The present invention relates to compressors. More specifically, the present invention is concerned with a dynamically controlled compressor system and method.
As well known in the art, centrifugal compressors have an operating envelope, referred to as the compressor map, which is limited by a condition called choke and another condition called surge.
Current centrifugal compressors pump gas when operating within the surge and choke points. If a centrifugal compressor is left operating in a surge condition for any length of time, impellers thereof can overheat and damage the whole machine. Compressor manufacturers go to length at trying to protect the compressor from operating in these damaging conditions with a variety of surge detection devices, which, when they detect a surge, shut the machine down to prevent damage.
In order to conserve energy, some more recent centrifugal compressors have added speed control to increase its operating range and in these cases the compressors control system has become dynamic. While up until this point, the compressors were either on or off, they have thus become more intelligent and the dynamic nature of the controls causes the compressors to react to changes in the condition. In a most recent version now available on the marketplace, by the present applicant, the centrifugal compressors may have totally dynamic controls and continually optimizes their speed and the positions of their inlet guide vanes to maximize their efficiency. Up until this date, centrifugal compressors have been mainly single compressor systems, and in more recent years, when two compressors have been applied to the one machine, have run in parallel and the loading and unloading has been through the use of the (IGV) alone and have been controlled from the one controller and therefore load and unload at the same rate and at the same time.
Currently, compressors have a compressor map programmed into a control unit thereof, to adjust their speed and when necessary also operate their inlet guide vanes in order to maximize their performance. Such dynamic control system provides that the compressors adapt their operating parameters as the conditions in the system change and as the load in the system varies.
In the case of a system comprising one compressor, this dynamic control of the centrifugal compressor, whereby it actively changes its speed and inlet guide vane setting to optimize its performance at various operating conditions and capacity requirements, is handled by an own control logic of the compressor.
In systems comprising at least two compressors, as shown in
With the event of these compressors having their own intelligence, there is now a need in the art for a centrifugal compressor system and method allowing a dynamic control of performance thereof over a wide operating range.
More specifically, there is provided a multiple compressor system, comprising at least a first and a second compressors in parallel between a low pressure side and a high pressure side; at least one inertia vessel connected to one of suction lines and discharge lines of the at least first and second compressors; wherein the at least one inertia vessel acts as a means of dampening changes of operation condition of the at least first and second compressors.
There is further provided a method for controlling a compressor system including at least two compressors arranged in parallel between a low pressure side and a high pressure side, comprising the step of connecting at least one inertia vessel to at least one of: a suction line and: a discharge line of at least one of the at least two compressors.
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of embodiments thereof, given by way of example only with reference to the accompanying drawings.
In the appended drawings:
In the case of a refrigeration system such as in air-conditioning unit for example, the load of the compressor varies as a function of time as well as the temperatures, and therefore pressures. These variations have impacts on the compressor operation and the compressor, in response, adjusts its speed and inlet guide vane.
Such a dynamic control system may be applied to conventional system using other types of positive displacement compressors such as reciprocating, scroll or screw compressors for example. In the case of an air compressor, the compressor may thus respond as the load demand changes in the process in which it is being applied, such as a manufacturing process.
In systems comprising at least two compressors, the present invention provides an adequately sized vessel or tank in either or both the suction line or the discharge line of multiple compressors, in such a fashion that if the conditions of the first compressor change, it does not have an immediate effect on the other compressors, the vessel acting as a means of dampening the change.
In the parallel piping system illustrated in
In
It is to be noted that refrigerant may enter and exit the system from any of at least one ports.
In a system as illustrated in
As people in the art will appreciate, the present invention may be used in applications where multiple dynamically controlled compressors are used to replace one large compressor and where the suction and discharge lines have to be connected to a heat exchanger through either or both the one entry and one exit points. An example of this would be a water chiller where there is one entry to the condenser and one exit from the evaporator. If the compressor only required one compressor, then there would be no problem, however where two or more compressors are needed to obtain a required capacity, then simply piping the compressors as is usually done in the art is inefficient. The connecting point of the pipe work needs to be of adequate size as to not have an immediate effect on the other compressors operating in the system.
The present invention may be applied to systems comprising more than two compressors. For example, the systems of
Although the present invention has been described hereinabove by way of embodiments thereof, it may be modified, without departing from the nature and teachings of the subject invention as described herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2005/001149 | 7/21/2005 | WO | 00 | 6/18/2007 |
Number | Date | Country | |
---|---|---|---|
60591082 | Jul 2004 | US |