The present invention relates to firearms, and more particularly to an energizable electromagnetic trigger mechanism for the firing system of a firearm which provides a dynamically adjustable force and displacement profile for a trigger customizable by a user.
Traditional triggers for firearms provide a decisive intent-to-fire signal through mechanical motion that utilizes a displacement and force profile developed by using mechanical linkages, springs and the release of energy stored in a spring-biased hammer, striker, or sear. The trigger force and displacement curve or profile is normally fixed by these mechanical linkages and springs. A number of designs exist that provide adjustable characteristics for the force and displacement of the trigger using set screws, additional springs, or part changes to customize the force-displacement profile of firearm triggers mechanically.
An improved variable force trigger is desired which allows the trigger force-displacement profile to be more quickly and easily altered in a dynamically changeable manner without resort to strictly adjusting the position of mechanical components or physically exchanging such mechanical components and/or other hardware of the trigger mechanism.
An electromagnetically variable firing system for a firearm according to the present disclosure includes a trigger assembly or mechanism having an electromagnetically-operated control device which allows the user to preselect and adjust the trigger pull force-displacement profile electronically in an expeditious non-mechanical manner in one embodiment. The preselected trigger force may be implemented automatically and dynamically during the course of a trigger pull event based on sensing an applied force to the trigger by the user to initiate the firing sequence.
The electromagnetic control device is an integral part of the trigger mechanism, which in turn operably interfaces with other components of the firing system for discharging the firearm. The electromagnetically variable firing system may include a movable energy storage device such as a spring-biased cockable striking member such as a pivotable hammer or linearly-movable striker for striking a chambered ammunition cartridge or round, a movable sear operable to hold and release the hammer or striker from the cocked position, and other associated firing mechanism components which collectively operate together to discharge the firearm when actuated via a manual trigger pull. In some embodiments, the sear may be formed as an integral unitary structural part of the trigger mechanism instead of being a separate component.
In certain implementations, the trigger pull force and displacement profile is electrically/electronically adjustable via the trigger control device by changing or altering a magnetic field acting on a portion of the trigger mechanism, thereby increasing or decreasing resistance of the trigger to movement. The trigger pull force required may vary with displacement distance or travel of the trigger when actuated by the operator or user such that the initial trigger pull force may have an initial value or magnitude during the first stage or phase of the trigger pull (e.g. hard or easy) which is then followed by either a constant or varying different second values or magnitudes of trigger pull force during the subsequent and final phases of the trigger pull until the firearm is discharged.
To power, monitor, and control operation of the trigger control device and trigger mechanism including adjustment of the trigger pull force and displacement profile, the firearm may include a control system including a suitable power source (e.g. battery) mounted to a frame of the firearm or module attached thereto, and a programmable electronic processor such as a microprocessor or microcontroller including circuitry, memory, data storage devices, sensors, sensor and drive circuits, communication devices and interfaces (e.g. wired or wireless protocols), and other electronic devices, components, and circuits necessary for a fully functional microprocessor based control system. The microcontroller may preferably be disposed onboard the firearm. The microcontroller is operably coupled to the power source to control via an actuation control circuit to energize or de-energize the trigger control device.
In one embodiment, the electromagnetically-operated trigger control device may comprise a magnetorheological fluid device or operator which is selectably alterable electrically/electronically via the microcontroller to vary the trigger pull force and displacement profile characteristics.
In another embodiment, the electromagnetically-operated trigger control device may comprise a magnetic device or operator such as an electromagnetic snap actuator of a non-bistable design which is selectably alterable electrically/electronically via the microcontroller to vary the trigger pull force and displacement profile characteristics by altering the magnet field force of the trigger mechanism. The electromagnetic actuator forms an integral part of the trigger mechanism, and in some embodiments may constitute substantially the entirety of the trigger mechanism with minimal appurtenances for operational simplicity and reliability. The electromagnetic actuator may generally include a stationary yoke attached to the firearm frame, a rotatable member pivotably movable relative to the yoke, and an electromagnet coil electrically connected to the on-firearm electric power source. In some implementations, the trigger mechanism may be configured to establish a closed single or double flux loop that limits susceptibility to external magnetic fields which might inadvertently change the trigger pull force or displacement of the trigger mechanism. This completely contained flux loop around the permanent magnet optimizes the magnetic coupling force between the yoke and rotating member making this design inherently resistant to external magnetic fields.
Certain implementations of the control device may also employ mechanical components to assist with adjusting the trigger pull force and displacement profile. The trigger control device may be used as an on/off safety in some embodiments, and/or to vary trigger pull force which may be adjusted by the user to meet personal preferences.
Embodiments of the present electromagnetic trigger mechanisms may be employed with any type of trigger-operated small arms including without limitation as some examples pistols, revolvers, long guns (e.g. rifles, carbines, shotguns), grenade launchers, etc. Accordingly, the present invention is expressly not limited in its applicability and breadth of use.
Accordingly, embodiments of the present invention provide a trigger mechanism or assembly for use in a firearm that provides a changeable and variable force of resistance (i.e. trigger pull force) as the trigger moves and is displaced in distance.
The foregoing or other embodiments of the present invention may control the change in resistance force dynamically during the actual displacement of the trigger linkage by the operator or user at the time of operation.
The foregoing or other embodiments of the present invention provide that the trigger force can be controlled by varying the viscosity of a magnetorheological fluid incorporated into the trigger mechanism.
The foregoing or other embodiments of the present invention provide that the trigger force can be controlled by varying the magnetic field of an electromagnetic snap actuator incorporated into and configured as a trigger mechanism or assembly for discharging the firearm.
The foregoing or other embodiments of the present invention provide that the trigger force can be programmed remotely from an external smartphone, tablet, personal wearable device, or other remote device using a wireless communications standard such as Bluetooth, BLE (Bluetooth Low Energy), NFC (Near-Field Communication), LoRa (Long Range wireless), WiFi, or a proprietary wireless protocol or other protocol.
The foregoing or other embodiments of the present invention may be configured to capture cycle count and direct sensing of the trigger mechanism for the implementation of data collection on the performance and operation of the device. Shot counting, shot timing, pre-fire trigger analysis, and post firing performance analysis can be tied to internal sensing of the trigger event and electrically interfaced to the user through external electronic devices, such as without limitation cellphones, tablets, pads, wearables, or web applications.
In one aspect, an electromagnetically variable trigger force firing system comprises: a frame; a striking member supported by the frame for movement between a rearward cocked position and forward firing position for discharging the firearm; an electromagnetic actuator trigger unit affixed to the frame and comprising: a stationary yoke comprising an electromagnet coil; a rotating member movable about a pivot axis relative to the stationary yoke and operable for releasing the striking member from the cocked position to the firing position; a trigger operably engaged with the rotating member, the trigger manually movable by a user from a first position to a second position which rotates the rotating member for discharging the firearm; and a permanent magnet generating a static magnetic field in the stationary yoke and rotating member, the static magnetic field creating a primary resistance force opposing movement of the trigger when pulled by the user; an electric power source operably coupled to the coil; the electromagnet coil when energized generating a user-adjustable secondary magnetic field interacting with the static magnetic field, the secondary magnetic field operating to change the primary resistance force dynamically during a trigger pull event initiated by the user.
In another aspect, an electromagnetic firing system for a firearm comprises: a frame; a striking member supported by the frame and movable between a rearward cocked position and forward firing position for discharging the firearm; an electromagnetically adjustable trigger mechanism operably coupled to the striking member for discharging the firearm, the trigger mechanism comprising an electromagnetic actuator including: a stationary yoke comprising an electromagnet coil operably coupled to an electric power source, the coil having an energized state and a de-energized state; a rotating member pivotably coupled to the stationary yoke for movement between an unactuated and actuated positions, the rotating member operably coupled to the striking member for moving the striking member from the cocked position to the firing position; a trigger movably coupled to the stationary yoke and interacting with the rotating member, the trigger manually movable by a user from a first actuation position to a second actuation position which rotates the rotating member for discharging the firearm; and a permanent magnet generating a static magnetic flux in the yoke and rotating member, the static magnetic flux creating a primary resistance force opposing movement of the trigger when pulled by the user; a programmable microcontroller operably coupled to the electromagnetic actuator of the trigger mechanism and pre-programmed with a trigger force setpoint, the microcontroller configured to: receive an actual trigger force applied to the trigger by a user and measured by a trigger sensor communicably coupled to the microcontroller; compare the actual trigger force to the preprogrammed trigger force setpoint; and selectively energize the electromagnetic actuator based on the comparison of the actual trigger force to the trigger force setpoint; wherein the electromagnet coil when energized generates a user-adjustable secondary magnetic flux interacting with the static magnetic field, the secondary magnetic field operating to increase or decrease the primary resistance force when the trigger is pulled by the user.
In another aspect, an electromagnetic firing system for a firearm comprises: a frame; a striking member supported by the frame and movable between a rearward cocked position and forward firing position for discharging the firearm; a pivotable sear configured to selectively hold the striking member in the cocked position; an electromagnetic actuator trigger mechanism supported by the frame, the trigger mechanism configured to create a dual loop magnetic flux circuit and comprising: a stationary yoke comprising an electromagnet coil operably coupled to an electric power source, the coil having an energized state and a de-energized state; a rotating member pivotably coupled to the stationary yoke about a pivot axis, the rotating member movable between an unactuated position engaging with the sear and an actuated position disengaging the sear; a trigger operably engaged with the rotating member and manually movable by a user for applying an actual trigger force on the rotating member; and a permanent magnet generating a static magnetic flux holding the rotating member in the unactuated position, the permanent magnet generating a static magnetic flux creating a primary resistance force opposing movement of the trigger when pulled by the user; a programmable microcontroller operably coupled to the power source and communicably coupled to a trigger sensor configured to sense the applied trigger force, the microcontroller when detecting the applied trigger force being configured to transmit an electric pulse to the electromagnet coil of the trigger mechanism; the electromagnet coil when energized generating a secondary magnetic flux interacting with the static magnetic field, the secondary magnetic field being configurable by the user via the microcontroller to increase or decrease the primary resistance force when the trigger is pulled by the user.
In another aspect, an electromagnetically variable trigger system comprises: a frame; an electromagnetic actuator trigger unit affixed to the frame and comprising: a stationary yoke comprising an electromagnet coil; a rotating member movable about a pivot axis relative to the stationary yoke; a trigger operably engaged with the rotating member, the trigger manually movable by a user from a first position to a second position which rotates the rotating member; and a permanent magnet generating a static magnetic field in the stationary yoke and rotating member, the static magnetic field creating a primary resistance force opposing movement of the trigger when pulled by the user; an electric power source operably coupled to the coil; the electromagnet coil when energized generating a user-adjustable secondary magnetic field interacting with the static magnetic field, the secondary magnetic field operating to change the primary resistance force dynamically during a trigger pull event initiated by the user. The trigger system may further comprise an electronic actuation control circuit operably coupled between to the power source and coil, the actuation control circuit configurable by the user to selectively energize the coil upon detection of a trigger pull and de-energize the coil in an absence of the trigger pull, and a trigger sensor communicably coupled to the actuation control circuit and operable to detect movement of the trigger initiated by the user.
These and other features and advantages of the present invention will become more apparent in the light of the following detailed description and as illustrated in the accompanying drawings.
The features of the exemplary embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
All drawings are schematic and not necessarily to scale. Any reference herein to a whole figure number (e.g.
The features and benefits of the invention are illustrated and described herein by reference to example (“exemplary”) embodiments. This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Accordingly, the disclosure expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features.
As used throughout, any ranges disclosed herein are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range.
The dynamics of the trigger feel are one of the most important aspects of the shooter's experience, impacting accuracy, repeatability, and safety of the firearm. A conventional trigger pull consists of three stages: take-up or pre-travel, the break-over point of release of stored energy in the hammer, striker, or sear, and finally over-travel. In a conventional trigger mechanism, these stages are fixed by the springs, linkages, and mechanical components that make up the trigger system. An adjustable trigger allows adjustments to the travel distance, force, and feel of the trigger pull during one or more of these stages or phases.
The desired trigger pull force and displacement characteristic is dependent upon the type of firearm, application, safety, reliability, and individual preferences. For example, a shooter may wish for a medium to heavy trigger pull weight for hunting and a significantly lighter and different feel for competition shooting.
The current state of the art for making changes in the trigger pull force requirement and shape of the force profile (e.g. between a heavy and light trigger pull) is to physically adjust spring or linkage tensions within the trigger mechanism or directly replace existing and install alternate parts to attain the desired trigger force and displacement characteristics. These approaches both limit the shape of the possible trigger force verses displacement curve and the timing of how it can be adjusted. Additionally, the adjustment is usually only possible over a narrow range of trigger pull forces unfortunately due to physical limitations of the physical trigger mechanism components.
The present invention includes a novel trigger mechanism which allows the trigger pull force and displacement to be controlled by a magnetic field. By actively adjusting the magnetic field, dynamic real-time variability of the trigger pull force over a wide range of displacement can advantageously be achieved. In addition, the “feel” of the trigger may be improved by tailoring this force-displacement curve to provide a large range of variation that is not possible with conventional mechanical springs, linkages, and levers.
One method disclosed herein to control the force-displacement profile may be to use a rheological fluid. An electric or magnetic field can influence the viscosity of certain fluids. This characteristic can be exploited to design a variable force trigger for firearms, turn on or off a manual safety feature, or provide active damping of recoil.
Magnetorheological (MR) fluids have the unique property of changing from a free-flowing liquid to a semi-solid state in the presence of a magnetic field. This dynamically changeable viscosity property has significant potential for control applications in firearms. Currently, magnetorheological fluids, such as the commercially available MRF-132DG by LORD Corporation, provide a range of fast response time, dynamic yield strength, temperature resistance to meet the needs of an adjustable force trigger system in firearms. Other materials such as ferro-fluids, electrorheological fluids, and devices based on the Giant Electrorheological effect may also provide a reliable alternative to the use of magneto-rheological fluids in this application.
Embodiments of Dynamic Variable-Force Trigger Using MR Fluids
Magneto-rheological (MR) fluids can respond almost instantly to varying levels of a magnetic field precisely and proportionally for controlled force loading. By dynamically adjusting the viscosity of the MR fluid, it is possible to construct a dynamically variable trigger force apparatus. If the movement of a trigger transfer linkage is constrained by using an MR fluid-filled spring loaded piston as disclosed herein, the viscosity of the MR fluid using a magnetic field, we can then be dynamically changed. The resulting viscosity change results in a significant change in force loading necessary to move the trigger transfer linkage to the fire position, which translates into a user-variable trigger pull force resistance opposing movement of the trigger linkage.
In a basic implementation of a simple non-electromagnetic MR fluid actuator shown in
By replacing the permanent magnet 615 with an electromagnet coil 614 as already described herein, one can dynamically change the MR fluid viscosity and hence resulting trigger pull force-displacement profile examples of which are shown in
Using multiple magnetic force concentration points, or a piston plunger port configuration that extends through an adjustable magnetic field during the full travel of the trigger, it is possible to dynamically change the viscosity (trigger force) during a single trigger pull. Such a configuration allows dynamically changing force verses displacement curves of an unlimited nature that could allow custom trigger feel optimized for certain users and use profiles.
Another embodiment related to the variable force-displacement effect is the use of MR fluids as an ON/OFF Trigger Safety. Movement of a trigger transfer mechanism would move freely through a MR fluid reservoir when no magnetic field is applied. When a magnetic field is applied to the MR fluid, its yield stress increases inhibiting movement of the trigger transfer mechanism. Ideally the use of a permanent magnet could be used as a fail-safe always on trigger safety.
In its most basic form, this could be implemented by a permanent magnet mounted on a mechanical linkage that could be manually moved in and out of the critical proximity to the MR fluid like a manual safety lever. While functional this provides no advantage over a conventional mechanical safety.
To take full advantage of the magnetic on/off nature of the MR fluid, an electro-magnet may be included to control the on/off function. This would allow an electrical signal to control the on/off function of the trigger. The reversible and almost instantaneous changes from a free-flowing liquid to a semi-solid with high yield strength would allow the safety to be electrically controlled based on control logic.
Only when an electromagnet is actuated would the effects of the permanent magnet be nulled and allow the MR fluid become more liquid and allow free movement of the trigger mechanism (reference
To minimize power consumption, an enhancement to the concept would place a fixed permanent magnet in place so that the trigger linkage is in the blocked state when at rest. To reverse the MR fluid back to a flowing liquid state, a secondary electro-magnet could be energized to balance out the permanent magnets field. In this configuration, the electromagnet could enable the trigger operation at almost the point that the operator fires while using no power at any other time. The default static unpowered state of the system would be in the no-fire or ready-to-fire condition.
While the use of a MR fluid could be used as a standalone ON/OFF trigger safety feature, the preferred embodiment would combine this active safety feature with a dynamic variable force trigger configuration that acts as both an adjustable trigger force and trigger on/off safety. By applying a fixed permanent magnet field in proximity to the MR fluid filled piston, sufficient to block movement when the firearm is not require to operate, we would have the features of a firearm safety. The magnet field could then be nulled out by the addition of a reverse magnetic field using an electro-magnet and thus enabling the dynamic variable force trigger features.
Embodiments of Dynamic Variable-Force Trigger Using Electromagnetic Actuators
Another embodiment for dynamically controlling the displacement force profile of a firearm trigger utilizes magnetic fields to directly constrain the movement of the trigger linkage until a preselected release force is reached. In one embodiment, a combination of a continuous primary static magnetic field and an intermittently acting dynamic electromagnetic field may be used.
The electromagnetic trigger mechanism 100 generally comprises an electromagnetic snap actuator 123 configured as a trigger assembly for discharging the firearm. The trigger mechanism 100 forms an integral part of the firing system or mechanism of the firearm itself, and does not merely act on the firing mechanism. Actuator 123 is configured as a release type actuator which directly or indirectly releases the energy in the energy storage device such as a spring-biased striking member (e.g. rotatable hammer or linearly movable striker) operable to strike a chambered cartridge positioned in the barrel of the firearm. If a sear which releases the striking member is built directly into the release actuator 123 as shown in
Referring now again to
The stationary yoke 102 of the electromagnetic trigger mechanism 100 may be substantially C-shaped in one embodiment including a horizontal upper portion 110, horizontal lower portion 112 spaced apart and parallel to the upper portion, and a vertical intermediate portion 114 extending between the upper and lower portions. The intermediate portion 114 is integrated with captive ends of the upper and lower portions 110, 112 being a unitary structural part of the entire yoke 102 in one embodiment. The portions 110, 112, and 114 may have any suitable transverse cross-sectional shape including polygonal such as rectilinear as shown, non-polygonal (e.g. circular), or combinations thereof which lend themselves to winding the coil 106 thereto. Although the stationary yoke 102 is illustrated herein as have a C-shaped configuration, it will be appreciated that other configurations of the yoke are possible and may be used.
The rotating trigger member 104 may have a vertically elongated and substantially linear shaped body in one embodiment as shown. The rotating trigger member 104 may lie in the same vertical reference plane as the yoke 102 and is pivotably movable within that plane. The vertical reference plane may intersect the longitudinal axis of the firearm in one embodiment.
Rotating trigger member 104 is pivotably disposed in the frame of the firearm. In one embodiment, rotating trigger member 104 may be pivotably coupled to stationary yoke 102 via pivot 101 which defines a pivot axis PA of rotation oriented transversely to the longitudinal axis of the firearm. As shown in
It will be appreciated that in alternative embodiments, for example, the rotating trigger member 104 may alternatively be pivotably mounted to the frame 22 of the firearm 20 instead of via the pivot 101 to achieve the same manner of movement relative to the yoke 102. Either arrangement may be used in various embodiments to best fit the design of the firearm in which the trigger mechanism 100 will be used.
With continuing reference to
In one embodiment, as shown in
The terminal end portion of upper portion 110 of yoke 102 and terminal end portion of the upper portion 120 of rotating trigger member 104 are movable together and apart via the pivoting action of the rotating trigger member 104 relative to the stationary yoke 102. Accordingly, an openable and closeable air space or gap A is formed at the interface between the yoke 102 and rotating trigger member 104. The rotating trigger member 104 is pivotably and manually movable between two actuation states or positions by a user. Rotating trigger member 104 is movable between a first unactuated or rest position physically engaged with the yoke 102 when the trigger is not pulled, and a second actuated or fire position disengaged from the yoke 102 when the trigger is pulled to discharge the firearm. In the actuated position, air gap A is opened whereas the gap is closed in the unactuated position. Also in the actuated position, the axis of tilt TA of the rotating trigger member 104 is obliquely oriented and angled to the stationary axis SA defined by yoke 102, whereas the axis of tilt TA is parallel to axis SA when the rotating trigger member is in the upright unactuated position.
With continuing reference to
The stationary yoke 102 and rotating trigger member 104 may be formed of any suitable soft ferromagnetic metal capable of being magnetized, such as without limitation iron, steel, nickel, etc.
The trigger mechanism 100 in one embodiment includes a preferably strong permanent magnet 108 which creates a relatively high threshold static magnetic attractive or holding force between the yoke 102 and rotating trigger member 104 which acts to draw these two components into mutual engagement. This static and primary resistance force created by the magnetic field between yoke and trigger member acts to inhibit movement of the rotating trigger member 104 about its pivot axis PA between its two actuation positions when trigger 121 is pulled by a user. The magnetically-induced static resistance corresponds to a trigger pull force required to be exerted and surpassed by the user in order to rotate the trigger member sufficiently to discharge the firearm. The magnet 108 may have a flat rectilinear plate-like shape in one embodiment; however, other shapes may be used. Magnet 108 biases the rotating trigger member 104 into the first unactuated position engaged with the upper portion 110 of yoke 102 at magnet 108.
Permanent magnet 108 may be disposed anywhere within the magnetic loop formed by the yoke 102 and the movable upper portion 120 of rotating trigger member 104. In one embodiment, the magnet 108 may be mounted on the front terminal end of the upper portion 110 of the yoke. Alternatively, the magnet 108 may be disposed on the rear surface of the rotating trigger member 104 and positioned to engage upper portion 110 of the yoke 102. The magnet 108 may therefore be interposed directly between the movable upper portion 120 of the rotating trigger member 104 and stationary yoke 102 to maximize the magnetic attraction of the rotating trigger member to the magnet 108. Other less preferred but still satisfactory locations for mounting the magnet 108 on yoke 102 may alternatively be used.
The present invention further provides a user-selectable and dynamically variable secondary electromagnetic field generated when the electromagnetic actuator 123 is energized. This secondary electromagnetic field interacts with the primary static magnetic field produced by the permanent magnet 108. By electrically and preferentially biasing the magnet flux in the closed loop of the actuator 123 to add or detract from the static magnetic field using the actuator's electromagnet, a dynamically variable trigger pull force or resistance and profile is created which can be selected by the user to meet personal preferences. When coil 106 of the trigger mechanism snap actuator 123 is not energized, a trigger pull force sufficient to only overcome the primary fixed or static magnetic field force of the permanent magnet 108 on the rotating trigger member 104 would be needed to initiate and displace the trigger through a trigger pull event. This allows the trigger member to be actuated in the event power is lost to the actuator 123 (e.g. depleted battery charge).
Electrical energy supplied to the actuator coil 103 and its concomitant dynamically changeable electromagnetic field created when the coil is energized can be made additive or subtractive to the static magnetic field flux generated by the permanent magnet 108 such as by changing the polarity of the electric power. For example, if the user wishes to increase the pull force required over a portion of the travel or displacement of the trigger, the microcontroller 200 may be programmed to change polarity of power source 122 to make the electromagnetic field of the snap actuator additive. In such a setup, the electromagnetic lines of flux of the actuator when energized circulate and act in the same direction in the single closed flux loop as the static magnetic flux generated in the trigger mechanism 100 by the permanent magnet 108. The flux density increases at the air gap A. This increases the magnetic attraction between the yoke 102 and rotating trigger member 104, thereby concomitantly increasing the resistance to rotation of the trigger member by the user making it harder to further pull the trigger (i.e. heavier trigger pull).
Conversely, if the user wishes to decrease the pull force over the travel of the trigger, the microcontroller may be programmed to change polarity of power source 122 to make the electromagnetic field of the snap actuator subtractive. In such a setup, the electromagnetic lines of flux of the actuator when energized circulate and act in the opposite direction in the closed flux loop as the static magnetic flux generated in the trigger mechanism 100 by the permanent magnet 108. The flux density decreases at the air gap A. This decreases the magnetic attraction between the yoke 102 and rotating trigger member 104, thereby concomitantly decreasing the resistance to rotation of the trigger member by the user making it easier to further pull the trigger (i.e. light trigger pull).
The magnitude of the peak trigger pull force required to fully actuate the electromagnetic trigger mechanism 100 may also be altered by the user. This may be achieved in one embodiment by configuring the actuation control circuit 202 associated with microcontroller 200 to increase or decrease the output voltage to the electromagnet coil 106 of snap actuator 123 from power source 122 which passes through and is controlled by the actuation control circuit 202 (reference
It bears noting that inclusion of the permanent magnet 108 also advantageously conserves energy by reducing power consumption. The static magnetic field of the permanent magnet 108 automatically maintains the rotating trigger member 104 of electromagnetic trigger mechanism in the unactuated state or position at rest. Accordingly, the magnetic field generated when the coil 106 of the trigger mechanism snap actuator 123 is energized is not required at all times such as when the trigger 121 is not pulled to simply hold the rotating trigger member 104 in the vertical unactuated state or position. To minimize power consumption, the trigger mechanism actuator therefore only needs to be energized once the trigger (i.e. rotating trigger member 104) is pulled, which is sensed by trigger sensor 159 and the control system. After the trigger pull is completed and the firearm is discharged, the actuator coil may be de-energized until the next trigger pull cycle. This arrangement and mode of operation advantageously extends battery life of the power source 122. Accordingly, the permanent magnet 108 provides energy conservation benefits in addition to creating the initial trigger pull force and primary resistance to movement of the electromagnetic trigger mechanism 100.
As shown in
Microcontroller 200 includes a programmable processor 210, a volatile memory 212, and non-volatile memory 214. The non-volatile memory 214 may be any type of non-removable or removable semi-conductor non-transient computer readable memory or media. Both the volatile memory 212 and the non-volatile memory 214 may be used for saving sensor data received by the microcontroller 200, for storing program instructions (e.g. control logic or software), and storing operating parameters (e.g. baseline parameters or setpoints) associated with operation of the actuator control system. The programmable microcontroller 200 may be communicably and operably coupled to a user display 205, a geolocation module 216 (GPS), grip force sensor 206, motion sensor 207, battery status sensor 208, audio module 218 to generate sound, and a communication module 209 configured for wired and/or wireless communications with other off-firearm external electronic devices configured to interface with the microcontroller. The geolocation module 161 generates a geolocation signal, which identifies the geolocation of the firearm (to which the programmable controller is attached), and communicates the geolocation signal to the programmable microcontroller 200, which in turn may communicate its location to a remote access device. The audio module 218 may be configured to generate suitable audible alert sounds or signals to the user such as confirming activation of the actuator system, successful or failed system access attempts, component failure attention alerts, or other useful status information.
The communication module 209 comprises a communication port providing an input/output interface which is configured to enable two-way communications with the microcontroller and system. The communication module 163 further enables the programmable microcontroller 200 to communicate wirelessly or wired with other external electronic devices directly and/or over a wide area network (e.g. local area network, internet, etc.). Such remote devices may include for example cellular phones, wearable devices (e.g. watches wrist bands, etc.), key fobs, tablets, notebooks, computers, servers, or the like.
The display 205 may be a static or touch sensitive display in some embodiments of any suitable type for facilitating interaction with an operator. In other embodiments, the display may simply comprise status/action LEDs, lights, and/or indicators. In certain embodiments, the display 205 may be omitted and the programmable microcontroller 200 may communicate with a remote programmable user device via a wired or wireless connection using the wireless communication module 209 and use a display included with that remote unit for displaying information about the actuator system and firearm status.
Besides a battery sensor 208 and trigger sensor(s) 159, the additional sensors noted above which are operably and communicably connected to microcontroller 200 may be used to enhance operation in some embodiments. In one example, a grip force sensor 206 may be used to wake up the microcontroller 200 (e.g. usable in Step 502 of control logic process 500 in
An intentional trigger pull to discharge the firearm may be sensed or detected in one embodiment via one or more trigger sensors 159. At least one trigger sensor is provided. Sensor 159 is positioned proximate to rotating trigger member 104 and operable to detect movement of the trigger such as by direct engagement or proximity detection. In some embodiments, the trigger sensor 159 may be a displacement type sensor configured to sensing movement and displacement position of the trigger during its travel. Sensor 159 may alternatively be a force sensing type sensor operable to sense and measure the trigger pull force F exerted on the trigger by the user. A force sensing resistor may used in some embodiments. Trigger sensor 159 is operably and communicably connected to the microcontroller 200 via wired and/or wireless communication links 201 (represented by the directional arrowed lines shown in
Another example of potentially desirable sensors is an accelerometer or other motion sensing device such as motion sensor 207 if the firearm is moved the user indicating potential onset of a intentional firing event. By monitoring the acceleration or motion of the firearm, the sensor 207 may be used may be used in addition to or instead of grip force sensor 206 to wake up the microcontroller 200 (e.g. usable in Step 502 of control logic process 500 in
One possible enhancement to the firearm control would be to sense the movement of the trigger using sensors 159 and actuate the firing event prior to the operator feeling the end of travel of a mechanical trigger when using the actuator in a firing mechanism release role as further described herein. This would enhance trigger follow-through and greatly reduce the operator effects of flinching as the firing event approaches. Additionally, since precise trigger event timing can be provided independent of the firing actuation event, the same firing actuator can be used with many different trigger force and displacement profiles.
One enhancement to the control system disclosed herein is the inclusion of one or more wireless communications options in some embodiments such as Bluetooth® (BLE), Near-Field Communication (NFC), LoRa, Wifi, etc. implemented via communications module 209 (see, e.g.
Referring now to
As the trigger 121 moves rearward and is displaced against the mechanical Hooke's law force of the spring 125, the trigger 121 (defined by rotating trigger member 104) can be released at any point during its travel by energizing the electromagnetic trigger mechanism 100 through the use of feedback to the microcontroller 200 provided by a trigger displacement sensor 159 operably and communicably coupled to the microcontroller. As the desired preprogrammed set-point is reached which is sensed by displacement sensor 159 and received by microcontroller 200, the trigger 121 is released via the microcontroller energizing the electro magnetic coil 106 in a fast snap-like action that initiates the trigger movement transfer means to activate the firing mechanism such as by releasing the striking member 130 directly engaged by the trigger mechanism 100 (see, e.g.
It should be noted that spring 125 if provided affects and establishes a mechanically-based component of the force/displacement profile for the trigger 121. Permanent magnet 108 may be considered to establish a magnetically-based component of the force/displacement profile. In one embodiment, spring 125 acts in a biasing direction counter to the holding force created by permanent magnet 108. Spring 125 therefore acts in such an arrangement to assist the user in pulling the trigger against the static magnet holding field of the magnet 108. Permanent magnet 108 acts to reset the rotating trigger member to the vertical unactuated position after a trigger pull event even in embodiments without a spring which may be sufficiently fast acting to support multiple trigger pulls in rapid succession. As a corollary, it bears noting that the trigger 121 of the snap actuator trigger mechanism 100 is not returned to the unactuated position by the microcontroller 200 and power source 122. Instead, the magnet 108 and/or other mechanical means (e.g. springs) that might be provided are used to reset the trigger. This allows the actuator coil 106 to be de-energized at the end of the full trigger travel or displacement until needed during the next trigger pull event, which conserves battery power.
Additional enhancements can be combined to alter and/or improve the trigger feel. In one embodiment, a segmented trigger design shown in
In operation, as the trigger (i.e. lower portion 118) is displaced against the biasing force of spring 126 with the separately pivotable upper portion 120 remaining stationary and engaged with permanent magnet 108, a displacement sensor 159 determines the threshold position during trigger travel (i.e. displacement distance) for energizing the electromagnet coil 106 in the snap actuator. At this point, the electromagnet coil is electrically energized to cancel out the permanent magnet 108 generated static holding force or primary resistance and creates a crisp snap-like final movement of the trigger linkage. The final trip force is selectable by sensing the desired displacement/force point to electrically break-over the electromagnetic snap actuator prior to reaching the magnetic flux open-loop break-over point of the permanent magnet.
In
The trigger member 104 in
Referring to any of the foregoing embodiments of
In the un-energized state of the actuator 123, an operator can apply pressure to the rotating trigger member 104 until it exceeds the fixed holding force of the permanent magnet 108 at which time the trigger and its integral sear 131 will move, thereby releasing the striking member 130 (e.g. hammer or striker) to strike a chambered round and discharge the firearm. Ideally, the fixed un-energized holding force provided by the permanent magnet 108 may be chosen to product a heavy trigger pull force that would be acceptable as a manual default should battery power or a failure of the magnetic coil or control logic result in a failure to operate properly electronically. An example of this open-loop breakover trigger force profile is shown in
In normal operation, a range of trigger release forces can be chosen by applying electricity to the magnetic coil via microcontroller 200 to add to or subtract from the fixed holding force of the permanent magnet. An example of this new electrically adjusted breakover trigger force profile is also shown in
A simple mechanical switch could be used for trigger sensor 159 in its most basic form to sense the movement of the trigger initiated by the user or shooter. Other means such as a displacement and/or force sensor can be used instead of or in combination with a mechanical switch as previously described herein to determine that an operator has taken a positive action to pull and actuate the trigger.
In its simplest form, a potentiometer 371 as shown in
Alternatively, a simple basic electronic logic circuit or instructions implemented by microcontroller 200 and associated circuitry could be used to control precisely the polarity, the amount of voltage, and timing of the electrical energy pulse sent to the magnetic coil 106 by the microcontroller for energizing the actuator 123 of trigger mechanism 100. This allows the user to highly customize the trigger pull force-displacement profile. Actuation control circuit 202 (see, e.g.
Referring now to
To achieve a crisp fast acting trigger release feel with a reliable means for varying the trigger force, one embodiment may include force or displacement type sensor 159 monitored by microcontroller 200 that determines, in real time, when the desired degree of actual trigger force or displacement is applied to the trigger by the user during a trigger pull event. At this point, a pulse of electrical energy is applied to the magnetic coil 106 by the microcontroller to quickly lower the static magnetic holding force breakover point for actuating the trigger mechanism 100 and releasing its integral sear 131 to discharge the firearm.
Control and adjustment of the dynamically variable force electromagnetic actuator trigger mechanism would ideally be through the use of microcontroller 200. Such a control system could easily be configured with a wireless communication capability such as Bluetooth BLE, NFC, LoRa, WiFi or other commercial or custom communications means (see, e.g.
Dual Closed Magnetic Flux Loop Path Embodiment
Trigger mechanism 300 includes an electromagnetic snap actuator 350 configured to form the dual closed magnetic flux loop or paths. Actuator 350 may be a non-bistable release type electromagnetic actuator in which the actuator is not energized to change position for either initiating movement or to reset the actuator similar to trigger mechanism snap actuator 123 previously described herein. Instead, similarly to actuator 123 previously described herein, microcontroller 200 may be programmed and configured to energize the present actuator 350 of the dual flux loop design only in response to a manual trigger pull. This generates the secondary dynamic or active magnetic field which interacts with the primary fixed or static magnetic field generated by the permanent magnet 308 in either an additive or subtractive operating mode depending on the polarity of the power source 122 established via the microcontroller. The present actuator 350 is configurable by the user or shooter via the microcontroller 200 to change the trigger pull force and displacement profile in the same manner described above for single flux loop electromagnetic actuator 123.
Referring to
Yoke 302 includes an outer yoke portion 305 and a central inner yoke portion 307. The outer yoke portion 305 has a circular annular and circumferentially extending body which may be considered generally O-shaped in configuration. Outer yoke portion 305 circumscribes a central space 303. Inner yoke portion 307 is nested inside the outer yoke 305 in the central space 603. Outer yoke portion 305 generally comprises a common horizontal bottom section 305A, upwardly extending rear and front vertical sections 305B, 305C spaced laterally apart, and a pair of inwardly-turned top sections 305D, 305E having a horizontal orientation. Each top section 305D, 305E is removably attached directly to a respective one of the vertical sections 305B and 305C to facilitate assembly of the actuator 350. In one embodiment, each top section 305D, 305E may be attached to a vertical section by a pair of laterally spaced apart longitudinal fasteners such as cap screws 316 which extend through axial bores 318 in vertical sections 305B, 305C and engage corresponding threaded sockets 319 formed in the top sections. The top sections 305D, 305E when mounted to each of the vertical sections 305B, 305C are horizontally and longitudinally spaced apart to define a top gap or opening 309 therebetween which communicates with the central space 303 of the outer yoke. A working end portion 304A of the rotating member 304 is received between the top sections 305D, 305E in opening 309 and movable therein when the actuator 350 is actuated, as further described herein.
The inner yoke portion 307 is generally straight and vertically elongated forming a substantially hollow structure defining an internal upper cavity 330 which movably and pivotably receives rotating member 304 therein. Inner yoke portion 307 may be formed as integral unitary structural part of the outer yoke portion 305 as shown in the figures and extends upwards from the horizontal bottom section 305A thereof into central space 303. Inner yoke portion 307 is cantilevered from the outer yoke portion 305 in this construction. In other embodiments, inner yoke portion 307 may be formed as a separate component attached to bottom section 305A of outer yoke portion 305 such as via fasteners, adhesives, welding, soldering, etc. Inner yoke portion 307 is orientated parallel to the rear and front vertical sections 305B, 305C of the outer yoke portion 305. The inner yoke portion 307 may be spaced approximately equidistant between the rear and front vertical sections 305B, 305C to facilitate winding coil 306 around the inner yoke portion in the central space 303 of actuator 350.
Because the rotating member 304 is sheathed or shrouded by inner yoke portion 304 for a majority of its length in one embodiment as best shown in
In one embodiment, yoke 302 comprising the outer yoke portion 305 and integral inner yoke portion 307 may be split longitudinally (i.e. lengthwise) front a right half-section 305RH and left half-section 305LH. This split casing arrangement facilitates assembly of the rotating member 304 inside the inner and outer yoke portions. The half-sections 305RH and 305LH may be mechanically coupled tougher by any suitable means, including for example without limitation fasteners including screws and rivets, adhesives, welding, soldering, etc. In one embodiment, threaded fasteners such as transverse cap screws 317 may be used.
Each half-section 305RH, 305LH defines a portion of the vertically elongated upper cavity 330 in inner yoke portion 307 which pivotably receives rotating member 304 partially therein. The cavity 330 communicates with a downwardly and rearwardly open internal lower cavity 331 of the actuator 350 formed in outer yoke portion 305. Lower cavity 331 pivotably receives bottom actuating section 304B of rotating member 304 therein. Lower cavity extends rearward from the central pivot region of the outer yoke portion 305 (containing pivot pin 335) to the rear side of the actuator 350 and bottom section 305A of the outer yoke potion. Upper cavity 330 extends vertically from the lower cavity 331 and penetrates the top and bottom ends of the central inner yoke portion 307.
Referring particularly to
Rotating member 304 has a vertically elongated body including a top or upper operating end section 304A, bottom or lower actuating end section 304B, and intermediate section 304C extending therebetween. Both top operating end section 304A and bottom actuating end section 304B may be enlarged and longitudinally/horizontally elongated in the front to rear direction relative to intermediate section 304C in one embodiment as shown to achieve their intended functionality. In one embodiment, intermediate section 304C may have parallel sides and be generally rectilinear in configuration and cross-sectional shape. Operating end section 304A is configured to operably interface with the both the outer yoke portion 305 of yoke 302 and the firing mechanism of the firearm as further described herein. When the electromagnetic actuator 350 is fully assembled, the operating end section 304A protrudes upwards beyond the inner yoke portion 307 of yoke 302 and is exposed to engage both the outer yoke portion 305 and a firing mechanism component or mechanical linkage.
The top operating end section 304A of rotating member 304 may be generally cruciform-shaped in one embodiment defining horizontally/longitudinally protruding front and rear extensions 332. This portion of operating end section 304A may be considered to generally resemble double-faced hammer in configuration and defines two opposite and outwardly facing front and rear actuation surfaces 334F, 334R (see, e.g.
Actuator 350 may further include an engagement feature strategically located on the upper portion of central rotating member 304 and configured to interface with a component of the firearm's firing mechanism in release-type operational role. In various embodiments, the engagement feature may be an operating extension or protrusion 333 of the rotating member 304 as illustrated in
Operating protrusion 333 extends upwards from between the front and rear extensions 332 at the top of the rotating member 304. Operating protrusion 333 may be approximately centered between actuation surfaces 334F, 334R in one embodiment; however, other positions of the operating protrusion may be used depending on the interface required with the firing mechanism component acted upon by the operating protrusion 333. The operating protrusion 333 may be configured to releasably engage a firing mechanism component or linkage in a direct release role or an indirect release role. Accordingly, operating protrusion 333 may be configured and operable to act directly on the energy storage device such as the spring-biased striking member 130 shown in
Permanent magnet 308 may be fixedly attached to rear top section 305D of outer yoke portion 305 in a position between the top section 305D and the rotating member 304. Rear top section 305D may include a flat forward facing surface 308a for mounting the permanent magnet 308. This arrangement advantageously magnetically attracts and engages rotating member 304 to create a static holding force on the rotating member. Rotating member 304 is magnetically biased rearwards towards its rearward unactuated position associated with a corresponding unactuated forward position of the trigger member 320 when not pulled by the user. Any suitable mechanical coupling means may be used to affix magnet 308 to the outer yoke portion 304, including for example without limitation adhesives, fasteners, welding, soldering, etc.
The enlarged bottom actuating end section 304B of the rotating member 304 may be completely disposed in lower cavity 331 of outer yoke portion 305 in one configuration and enclosed therein by the yoke 302. Actuating end section 304B includes a horizontally/longitudinally elongated cantilevered rear actuating arm or extension 340 used to manually actuate the rotating member 304 via a trigger pull by the user. This may be considered to give the rotating member 304 a generally L-shaped body configuration. Actuating extension 340 extends rearward from the central pivot region of the bottom actuating end section 304B towards the rear side 311 of the actuator 350. In one embodiment, the actuating extension 340 may be formed integrally with the rotating member body as a unitary monolithic structural part thereof. Actuating extension 340 may be obliquely angled to the vertical central axis CA of actuator 350 and may extend completely to the rear side 311 of the actuator such that the free terminal rear end of the actuating extension is exposed for attachment of monitoring or sensing devices, as further described herein.
The rear actuating extension 340 includes an upwardly facing spring seating surface 341 and downwardly facing actuation surface 342. Each surface may be substantially flat or planar in one configuration. Surfaces 341 and 342 may be formed on a laterally widened paddle-shaped portion of actuating extension 340 at the terminal rear end of the extension as shown (best seen in
Spring seating surface 341 of the rear actuating extension 340 is engaged by one end of an operating or trigger return spring 344 disposed in vertical spring socket 345 formed in yoke 302. In one embodiment, spring socket 345 may be formed in rear vertical section 305B of the outer yoke portion 305 as shown. Spring 344 may be a helical coil compression spring in one embodiment; however, other type springs may be used. Spring 344 acts to bias the rear actuating extension 340 downward, which in turn rotates the rotating member 304 about pivot pin 335 to bias the top operating end section 304A into engagement with the permanent magnet 308 when the trigger member is not pulled and actuated (e.g. ready-to-fire position).
Rotating member 304 may be pivotably mounted to yoke 302 via a pivot protuberance such as pivot pin 335 which defines a pivot axis PAL Rotating member 304 is movable between a rearward unactuated position magnetically engaged with permanent magnet 308 (or yoke 302 in other embodiments depending on placement of the magnet), and a forward actuated position disengaged from the permanent magnet. It bears noting that the rotating member 304 may be moved between the two positions by sensing user action on the trigger member 320 which then energizes the actuator 350. Movement of the rotating member 304 then comes under the influence of the secondary electromagnetic field generated by the electromagnetic actuator 350 when energized by the microcontroller 200, which can either assist with completing the trigger pull for the user, or retard trigger travel/displacement by creating a resistance force on the trigger as previously described herein.
In one embodiment pivot axis PA1 may define a common pivot axis for mounting both the rotating member and trigger member 320 to yoke 302 of snap actuator 350 in one embodiment. Pivot pin 335 therefore defines a common center of rotation about which both the rotating member 304 and trigger member 320 each pivot or rotate independently of each other Common pivot axis PA1 is aligned with central axis CA of the actuator 350 which passes through this pivot axis. In one embodiment, pivot pin 335 is disposed inside lower cavity 331 of the outer yoke portion 305 which serves as the mounting point for the rotating member and trigger member. Rotating member 304 and trigger member 320 each include laterally open pivot holes 336 and 337 respectively for inserting pivot pin 335 therethrough. Holes 336 and 337 are concentrically aligned when the trigger mechanism 300 is fully assembled.
In one construction, as shown, pivot pin 335 may comprise two right and left half-pin sections 335R, 335L each fixedly disposed on a respective right and left yoke half section 305RH, 305LH. In one embodiment, half-pin sections may be integrally formed with the right and left yoke half sections. Each half-pin section collectively forms a complete pin extending from the right to left yoke half-section when assembled together to capture both the rotating member 304 and trigger member 320 thereon and therebetween the yoke half sections. In an alternative embodiment, a single one-piece pivot pin may instead be used which extends completely through lower cavity 331 of outer yoke portion 305 from right to left. In one embodiment, pivot pin 335 is preferably circular in cross section.
Referring to the exploded views of electromagnetic actuator 350 in
The trigger member 320 will now be described in further detail. With continuing reference to
The outer trigger 321 includes an upper mounting portion 362 and a lower blade portion 363 depending downwards therefrom. The blade portion includes a vertical slot 364 for movably receiving the inner safety trigger 322 therethrough when actuated by the user. Blade portion 363 may have an arcuately concave front surface configured for engagement by the user's finger. The mounting portion 362 of outer trigger 321 may have a U-shaped body in one embodiment defining a forwardly and upwardly open channel 361 which movably receives the lower actuating section 304B of rotating member 304 therein. The rear actuating extension 340 of rotating member 304 also extends through channel 361. The actuating section 304B of the rotating member is therefore nested inside the mounting portion 362 of the outer trigger 321.
Outer trigger 321 further includes a cantilevered rear operating arm or extension 360 arranged to engage the rear actuating extension 340 of the rotating member 304. In one embodiment, operating extension 360 protrudes rearwardly from the mounting portion 362 of outer trigger 321. Operating extension 360 defines a flat or planar upwardly facing operating surface 343 configured and arranged to abuttingly engage downwardly facing actuation surface 342 of rotating member 304. The interface between the operating surface 343 and actuation surface 342 is one of a flat-to-flat interface in one embodiment as shown (see, e.g.
In one embodiment, a force/displacement sensor such as a thin film force sensing resistor 370 may be interposed at the interface between the operating surface 343 of the operating extension 360 of outer trigger 321 and actuation surface 342 of the rear actuating extension 340 of rotating member 304. Force sensing resistors measure an applied pressure or force between two mating surfaces and are commercially available from numerous suppliers. Force sensing resistor 370 is operably and communicably coupled to microcontroller 200. Force sensing resistor 370 is configured to detect and measure a trigger force F exerted by the user on the outer trigger 321 when pulled to fire the firearm 20. When paired with trigger force setpoint preprogrammed into microcontroller 200, this serves as a basis for intermittently energizing the electromagnetic snap actuator 350 based on trigger force, as further described herein.
Inner trigger 322 is biased toward its substantially vertical forward position (see, e.g.
In operation, the trigger mechanism 300 will be in the ready-to-fire condition shown in
The stationary yoke 302 and the rotating member 304 may be formed of any suitable ferromagnetic metal capable of being magnetized, such as without limitation iron, steel, nickel, etc. Suitable fabrication methods include for example without limitation metal injection molding, casting, forging, machining, extrusion, laminated stamping, and combinations of these or other methods. The method is not limiting of the invention.
The operating theory of the electromagnetic trigger mechanism 300 with snap actuator 350 is as follows. The central rotating trigger armature or rotating member 304 is surrounded by the magnetically conductive yoke 302 configured to form two possible flux loop paths. A primary fixed or static magnetic flux and associated holding force is established using the permanent magnet 308 in the right hand flux loop or path to hold the central rotating member 304 firmly to the right side of its pivotal range of motion within the yoke 302. The primary magnetic flux path generated by the permanent magnet 308 is shown in
Under normal operation to discharge the firearm, the operator or user pulls the outer trigger 321 which applies a trigger pull force F thereon that acts in an opposite direction counter to the primary fixed or static magnetic field flux and holding force generated by the permanent magnet 308. This creates pressure on and pivotably displaces the outer trigger 321 rearwards. This applied pressure and trigger displacement provides the means for sensing physical activity with the trigger sensor 370 as input for Step 504 in the control logic process of
In one embodiment, the sensor 370 may be a thin film force sensing resistor as previously described herein which measures the magnitude of the trigger pull force F. Alternative approaches such as load cells, piezo-electric force sensors, displacement sensors such as hall effect sensors, GMR sensors, and optical or mechanical switches or sensors could also be used. When the force (or displacement) reaches a preset desired trigger trip or setpoint preprogrammed into microcontroller 200 for the variable force trigger, the control system applies electrical energy to the magnetic coil 306.
At the preset desired force or displacement trip or setpoint, the pulse of electrical energy applied to the electromagnet coil 306 by microcontroller 200 generates user-selectable and adjustable dynamic secondary dual magnetic field fluxes. The two flux loop or paths for the right-hand side and left-hand side magnetic fluxes M2 and M3 are shown in
When electrical energy is removed from the magnetic coil by microcontroller 200, the left-hand flux path collapses and the static permanent magnet 308 attractive force takes back over and pulls the rotating member 304 back to the right-hand side of the yoke 302 as shown in
Under conditions when the electromagnet coil 306 is not energized, either by intentional design or failure of components or weak batteries, the operator can still cycle the firearm by applying force/displacement to the outer trigger 302 that exceeds the fixed or static holding force of the permanent magnet 308.
An alternate embodiment and application can be envisioned where the static holding force of the permanent magnet 308 is increased by applying electrical energy to the magnetic coil 306 in an “additive” manner instead that reinforces the permanent magnet's holding force. In this instance, the microcontroller 200 is configured to apply the electric pulse to electromagnet coil 306 with an opposite second polarity. The secondary dynamic right-side flux M2 would therefore act in the same clockwise direction as the static flux M1 seen in
One key feature of the present variable force trigger mechanisms 100 or 300 disclosed herein is the ability to select a desired trigger pull force-based release breakpoint or breakover setpoint for the trigger that is optimal for the user's experience and shooting situation. In one embodiment, the setpoint may be preprogrammed into microcontroller 200 for use in the control logic shown in
The cellphone microprocessor runs a local software application or “app” comprising program instructions or control logic that allows adjustment of the trigger release profile. Two application screens which may be presented to the user on the cellphone visual touchscreen are shown in
It will be appreciated that numerous variations in the configuration of the trigger profile software application are possible. The trigger profile software may also be implemented in other external electronic devices, such as a laptop, notebook, electronic pad, desktop computer, or other processor-based devices capable of communication with the onboard microcontroller 200 of the firearm.
It bears noting that particularly the electromagnetic trigger mechanism 300 is substantially immune to external magnetic field which could interfere with proper operation of the trigger mechanism electromagnetic actuator 350. The permanent magnet 308 in the embodiment presented herein provides a fixed or static holding force for a trigger-sear release system in a closed flux loop that limits susceptibility to external magnetic fields. With the exception of the small air gap created between the rotating member 304 and stationary yoke 302, that allows for the motion of the rotating central trigger/armature (rotating member 304), the magnetic yoke cross sectional area, and soft magnetic material properties of the yoke and rotating member to provide a low reluctance path that captures almost all of the magnetic flux generated by energizing the magnetic coil and from the permanent magnet.
Since magnetic force within the air gap increases with magnetic cross-sectional area and decreases with the square of the air gap length or width, practical designs which are optimized for force and speed tend to minimize the length or width relative to the cross-sectional area of the yoke. A consequence of this is that variable force trigger designs based on these design principles are inherently immune to external magnetic field interference. In practice, it is virtually impossible to change the state of the variable force trigger using an external magnet (and optional iron yoke) provided the rotating member is physically isolated from the external magnet by at least one air gap distance. This will virtually always be the case in practical firearm embodiments.
In the present firearm embodiment, electromagnetic snap actuator 350 operably interacts with and releases the energy storage device such as movable striking member 130 in an indirect manner via an intermediate firing mechanism component. The central rotating member 304 of the electromagnetic snap actuator 350 in this case operably interacts with a sear 375 operably interposed in the firing linkage between actuator 350 and striking member 130 (see also
In one embodiment, the firearm 20 may be a semi-automatic pistol recognizing that the trigger mechanism 300 with electromagnetic actuator 350 may be used in any type firearm having a pivotably or linearly movable striking member 130 and optionally a sear 375 or other intermediate component in some designs which operate to hold and selectively release the energy storage device (e.g. hammer or striker). Accordingly, the trigger mechanism 300 may be variously embodied in firearms including for example without limitation rifles, carbines, shotguns, revolvers, or other small arms.
Firearm 20 generally includes a frame 22, reciprocating slide 24, barrel 26 mounted to the frame and/or slide 24, and a movable energy storage device such as striking member 130. Slide 24 is slideably mounted on frame 22 for movement in a known axially reciprocating manner between rearward open breech and forward closed breech positions under recoil after the pistol is fired. A recoil spring 29 compressed by rearward movement of the slide acts to automatically return the slide forward to reclose the breech after firing.
Barrel 26 is axially elongated and includes rear breech end 30, front muzzle end 31, and an axially extending bore 25 extending therebetween. Bore 25 defines a projectile pathway and a longitudinal axis LA of the firearm which defines an axial direction; a transverse direction being defined angularly with respect to the longitudinal axis. The breech end 30 defines a chamber 32 configured for holding an ammunition cartridge C. The slide 24 defines a vertical breech face 34 movable with the slide and arranged to abuttingly engage the rear breech end 30 of barrel 26 to form the openable/closeable breech in a well known manner. The vertically elongated rear grip portion of frame 22 comprises a downwardly open magazine well which receives a removable ammunition magazine 136 therein for uploading cartridges automatically into breech area after the firearm is discharged which are chambered into the barrel via operation of the slide 24. All of the foregoing components and operation of semi-automatic pistols are well known in the art without requiring further elaboration.
With continuing reference to
Sear 375 is pivotably movable between an upward standby position in which sear protrusion 44 engages catch protrusion 42 of striker 40, and a downward fire position in which the sear protrusion disengages the catch protrusion to release the striker for firing the firearm 20. Sear 375 is held in the upward position by engagement with upstanding operating protrusion 333 on the central rotating member 304 of electromagnetic actuator 350 of the trigger mechanism 300 (see, e.g.
In operation, the firing mechanism is initially in the ready-to-fire condition or state shown in
To fire the firearm 20, the operator or user pulls the trigger member 320 thereby applying a trigger pull force F which is sensed and measured by the trigger sensor such as thin film force sensing resistor 370. The electromagnet coil 306 is then energized by microcontroller 200 in accordance with the control logic of
Fire-by-Wire Dynamic Variable Force and Displacement Trigger Embodiment
Expanding on the variable force trigger concept disclosed herein, it may be ideal if both the trigger force and trigger displacement could be dynamically changed during the trigger pull and firing sequence. One way to accomplish this would be to completely separate the trigger function from the firing event. The trigger event would generate an electrical signal that would be sent by wire to a separate electromechanical actuator to fire the firearm. In this embodiment, the trigger force could be dynamically adjusted as before; but the displacement could also be dynamically adjusted. This can be accomplished by a pre-defined effect or with feedback using a displacement sensor 159 of a flux measurement type such as a hall-effect or alternatively a GMR (Giant Magnetoresistance Effect) sensor operably incorporated with the trigger mechanisms 100 (with single flux loop actuator 123) or 300 (with double flux loop actuator 350). Such a sensor could be placed near the air gap A (see, e.g.
Force feedback could be combined with the dynamic adjustment of displacement and force in trigger feel to indicate the firing point. At the point of firing, the trigger force could be dynamically changed to give the operator haptic or kinesthetic feedback of the fire decision being reached. Optionally, the kinesthetic feedback could be supplied slightly after the actual firing event to minimize the possibility of the user staging or anticipating the firing event and minimizing flinching which could adversely affect point of aim.
The fire-by-wire concept has one potential weak spot in that a single fire signal could result in a single point of failure. A false positive or negative signal resulting from a short, open, or other failure could result in a failure to function or unintended trigger event. One of several concepts that would mitigate this is to have the trigger event generate two redundant triggering signals, an armed and a fire event signal. Using the displacement sensor 159, a minimum displacement of the trigger could be used as a signal to arm the firing system. The final fire decision could be an electrical contact or optical switch. Using two or more sensors, with different failure mechanisms, should ensure no single failure point. By adding intelligence to the relationship of the two signals, the reliability can be enhanced further. For example, it should not be possible to arm the firing sequence unless the trigger displacement has recovered to a predetermined position and the electro-mechanical switch is in an open state. The displacement sensor could be used to arm the firing signal as displacement is increased but before the mechanical switch closes. The actual closing of the mechanical switch would need to happen within a predefined time window or the arm signal would time out. This would ensure that the trigger pull event is representative of an actual firing event and would not be duplicable as a random failure of several components at the same time.
It can be envisioned that by incorporating the additional system sensors shown in
The fire-by-wire electronic firing system may still incorporate a modified version of either trigger mechanisms 100 or 300. In such an application, electromagnetic actuators 123 or 350 of trigger mechanism 100 or 300 respectively would not physically engage/disengage a component of the firing mechanism as previously described herein. Instead, the actuators would simply be used to adjust the trigger release profile and breakpoint of the trigger member 104 or 320 in the manner previously described herein in accordance with the control logic of
Referring to
If however the Step 404 test is positive, the microcontroller 200 will arm the firearm and continuously monitor for a trigger event and a number of other possible state change events in Step 408; some examples of which are indicated in
An example of one state change event that would effect authorization is the detection of loss of intent-to-fire grip that would indicate the user no longer has control of the firearm (Step 412). Another example would be the detection of an unsafe acceleration force detected by motion sensor 207 (Step 411), which is associated with falling or being bumped or jarred while holding the firearm. In the presence of a high acceleration force, the system disables the firing due to unsafe conditions. Another example of state-change events would be the detection of a system error or the detection that the battery might not have sufficient remaining power to reliably actuate the magnetic actuator (Step 416). These types of faults and warning would also drop the firearm out of the arm state and indicate a warning to the user.
An actuation event cycle also starts if a trigger event is detected by trigger sensors in Step 410, and the firearm is in an armed state and no state change event (Steps 411, 412, or 416) has occurred to disarm the firing mechanism as indicated above. Steps 422 through 430 represent a firing sequence for the firearm implemented by microcontroller 200. For added safety, two independent trigger events, “Trigger Event 1” based a signal from mechanical trigger sensor 160 and “Trigger Event 2” based on a signal from the electronic sensor 159 or 370 may be used to initiate a valid trigger event. However, a single trigger sensor and event may be used in other embodiments. After the system detects Trigger Event 1 has occurred, the system then confirms that the firearm is still under the users physical control with an intent-to-fire grip (Step 422). Next, the system detects whether an intent-to-fire Trigger Event 2 is activated. This provides the double layer of firing security. Assuming Steps 422 and 426 are positive, the electronic safety shorting clamp 251 is lifted (Step 428) to enable the firing mechanism. A high voltage electric pulse or signal from circuit 250 is sent by the microcontroller 200 via actuation control circuit 202 to the E-sear piezo actuator 252 which discharges the firearm (Step 430). The firing system is then reset for the next firing event.
During the preceding firing sequence of the fire-by-wire firing mechanism, it bears noting that the control logic of
While the foregoing description and drawings represent exemplary (i.e. example) embodiments of the present disclosure, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes described herein may be made within the scope of the present disclosure. One skilled in the art will further appreciate that the embodiments may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the disclosure, which are particularly adapted to specific environments and operative requirements without departing from the principles described herein. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive. The appended claims should be construed broadly, to include other variants and embodiments of the disclosure, which may be made by those skilled in the art without departing from the scope and range of equivalents.
The present application claims the benefit of priority to U.S. Provisional Application No. 62/468,632 filed Mar. 8, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1875941 | Schwartz | Sep 1932 | A |
2424247 | Mccaslin | Jul 1947 | A |
2702841 | Bernstein | Feb 1955 | A |
2780882 | Temple | Feb 1957 | A |
2957391 | Lovercheck | Oct 1960 | A |
2978825 | Tichenor | Apr 1961 | A |
3065560 | Bumiller | Nov 1962 | A |
3184651 | Albosta | May 1965 | A |
3208181 | Calhoun et al. | Sep 1965 | A |
3250034 | Simmons | May 1966 | A |
3650174 | Nelsen | Mar 1972 | A |
3854231 | Broyles | Dec 1974 | A |
3982347 | Brandl et al. | Sep 1976 | A |
4009536 | Wolff | Mar 1977 | A |
4134223 | Hillenbrandt | Jan 1979 | A |
4236132 | Zissimopoulos | Nov 1980 | A |
4275521 | Gerstenberger et al. | Jun 1981 | A |
4329803 | Johnson et al. | May 1982 | A |
4347679 | Grunig | Sep 1982 | A |
4510844 | Fritz et al. | Apr 1985 | A |
4727670 | Krouse | Mar 1988 | A |
4730407 | DeCarlo | Mar 1988 | A |
4793085 | Surawski et al. | Dec 1988 | A |
5074189 | Kurtz | Dec 1991 | A |
5083392 | Bookstaber | Jan 1992 | A |
5272828 | Petrick et al. | Dec 1993 | A |
5303495 | Harthcock | Apr 1994 | A |
5544439 | Grember et al. | Aug 1996 | A |
5625972 | King et al. | May 1997 | A |
5713150 | Ealovega | Feb 1998 | A |
5755056 | Danner et al. | May 1998 | A |
5784821 | Gerard | Jul 1998 | A |
5901488 | Oberlin | May 1999 | A |
6286241 | Constant | Sep 2001 | B1 |
6354033 | Findley | Mar 2002 | B1 |
6360469 | Mikuta et al. | Mar 2002 | B1 |
6374525 | Thomas | Apr 2002 | B1 |
6425199 | Vaid | Jul 2002 | B1 |
6430861 | Ayers et al. | Aug 2002 | B1 |
6442880 | Allan | Sep 2002 | B1 |
6668700 | Danner et al. | Dec 2003 | B1 |
6694963 | Taylor | Feb 2004 | B1 |
6732464 | Kurvinen | May 2004 | B2 |
6802305 | Hatcher | Oct 2004 | B1 |
6951071 | Acosta | Oct 2005 | B1 |
7049915 | Delamare et al. | May 2006 | B2 |
7231911 | Hatcher | Jun 2007 | B2 |
7441362 | Kley | Oct 2008 | B1 |
7457096 | Brundula | Nov 2008 | B2 |
7819051 | Beckmann et al. | Oct 2010 | B1 |
8015911 | Hellstrøm et al. | Sep 2011 | B2 |
8109024 | Abst | Feb 2012 | B2 |
8113103 | Beckmann et al. | Feb 2012 | B2 |
8234969 | Beckmann | Aug 2012 | B2 |
8336438 | Compton | Dec 2012 | B2 |
8461951 | Gassmann et al. | Jun 2013 | B2 |
8522466 | Arduini | Sep 2013 | B2 |
8677665 | Huber | Mar 2014 | B1 |
8692636 | Reuber | Apr 2014 | B2 |
8807007 | Alicea | Aug 2014 | B2 |
9011151 | Jones et al. | Apr 2015 | B1 |
9190234 | Reuber | Nov 2015 | B2 |
9347726 | Thomas | May 2016 | B1 |
9395134 | Swensen | Jul 2016 | B2 |
20010039751 | Kurvinen | Nov 2001 | A1 |
20060005447 | Lenner | Jan 2006 | A1 |
20090300961 | Ruhland et al. | Dec 2009 | A1 |
20120131832 | Arduini | May 2012 | A1 |
20150107567 | Vera et al. | Apr 2015 | A1 |
20150377574 | Cooke et al. | Dec 2015 | A1 |
20160061549 | Patterson | Mar 2016 | A1 |
20160233012 | Lubinski et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2701446 | Oct 2011 | CA |
204301599 | Apr 2015 | CN |
2926559 | Jan 1981 | DE |
9301009 | May 1994 | DE |
202013005117 | Jul 2013 | DE |
1132929 | Jul 2008 | EP |
2887003 | Dec 2016 | EP |
2887002 | Jan 2017 | EP |
2313655 | Dec 1997 | GB |
2000133091 | Jul 2001 | JP |
2001250716 | Sep 2001 | JP |
3240351 | Dec 2001 | JP |
4887993 | Feb 2012 | JP |
5613731 | Oct 2014 | JP |
20010035913 | May 2001 | KR |
2101839 | Jan 1998 | RU |
1133960 | Sep 1987 | SU |
1830443 | Sep 1987 | SU |
WO2005116567 | Dec 2005 | WO |
Entry |
---|
Corresponding International Search Report for Application No. PCT/US2018/020355, dated May 21, 2018. |
Author: Moving Magnet Technologies SA, Bistable Actuators Actuators and Solenoids for stable positions without current; See description and rotary actuator figure. Internet site: http://www.movingmanget.com/en/bistable-actuators-rotary-solenoids/ printed Jun. 19, 2018. |
Number | Date | Country | |
---|---|---|---|
20180259285 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62468632 | Mar 2017 | US |