to any and all mechanical, electrical, optical, electro-mechanical systems, software controlled systems, and combinations thereof that provide the described functionality.)
The impulse-applying mechanism must include or be coupled to some means of measuring or capturing information as a proxy for the actual impulse. In other words, the impulse typically is measured indirectly. For example, a curve of the torque that applies the impulse through a motor can be used to infer sufficient information about the applied impulse. The measured proxy is then calibrated by articles of known mass-related properties and the calibrated values are used to determine the article's mass-related properties. The use of calibration allows considerable simplification to take place. As explained below, in a preferred embodiment, this approach obviates the need for actual or absolute measurements such as article velocity. Indeed, velocity is not critical and need not be measured in absolute terms. One primary improvement of the present invention over prior art is that it allows weighing of articles at normal transport speeds; for example, hundreds of inches per second for mail pieces.
In one embodiment, a method for weighing a moving article on the fly comprises the following steps:
Additional aspects and advantages of this invention will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.
Turning now to
Still referring to
A second photo sensor detects movement of the article from the first section into the second section. The second section comprises a second motor assembly, similar to the first section. However, in accordance with the present invention, the second section is modified by replacing the common DC brush motor with a precision servo system further described below.
Accordingly, in one embodiment, a transport mechanism (first section) projects an article at some initial velocity into the measuring apparatus. For example, in mail piece handling, a belt driven transport mechanism is commonplace. That velocity is known to the system itself (for such things as spacing the articles along their route), but its value is not important and indeed is neither calculated nor used in the process of weighing the article. This ignorance by the weighing mechanism of the initial velocity of the article is material, since much of the prior art measures mass by calculating the difference between initial and final velocities of the article. Since the initial velocity is not provided to the weighing apparatus, such approach is precluded.
In one embodiment (see below for others) the article then enters a measuring apparatus which pinches the article between two rollers. In the illustrative example in the drawings, the “measuring apparatus” generally corresponds to the second transport section, also referred to as a weigh station. The measuring apparatus has been commanded to output the article at a second velocity (which may be higher or lower than the input velocity). This corresponds to the speed setting 130 of
The solenoids that operate the pinch roller pivot arms are controlled so that, while an article is in the second section (weigh station), as detected by the photo sensors, the first and third transport section rollers are withdrawn from the motor hubs so that the weigh station pinch roller assembly supports the article. In this way, acceleration and deceleration of the article are accurately reflected in the servo loop that drives the weigh station servo motor.
It is important to state that it does not matter what that final angular velocity is. Unlike prior system, such as those disclosed on U.S. Pat. No. 7,096,152 or 3,648,839, the proposed system makes no absolute measurements at all. It works on calibration of torque, not absolute measurements of current or velocity.
The application of a precision instrument grade servo system to the problem of weighing mail pieces or parcels while they are moving at a high speed enables multiple approaches to mass calculation. In a preferred embodiment, the servo mechanism is in continuous communication and control of all of the moving roller system components prior to introduction of the item to be weighed. In this way a state of nominal motion or equilibrium can be established and related to the zero state of the scale. (Recall zero state data can be stored in data store 148 of
The servo mechanism, by way of electronic and mechanical feedback loops, rapidly responds by injecting correcting signals to re-establish the nominal motion state. By measuring the error-correcting signals generated by the servo system and scaling by a calibration factor, a mass calculation can be made. Other methods of using servo data are described later.
Since much of the prior art discusses calculating the weight (mass) of the articles, it bears mentioning here that the proposed system can work quite well with no actual calculation of article mass at all. All that really matters is the comparison of the mass-related property of the article to the mass-related properties of one or more calibration articles. Experimental data from a prototype is discussed later.
Other embodiments include but are not limited to the following:
Non-linear relationships between the mass-related property of the article and the measured property are also envisioned by the proposed system. In such a case, sufficient calibration is required as to adequately define the relationships. It is not a requirement in every embodiment that the article be propelled by a transport mechanism. It can for example, be self-propelled. In one embodiment, the object is a truck which moves at some measured velocity into the weighing apparatus. One possible system use is sorting the objects, such as mail pieces, into bins based on their determined weight (though this sortation is not a requirement of the proposed system). Another use may be to assess taxes based on vehicle weight (for, say, a truck).
The left transport belt 910/902 conveys the mail piece 900 into a weighing station 950, further described below. After weighing, the mail piece proceeds to exit the weighing station 950 by engagement in between right transport belt 918 and belt 902, again moving at the system transport speed. The right belt 918 is guided and or driven by rollers F, G and H as shown. These various belts are shown also in an exploded view in
Turning now to the weighing station 950 in
The weigh belts are synchronized to the same speed, for example 250 inches per second, which represents acceleration from the transport belt speed (150 ips in the example). The weigh belts should be coupled to a precision servo motor so that motion of the weighing belts translates to a corresponding rotation of the motor, and vice versa. In other words, there should be little or no slippage between the servo motor and the weighing belts. A separate motor may be coupled to each belt, as long as the motors and respective belts are synchronized, or a single motor may be used. Two motors are shown in the illustrated embodiment.
An example of a suitable servo motor is commercially available Teknic model M-2330. This is an instrument grade, brushless AC servo motor with integrated encoder. Peak torque is on the order of 160 ounce-inches. Other precision motors can be used and should be considered equivalents. A high power density motor is preferred for building a weighing system into a confined space. The shaft encoder may provide, for example, on the order of 4,000 to 8,000 counts per revolution.
As mentioned,
In operation of the assembly of
Accordingly, when the mail piece arrives in the weigh station 950 (as detected, for example, by photo sensors described later), the piece is released from the transport belts, and substantially immediately gripped in the upper and lower weigh belts (
In the weigh station, the piece may be accelerated and or decelerated by the servo motor as discussed earlier to accomplish a weighing operation. The weigh belts thus change speed to make the measurement; the transport belts preferably operate at constant speed. The piece then exits the weigh station, continuing to move from left to right in
A second pair of transport belts 1122 front and 1120 rear, are arranged to convey a mail piece, also at normal transport belt speed, when the system is not performing a weighing operation. The second transport belts 1122, 1120 are spaced above the primary transport belts (as well as the weigh belts), as best seen in the exploded perspective view of
A third pair of transport belts 1130, 1132 (
The piece then exits the weigh station, continuing to move from left to right in
At the right or intake side of the drawing, a “PHOTO EYE #0” comprises a light source and a corresponding photo detector 1202, arranged to detect the arrival of an incoming mail piece (not shown) as the leading or front edge of the mail piece traverses the light beam. The resulting electrical signal can be used to trigger a camera 1204 to start a new image capture. The camera then uploads image data to an image capture and processing component 1214. This process preferably is implemented in software, and may be implemented in the ILS Processor 1212 in some embodiments. The image capture process 1214 stores the mail piece image data in a datastore 1218. In some embodiments, the system may be coupled to another database, e.g. an postal service ICS database, in which case the image data may be stored there. After weighing, the ILS Processor stores the determined weight of a piece in the database 1218 in association with the corresponding image data.
The image capture process 1214 may utilize an OCR engine (software) 1216 to extract or “read” a destination address, or at least ZIP code, from captured mail piece image. These components may communicate over a local network 1240, for example an Ethernet network. Destination address data also may be stored in 1218 in association with the item image or other identifying data. In an embodiment, ID Tag data from an ICS may be used as an identifier.
Another database 1280 stores data for a batch of mail to be weighed in the ILS. The database 1280 may include information about the mail pieces in the batch and the postage paid for mailing the pieces. The database 1280 may include data or a machine-readable “manifest” provided by a sender or pre-sort house. For example, it may have a list of the mail pieces in the batch. They may be listed individually, by destination address, destination postal code, or using an internal ID number. Or, there may simply be a listing of the numbers of items, in total, or per zip code range, or per individual zip code. Other variations may be provided by a mailer for its own internal purposes.
The database 1280 preferably includes postage information as well. This may be the actual amount of postage paid for each individual item, where individual items are listed. Alternatively, summary data may be used where mail pieces are grouped or aggregated such that a bunch of items have the same postage paid. The database 1280 may include mailer permit information, postage rates, discounts, etc. Using this information, the ILS Processor 1212 or another process can correlate the mail pieces reflected in the manifest in database 1280, with the weights of the corresponding pieces, stored at 1218. It can determine the appropriate postage for each piece, and compare the actual postage paid for the piece. The difference, if any, is owed to the postal service (assuming the subject mail piece is processed by the postal service). In some applications, this system may be used to correct the postage for a batch (or individual items) before submission to the postal service.
Next we proceed to the weighing operations. After the envelope passes by the camera 1204 (again, moving right to left in the drawing), a second photo detector pair (“PHOTO EYE #1) 1220 detects the leading edge entering the in-line scale or weighing region. The photo detector 1220 is coupled to a scale system controller 1230. A third photo detector pair 1232, and a fourth photo detector pair 1234 also are coupled to the scale system controller 1230. Operation of these devices is described below. The scale system controller 1230 may be connected by any suitable data network arrangement, such as an Ethernet network 1240, for communication and data transfers with other components as indicated in the drawing, and with the sorter system controller (not shown).
Referring again to
In addition, the weigh station pinch roller 1254 may be mounted on an active swing arm assembly, as distinguished from a traditional spring-loaded swing arm. Here, the swing arm (or tension arm) is coupled to a tension arm servo controller 1260. The servo controller precisely controls force applied to the tension arm as further explained later. A passive spring system, by contrast, presents increased force (due to increased spring compression) on thicker mail pieces. One example of an active swing arm assembly is described below with regard to
Two additional capstan and pinch roller assemblies provide speed normalization for mail pieces of varying length. A capstan 1266 and opposing pinch roller 1268 ensures that all mail pieces are presented to the measurement rollers in the weigh station at uniform velocity. Another capstan 1270 and opposing pinch roller 1272 restores each mail piece to the original transport speed. These capstans may be controlled by a speed controller 1274. These outboard pinch rollers may be controlled (opened and closed) by the scale system controller 1230.
The controller coordinates their actions, based on input from the photo detectors, to grip a mail piece in the weigh station assembly (1252, 1254), immediately after releasing it from the input side pinch roller assembly (1266, 1268) or at substantially the same time as the piece is released, so as to minimize slowdown. Preferably, the grip in the weigh station is fast and firm, so as to minimize slippage in the rollers. For example, the force applied may be on the order of two pounds force. In an embodiment, this gripping force is applied by the tension arm motor, under a precise servo control, and further described below. Slippage is also minimized by synchronized, active drive of the capstan roller and the pinch roller, rather than using a passive pinch roller. In another embodiment, a lesser gripping force may be applied. A system may be programmed to wait, for example on the order of 10 msec, to ensure that the piece has stopped slipping.
In one embodiment, the servo controller 1250 receives speed feedback from the capstan motor 1252, and drives the motor as programmed. For example, it may be arranged to accelerate or decelerate the mail piece by a predetermined amount. The servo loop must be fast and accurate enough to accelerate (and/or decelerate) a mail piece as commanded within a time frame that is practical for in-line applications. Suitable servo motors and amplifiers are described above. Preferably, weighing of one piece is done within approximately 40 msec. The motor torque profile acquired during that acceleration can be analyzed to determine weight of the mail piece. The acceleration produces a spike or impulse in motor torque that may be captured and analyzed to determine weight. By contrast, a constant velocity in this scale would not work.
In other embodiments, mentioned above, the servo system may not seek to accelerate or decelerate the piece to a new velocity. Rather, it may inject an impulse to maintain a zero weight state.
In operation, the intake capstan 1402 operates (CCW) at the same speed as a belt-driven transport section, if the weighing apparatus is installed in a larger machine such as a sorter, to normalize the speed of a mail piece for pieces of different lengths. This enables all incoming pieces to enter the weighing assembly at the same speed. The actual or absolute value of that speed is not critical for present purposes. In contradistinction to prior art, this system does not rely on speed measurements. It is merely necessary that all articles are presented to the weighing servo at identical speed regardless of length.
Referring again to
Capstan Motor 1312 also indirectly drives an opposing Pinch Roller 1316 (see
Note the presence of a rigid tension arm 1320. The tension arm is mounted at one end on shaft 1332 of the tension arm motor 1330. The tension arm 1320 supports the idler Gear2 which is mounted on a bearing for free rotation. The other end of the tension arm, opposite the tension arm motor, comprises a generally cylindrical housing 1320(a), although the exact shape is not critical. Housing 1320(a) has a shaft 1314 rotatably mounted therein, for example in a bearing assembly (not shown). The shaft 1314 extends upward through the deck 1300 to drive the Pinch Roller. The shaft is driven by Belt2 by means of a pulley 1340 mounted on the shaft 1314.
In operation, the tension arm motor 1330 rotates the tension arm through a limited range on the order of approximately +/−10 degrees from a neutral or center setting. The exact range of motion is not critical. This rotation serves to adjust the position of the pinch roller 1316, as it is mounted to the tension arm as mentioned. An oblong slot 1315 in the deck accommodates this motion (see
The tension arm motor 1330 preferably is driven by a precision servo control system, so that it provides a selected constant force on the Pinch Roller. This feature is distinguished from other systems in which pinch rollers generally are urged against the capstan roller by a spring. Springs provide a tension or force that varies with distance (compression of the spring). A spring therefore would cause the tension in a mail system to vary with the thickness of each mailpiece, interfering with weighing operations as described herein. The system described above provides a constant force for gripping a mail piece in the weighing apparatus independent of the thickness of the mail piece (within reasonable bounds). Note that tension arm servo controller data can be used to record mail piece thickness if desired.
In one embodiment, a motion damper 1390 is fixed to the deck (see
In a preferred embodiment, a capstan motor may be a commercially available servo motor such as Teknic model M-2311P or similar. The capstan motor may be controlled using, for example, a servo amplifier such as Teknic model SST-E545-RCX-4-1-3 or similar. In these amplifiers, also called servo drives, a high-speed DSP control processor controls all of the feedback loops: position, velocity and actual torque. Torque is actively measured and controlled, with losses in the motor effectively minimized. The operation is substantially all-digital: the motor measurements are converted directly into digital format for the DSP and the outputs to the motor are digital PWM pulse streams. In alternative solutions, analog processing may be used, as long as the performance characteristics described herein are met.
The tension arm motor may be a commercially available servo motor such as Glentek model GMBM-40100-13-0000000 or similar (Glentek, El Segundo, Calif.). This too is a brushless AC servo motor. It provides a 100 W power rating, 3000 rpm rated speed, and has a peak stall torque of about nine lb-inches. It may be controlled with a servo amplifier such as Glentek—SMA9807-003-001-1A-1 or similar. In operation, the servo amplifier can provide output data, in analog or digital form, that indicates torque applied to the motor as a function of time.
In one embodiment, mail pieces travel into and leave the scale at a speed on the order of 13 feet/second (156 inches per second). As noted, the exact transport speed is not critical. In a preferred embodiment, the system can calculate weight of each piece in real time. That leaves about 70 msec available for each measurement. Within that time, a system may capture, for example, 128 sample measurements from the capstan servo motor amplifier. Weighing accuracy should be within a range of approximately +/−7 grams (0.25 ounce). Prototypes have demonstrated accuracy on the order of +/−1 gram (0.035 ounce).
In some embodiments, the motion damper 1390 may succeed in damping unwanted vibration, but it also slows the opening and closing of the spacing or “gap” between the capstan roller and the opposed pinch roller (1316). This can adversely affect operation in very high-speed applications. Management of this gap is useful to higher speed weighing operations. For example, in some embodiments, the tension arm motion may take around 25 milliseconds to close on a mail piece. In some mail sorting systems, a 5-inch long mail piece represents a measurement interval of approximately 53 milliseconds, so just closing the gap to begin measurement takes up about half of the time available. Further, after measurement, the tension arm motion takes additional time to open the gap for removing the item. The timing of the operation is further complicated because of mail pieces (or other objects being weighed) that vary in length from one piece to another.
One way to alleviate this problem is to reduce the mass of the tension arm (1320). This may be done by modifying its design configuration, and or changing the material to a lighter material that still provides the necessary strength, stiffness, etc. For example, some plastics or carbon fiber composites may be suitable. A lighter tension arm could be repositioned more quickly (other factors being roughly equal).
The mechanical damping described above is functional but it introduces problems with gap management in some embodiments. The damper suppresses unwanted vibration during measurements, but it also retards opening the gap when a measurement is complete. Moreover, when a piece of varying thickness is processed, weight may be miscalculated, again because the damping interferes with the tension arm servo loop operation. Since the damper resists opening the gap (rotating the tension arm), if a piece gets thicker say, half way through its measurement, the capstan servo must apply torque to open it. And yet, this extra torque has nothing to do with the weight of the piece. This problem may be called the “credit card syndrome,” alluding to mail pieces that contain credit cards.
An alternative embodiment employs active electronic damping, instead of using a mechanical damper as described above. In this embodiment, the damping function is controllable, and may be varied or switched on and off, depending on the state of the weigh operation. The damping is ON during weighing, i.e., when the tension arm is commanded to close. When the tension arm closes to grip an article, various tolerances and elasticity in the system will lead to some “bounce” which is to say a reversal in direction of the velocity of the tension arm. Moreover, repeated “bouncing” results in oscillation, all of which increase the time necessary for the weighing apparatus to “settle” before accurate measurement data can be acquired. By damping the system, when closing the tension arm, the settling time can be reduced, and thus the throughput or speed of the weighing system increased. Ideally, we seek to critically dampen a tension arm servo system in order to minimize the settling time.
Conversely, damping is turned OFF during reset, i.e., when retracting the tension arm to open the gap. Accordingly, the gap will open faster. “Bounce” or oscillation when the gap is opened is not harmful. In some embodiments, desired damping can be accomplished by changing the mode of the tension arm servo and applying appropriate “PID” (proportional, integral, differential) settings for the tension arm servo feedback loop. These are filter parameters of the well known digital PID-type servo filter. The specific values (gain factors) are readily determined by deriving coefficients for the equations of motion, but those values will vary with each particular system, and should be optimized for a given design.
The active damping described herein may be implemented in various ways, including digital, analog, or mixed digital and analog solutions. Implementations may incorporate software executable on a suitable processor, or they may use hardware in the sense of dedicated electronic circuits.
The velocity vector is input to a multiplier 1906. The multiplier 1906 multiplies the velocity vector by a configurable damping gain factor. Preferably, the gain is selected (by calculation or empirically) to substantially critically damp the arm motion. When the arm “bounces” immediately after closing, the position signal change will result in a negative velocity vector (in the direction of opening the gap), and the multiplier 1906 will multiply or amplify that negative value, generating a damping signal 1908. The signal 1908 is input to a switch 1910. Switch 1910 is controlled by control signal 1912, provided by the multiplier 1906, that reflects whether the velocity is positive or negative. If the velocity is negative (reflecting a “bounce” motion of the arm), the control signal 1912 controls the switch 1910 to connect the damping signal to a second switch 1920. If the velocity is positive (gap is closing), switch 1920 remains open. The damping force in other words is inverted and scaled by the velocity generally in accordance with the following equation:
The tension arm controller 1260 generates an open/close binary swing arm command as discussed above, labeled as signal 1922. (The terms “tension arm” and “swing arm” are used interchangeably.) Command signal 1922 controls the second switch 1920. If the command is to open the gap, the command signal drives switch 1920 to an open position, so that the damping signal 1908, even if it reflects a negative velocity, is not coupled to the summing junction 1930. Alternatively, when the command signal 1922 is to CLOSE the gap, then switch 1920 is closed to couple the damping signal 1908 to the summing junction 1930. In this way, damping is enabled only when the tension arm is commanded to close. Conversely, no damping is applied when the command is to OPEN the gap, so the gap opens as quickly as possible. In the case of a mechanical motion damper, it cannot distinguish whether opening or closing is commanded or occurring, and thus it slows all operations, retarding performance.
Referring again to
In an embodiment, it is helpful to conduct a Fourier analysis on the torque waveform sample data. The discrete Fourier transform (DFT) may be used to reduce the data to a small number of values or coefficients. The DFT can be computed efficiently in practice using a fast Fourier transform (FFT) algorithm. By pre-computing the same analysis on known calibration pieces, the Fourier coefficients of interest may be stored, for example in a lookup table, to determine weights later during operation by comparison to the values in the table. This approach provides an effective way to compare the torque waveforms to provide accurate measurements. It also helps to filter out vibration and other system noise from the measurement data.
In one embodiment, an in-line scale system of the type described above may be deployed within or in tandem with automated mail handling equipment such as a destination bar code sorter machine (DBCS). On the bar code sorter system in this example, the transport belt speed is 153 ips. The capstan servo on the ILS runs at 250 ips tangential velocity. The shortest mail piece is 5 inches long, plus a 3.5 inch minimum gap between pieces. So at an incident speed of 153 ips, we have a measurement interval of approx 56 ms between pieces. This timing is illustrated in the upper trace of
In a preferred embodiment, the system acquires 128 samples to the FFT, and the servo system described above samples at 1750 samples per second. This means that the sampling interval per piece is approx 73 ms. However, as noted, in the present example, only about 56 msec is available between pieces. One solution to this apparent dilemma is to simultaneously sample into 2 separate measurements that are offset in time. The system thus is multi-threaded. We center the torque impulse data for each piece in the 73 msec window so any data that appears in sequential measurements is where the servo is quiescent or between pieces. This is essentially the zero area. This overlap technique is illustrated in
Variations in the thickness of an object being weighed, mentioned above as the “credit card syndrome,” can lead to measurement errors or reduced accuracy in some situations. As discussed above, in a system with active tension arm damping, once the tension arm closes on an object, the damper treats any movement away from the closed position as a bounce and acts to suppress it. The effect is that the capstan servo is required to supply the torque needed to counteract the damping force, and the capstan servo system reads this additional torque as force required to accelerate mass, resulting in inaccurate weighing measurement.
This problem is illustrated in a series of signal graphs in
The signal graph D also illustrates at 2010 a thickness inconsistency in the object being weighed, which results in a change in the tension arm position. In this case, the arm opens as a thicker portion moves between the pinch roller and the capstan roller (See
Turning now to
Hardware and Software
Several examples have been described above with reference to the accompanying drawings. Various other examples of the invention are also possible and practical. The system may be exemplified in many different forms and should not be construed as being limited to the examples set forth above. The system described above can use dedicated processor systems, micro controllers, programmable logic devices, or microprocessors that perform some or all of the operations. Some of the operations described above may be implemented in software or firmware and other operations may be implemented in hardware.
For the sake of convenience, the operations are described as various interconnected functional blocks or distinct software modules. This is not necessary, however, and there may be cases where these functional blocks or modules are equivalently aggregated into a single logic device, program or operation with unclear boundaries. In any event, the functional blocks and software modules or features of the flexible interface can be implemented by themselves, or in combination with other operations in either hardware or software.
As explained above, aspects of the invention may be implemented in a digital computing system, for example a CPU or similar processor in a sorter system, in-line scale (standalone), or other embodiments. More specifically, by the term “digital computing system,” we mean any system that includes at least one digital processor and associated memory, wherein the digital processor can execute instructions or “code” stored in that memory. (The memory may store data as well.)
A digital processor includes but is not limited to a microprocessor, multi-core processor, DSP (digital signal processor), GPU, processor array, network processor, etc. A digital processor (or many of them) may be embedded into an integrated circuit. In other arrangements, one or more processors may be deployed on a circuit board (motherboard, daughter board, rack blade, etc.). Aspects of the present invention may be variously implemented in a variety of systems such as those just mentioned and others that may be developed in the future. In a presently preferred embodiment, the disclosed methods may be implemented in software stored in memory, further defined below.
Digital memory, further explained below, may be integrated together with a processor, for example RAM or FLASH memory embedded in an integrated circuit CPU, network processor or the like. In other examples, the memory comprises a physically separate device, such as an external disk drive, storage array, or portable FLASH device. In such cases, the memory becomes “associated” with the digital processor when the two are operatively coupled together, or in communication with each other, for example by an I/O port, network connection, etc. such that the processor can read a file stored on the memory. Associated memory may be “read only” by design (ROM) or by virtue of permission settings, or not. Other examples include but are not limited to WORM, EPROM, EEPROM, FLASH, etc. Those technologies often are implemented in solid state semiconductor devices. Other memories may comprise moving parts, such a conventional rotating disk drive. All such memories are “machine readable” in that they are readable by a compatible digital processor. Many interfaces and protocols for data transfers (data here includes software) between processors and memory are well known, standardized and documented elsewhere, so they are not enumerated here.
Storage of Computer Programs
As noted, aspects of the present invention may be implemented or embodied in computer software (also known as a “computer program” or “code”; we use these terms interchangeably). Programs, or code, are most useful when stored in a digital memory that can be read by one or more digital processors. We use the term “computer-readable storage medium” (or alternatively, “machine-readable storage medium”) to include all of the foregoing types of memory, as well as new technologies that may arise in the future, as long as they are capable of storing digital information in the nature of a computer program or other data, at least temporarily, in such a manner that the stored information can be “read” by an appropriate digital processor. By the term “computer-readable” we do not intend to limit the phrase to the historical usage of “computer” to imply a complete mainframe, mini-computer, desktop or even laptop computer. Rather, we use the term to mean that the storage medium is readable by a digital processor or any digital computing system as broadly defined above. Such media may be any available media that is locally and/or remotely accessible by a computer or processor, and it includes both volatile and non-volatile media, removable and non-removable media, embedded or discrete.
It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.
This application is a divisional of Ser. No. 12/848,881 filed on Aug. 2, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/817,087 filed Jun. 16, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/562,798 filed Sep. 18, 2009, now U.S. Pat. No. 8,129,635, which is a continuation-in-part of U.S. application Ser. No. 11/855,130 filed Sep. 13, 2007, now U.S. Pat. No. 7,687,727; each of which is incorporated herein in its entirety by this reference as though fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
2538369 | Leary | Jan 1951 | A |
3386574 | Kaplan | Jun 1968 | A |
3431830 | Stovall | Mar 1969 | A |
3566717 | Berman | Mar 1971 | A |
3648839 | Bradshaw | Mar 1972 | A |
3791473 | Rosen | Feb 1974 | A |
3796424 | Fox | Mar 1974 | A |
3805904 | Zimmerer | Apr 1974 | A |
3834474 | Knol | Sep 1974 | A |
3957570 | Helm | May 1976 | A |
4170350 | Conti | Oct 1979 | A |
4262763 | Raskin | Apr 1981 | A |
4347905 | Berckes | Sep 1982 | A |
4384629 | Kotzin | May 1983 | A |
4461363 | Loy | Jul 1984 | A |
4522277 | Kotzin | Jun 1985 | A |
4534551 | Jones | Aug 1985 | A |
4696358 | Doerman | Sep 1987 | A |
4792002 | Ward | Dec 1988 | A |
4848492 | Hubbard | Jul 1989 | A |
4916391 | Doerman | Apr 1990 | A |
5019991 | Sansone | May 1991 | A |
5092415 | Asano | Mar 1992 | A |
5133212 | Grills et al. | Jul 1992 | A |
5161628 | Wirth | Nov 1992 | A |
5172900 | Uno | Dec 1992 | A |
5259607 | Hironori | Nov 1993 | A |
5303913 | Trouquilla | Apr 1994 | A |
5308932 | Manduley | May 1994 | A |
5393939 | Nasuta, Jr. | Feb 1995 | A |
5465662 | Keung | Nov 1995 | A |
5480085 | Smithe | Jan 1996 | A |
5499810 | Tranquilla | Mar 1996 | A |
5524878 | Trouquilla | Jun 1996 | A |
5547034 | Wurz | Aug 1996 | A |
5689092 | Wurz | Nov 1997 | A |
5717167 | Filing et al. | Feb 1998 | A |
5767452 | Yankloski | Jun 1998 | A |
5850057 | Veillette | Dec 1998 | A |
5850757 | Wierenga | Dec 1998 | A |
5856637 | Vande Berg | Jan 1999 | A |
5869092 | Hays | Feb 1999 | A |
5879000 | Kakuta | Mar 1999 | A |
5902964 | Solberg, Jr. | May 1999 | A |
5939646 | Fowler | Aug 1999 | A |
5959257 | Campbell | Sep 1999 | A |
5998742 | Liu | Dec 1999 | A |
6141883 | Mitchell | Nov 2000 | A |
6268573 | Hartselle | Jul 2001 | B1 |
6276421 | Valenti | Aug 2001 | B1 |
6464219 | Yee | Oct 2002 | B1 |
6497522 | Wotton | Dec 2002 | B2 |
6820873 | Kulpa | Nov 2004 | B2 |
6839694 | Kasmin | Jan 2005 | B2 |
6940025 | Salomon | Sep 2005 | B1 |
7014187 | Mayerberg, II | Mar 2006 | B2 |
7047827 | Mithal | May 2006 | B1 |
7096152 | Ong | Aug 2006 | B1 |
7182334 | Spence | Feb 2007 | B2 |
7241955 | Hebenstreit | Jul 2007 | B2 |
7271352 | Rabindran | Sep 2007 | B2 |
7297879 | Salomon | Nov 2007 | B2 |
7405368 | Beck et al. | Jul 2008 | B2 |
7550681 | Wang | Jun 2009 | B2 |
7687727 | Turner | Mar 2010 | B2 |
7779956 | Breed | Aug 2010 | B2 |
7820923 | Daboub | Oct 2010 | B1 |
7838781 | Streder | Nov 2010 | B2 |
7842892 | Wang | Nov 2010 | B2 |
8106315 | Turner | Jan 2012 | B2 |
8129635 | Turner | Mar 2012 | B2 |
8133147 | Scekic et al. | Mar 2012 | B2 |
8148650 | Sye | Apr 2012 | B2 |
8153911 | Turner | Apr 2012 | B2 |
8178796 | Allen | May 2012 | B2 |
8399764 | Klosky | Mar 2013 | B2 |
8481870 | Turner | Jul 2013 | B2 |
8481871 | Turner | Jul 2013 | B2 |
8530762 | Turner | Sep 2013 | B2 |
8530764 | Monti | Sep 2013 | B2 |
8891919 | Massey | Mar 2015 | B2 |
8989871 | Dell | Mar 2015 | B2 |
8991265 | Dekker | Mar 2015 | B2 |
20030052035 | Dickinson | Mar 2003 | A1 |
20050205307 | Salomon | Sep 2005 | A1 |
20050267848 | Kenbeek | Dec 2005 | A1 |
20060044268 | Robin | Mar 2006 | A1 |
20060278443 | Salgo | Dec 2006 | A1 |
20070045944 | Ban | Mar 2007 | A1 |
20070215663 | Chongson et al. | Sep 2007 | A1 |
20070272450 | Skinner | Nov 2007 | A1 |
20080042340 | Linder | Feb 2008 | A1 |
20090017880 | Moore | Jan 2009 | A1 |
20090071728 | Turner | Mar 2009 | A1 |
20100006346 | Turner | Jan 2010 | A1 |
20100082389 | Turner | Apr 2010 | A1 |
20100282521 | Turner | Nov 2010 | A1 |
20100294572 | Turner | Nov 2010 | A1 |
20110004441 | Turner | Jan 2011 | A1 |
20110005648 | Sa | Jan 2011 | A1 |
20110031683 | Asari et al. | Feb 2011 | A1 |
20110049800 | dejong | Mar 2011 | A1 |
20110272197 | Mekid | Nov 2011 | A1 |
20110290569 | Turner | Dec 2011 | A1 |
20120166362 | Turner | Jun 2012 | A1 |
20120181091 | Lieu | Jul 2012 | A1 |
20120270599 | Mori | Oct 2012 | A1 |
20120285751 | Turner | Nov 2012 | A1 |
20130126533 | Klosky | May 2013 | A1 |
20140131120 | Horst | May 2014 | A1 |
20140318874 | Moses | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
0482267 | Apr 1992 | EP |
2 172 751 | Sep 2009 | EP |
2302339 | Mar 2011 | EP |
2400276 | Dec 2011 | EP |
WO 9002927 | Mar 1990 | WO |
WO 2007031176 | Mar 2007 | WO |
WO 2009036251 | Mar 2009 | WO |
Entry |
---|
WIPOTEC Principle of Operation; retrieved from the internet on Sep. 13, 2007 at http://www.industrialcontroller.com/wipotec/operation.htm; 2 Pages. |
International Searching Authority USPTO; International Search Report and Written Opinion for PCT/US2008/076140; Jan. 7, 2009; 14 pages. |
European Patent Office, European Search Report for Application No. 09252332.3-2213, mailing date Dec. 3, 2009; 7 pages. |
Stolowitz Ford Cowger LLP; Listing of Related Matters dated May 29, 2013; 2 pages. |
Number | Date | Country | |
---|---|---|---|
20130239648 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12848881 | Aug 2010 | US |
Child | 13887816 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12817087 | Jun 2010 | US |
Child | 12848881 | US | |
Parent | 12562798 | Sep 2009 | US |
Child | 12817087 | US | |
Parent | 11855130 | Sep 2007 | US |
Child | 12562798 | US |