The present invention relates to an air shift suspension system for use with the tandem axles of a commercial vehicle line haul tractor.
The typical North American Class 8 Line Haul Truck uses a 6×4 tractor with two drive axles in the tractor rear tandem. A 6×2 drive line has a single drive axle and a dead tag axle in the rear tandem. The 6×2 system is lighter and has a lower parasitic loss compared to the 6×4 system, but suffers from a deficiency in tractive effort under conditions of reduced tire to ground coefficient since the drive axle and tag axle will have the same load.
Systems have been offered to increase the 6×2 single drive axle tractive effort such as wheel differential locks and service brake based electronic traction control systems. Additionally, 6×2 air suspension systems are available that can automatically shift load from the tag axle to the drive axle under conditions of low traction to improve the tractive effort of the drive axle but these systems are slow acting, costly and cumbersome.
In view of the foregoing disadvantages of the prior art, it would be advantageous to have a low cost system that is fast acting, cost effective and easy to incorporate that can safely and effectively improve the 6×2 drive axle traction.
The present invention is directed toward a system for shifting the tandem axle loads on a vehicle. Specifically the system shifts the weight from the tag axle to the drive axle and vice versa. The system includes a first airbag connected between the drive axle of a tandem and the vehicle frame, and a second airbag connected between a tag axle of a tandem and the vehicle frame. The system also has a mechatronic control unit comprising at least one port and at least one solenoid. The mechatronic control unit is in direct fluid communication with the airbags and an air supply via fluid communication lines.
In accordance with the present invention, it has been discovered that the ability to rapidly shift load weight to the drive axle during a traction event, while maintaining the same ride height of both axles is highly desirable.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description when considered in the light of the accompanying drawings in which:
It is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions, directions or other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise.
The MCU 22 can facilitate in the accurate control of pressure for the system. As shown in
Various inputs to an MCU can be incorporated by using an algorithm to improve the functionality of the load shift algorithm. The algorithm may control the shifting of air pressure based on the vehicle parameters. The general concept is to try to predict when added tractive effort is needed and to then allow a weight shift for more traction. The estimated weight may cause the algorithm to limit or increase the pressure shifts.
The MCU 22 comprises a housing 26. The electronic control portion 28 and the pneumatic control portion 30 are provided within the housing 26. Preferably, the electronic control portion 28 is provided in an upper portion of the housing 26, and the pneumatic control portion 30 is provided in a lower portion of the housing 26.
The electronic control portion 28 may include a microprocessor operating under the control of a set of programming instructions, which may also be referred to as software. The electronic control portion 28 may include a memory (not depicted) in which programming instructions are stored. The memory can also store identification codes, airbag pressure records and/or user inputs over a period of time.
The electronic control portion 28 may receive input signals from a power supply (not shown) and/or one or more solenoids associated with the power supply. The solenoids may be conventional in the art. The electronic control portion 28 may also receive input signals from an operator control device (not shown). The operator control device may allow an operator of the vehicle to exert a certain level of control over the weight shift suspension system 10. The operator control device may be conventional in the art.
The electronic control portion 28 can output signals to one or more ports and/or passages in the pneumatic control portion 30. Preferably, the electronic control portion 28 outputs signals to a plurality of ports and/or passages via a solenoid associated with each. As depicted in the schematic on
The output signals may be electrical current. While solenoids are described in this invention, other types of devices capable of receiving an electrical signal are also within the scope of the invention. Electrical current can be received by a solenoid to place the respective port or passage into an open position or a closed position. Similarly, electrical current can be removed from the solenoid to place the respective port or passage into in an open position or a closed position. The electronic control portion 28 may also output signals to a display device (not depicted). The display device may be included as a part of the operator control device or a freestanding device. As depicted in
In the schematic depicted in
The control solenoid S3 is in direct communication with each of the other solenoids S1, S2, S4, S5 and a pressure transducer, Pn. The pressure transducer Pn is a sensor capable of monitoring a fluid pressure within the control line C. The pressure transducer Pn may also be configured to communicate a signal, relaying information about the fluid pressure within the control line C to a controller (not shown). Consistent with the previously discussed arrangement, the control line C is in direct fluid communication with each of the ports 32, 34, 38, 40 and the open/close control passage 36.
The weight shift suspension system 10 also includes a source of pressurized air. Pressurized air is supplied to the supply port 32 from the air supply tank 20. The air supply tank 20 provides a source of pressurized air, via fluid communication lines to the supply port 32 of the MCU 22 and into the airbags 16, 18.
The MCU 22 is used to regulate air to a particular location via fluid communication lines. The fluid communication lines may be of any diameter as is sufficient for the application. In the present invention, the drive axle port 34 of the MCU 22 is connected to the drive axle airbags 16, and the tag axle port 40 of the MCU 22 is connected to the tag axle airbags 18. More specifically, the drive axle port 34 and the tag axle port 40 are connected through the open/close control passage 36 to allow the transfer of air between the drive axle airbags 16 and the tag axle airbags 18.
The deflate port 38 of the MCU 22 can be used to evacuate air from the drive axle airbags 16 and/or the tag axle airbags 18 into the atmosphere. One or both of the airbags 16, 18 can be selectively evacuated to return them to their original pressure or if an emergency deflation is required.
Air moving through the supply port 32 is in direct communication with open/close control passage 36 and the drive axle port 34, and air moving through the open/close control passage 36 is also in direct communication with the tag axle port 40 and the deflate port 38. The open/close control passage 36 is a connection between the ports 32, 34, 38, 40 to facilitate the flow of air from the air supply tank 20 to the drive and/or tag axle airbags 16, 18, or the flow of air can also be reversed to draw air from the airbags 16, 18 evacuating the air into the atmosphere through the deflate port 38.
The drive axle airbags 16 and the tag axle airbags 18 as depicted in the figures are the same, meaning the same height and diameter. However, it is also within the scope of the invention for the airbags to be of different sizes, meaning the drive axle airbag may have a diameter and/or height that is different from the tag axle airbag. Whatever size airbags are used on the drive axle 12 and the tag axle 14, it is important to control and maintain an acceptable truck ride height.
Ride height is measured from the center of the axle to the bottom of the frame rail of a vehicle. Vehicles equipped with rear air suspensions have their ride height and axle pinion angles preset at the factory. These are precision settings and should not be altered. Incorrectly or improperly adjusted ride height may result in premature driveline wear and driveline vibration. For example, when a larger ground load is needed on the drive axle 12 due to a traction event, such as during wet and/or other types of slippery, muddy or snowy conditions, pressurized air needs to be rapidly and efficiently transferred to increase the pressure in the drive axle airbags. While doing this, it is important that the vehicle ride height be maintained at or near the desired distance.
In one example using exemplary data under normal conditions as depicted on
If a traction event is sensed, the MCU 22 can rapidly transfer air from the air supply tank 20 to the drive axle airbags 16 while simultaneously drawing air out of the tag axle airbags 18, if needed. Under tractive mode, air pressure in the drive axle airbags 16 is typically increased and air pressure in the tag axle airbags 18 is decreased. As shown in
After the added tractive effort is applied and the wheel slip is reduced or eliminated, the MCU 22 will return to the normal state and the air pressure in the airbags 16, 18 is adjusted back to their respective air pressures prior to the tractive event.
While returning to the normal state, typically one airbag increases pressure while the other airbag decreases pressure. The decrease in air pressure from the drive axle airbags 16 can be achieved by transferring air through the open/close control passage 36 and to either the tag axle port 40 back in to the tag axle airbags 18 or through the open/close control passage 36 to the deflate port 38 and out into the atmosphere.
Fluid communication lines are most commonly used for connecting the MCU 22 to the airbags 16, 18. The drive axle and tag axle airbags 16, 18 and the MCU 22 are typically in close proximity, so the air transfer through the fluid communication lines can be very quick. Typically, there is an air compressor (not shown) on all commercial trucks to operate the air brake and air suspension systems. The air compressor includes an air tank but the weight shift suspension system could have its own reservoir close to the axles so that air is quickly available and does not need to be robbed from the brakes. While tractive capability is needed for moving forward, it may also be needed for improved braking and stopping.
As previously noted, the ability to rapidly transfer shift load weight during a traction event is a desirable feature of a weight shift suspension system.
The graph in
The graph in
The graph in
The graph in
From the foregoing detailed description, it will be apparent that various modifications, additions, and other alternative embodiments are possible without departing from the true scope and spirit. The embodiments discussed herein were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to use the invention in various embodiments and with various modifications as are suited to the particular use contemplated. As should be appreciated, all such modifications and variations are within the scope of the invention.
This application claims priority to and benefit from U.S. patent application Ser. No. 62/090,903 filed on Dec. 12, 2014 which is currently pending and fully incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/065146 | 12/11/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/094746 | 6/16/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2864454 | LaBelle | Dec 1958 | A |
4141430 | Eddy, Jr. | Feb 1979 | A |
4993729 | Payne | Feb 1991 | A |
5025877 | Assh | Jun 1991 | A |
5193063 | Assh | Mar 1993 | A |
5472227 | Schoenfeld et al. | Dec 1995 | A |
5884998 | Silbernagel | Mar 1999 | A |
5954429 | Silbernagel | Sep 1999 | A |
6123444 | Silbernagel | Sep 2000 | A |
6152457 | Silbernagel | Nov 2000 | A |
6308793 | Eberling | Oct 2001 | B1 |
6371227 | Bartlett | Apr 2002 | B2 |
6523625 | Eberling | Feb 2003 | B2 |
6808035 | Keeler | Oct 2004 | B1 |
7101075 | Silbernagel | Sep 2006 | B2 |
7850195 | Simard | Dec 2010 | B2 |
7959173 | Morroney | Jun 2011 | B1 |
8720938 | Ehrlich | May 2014 | B2 |
8955858 | Koontz | Feb 2015 | B2 |
9346332 | Remboski | May 2016 | B2 |
9387742 | Van Raaphorst | Jul 2016 | B2 |
9533540 | Lindsay | Jan 2017 | B2 |
10046814 | Siuchta | Aug 2018 | B2 |
20020066605 | McClelland et al. | Jun 2002 | A1 |
20020163142 | Silbernagel | Nov 2002 | A1 |
20040036236 | Silbernagel | Feb 2004 | A1 |
20050029793 | Silbernagel | Feb 2005 | A1 |
20150329099 | Zawacki et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2845749 | Sep 2014 | CA |
2199123 | Jun 2010 | EP |
H08300929 | Nov 1996 | JP |
H09109645 | Apr 1997 | JP |
0000360 | Jan 2000 | WO |
2006054940 | May 2006 | WO |
Entry |
---|
European Patent Office, International Search Report with Written Opinion issued in PCT/US2015/065146, dated Mar. 11, 2016, 11 pages, European Patent Office, Rijswijk, Netherlands. |
Number | Date | Country | |
---|---|---|---|
20170361675 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62090903 | Dec 2014 | US |