not applicable
not applicable
1. Field of Invention
The present invention relates to the production of dynamically moving musical note sequences while playing electronic musical instruments.
2. Description of Prior Art
Traditional musical instruments use stationary notes that keep sounding the same note over and over when played. For instance, a piano has 88 notes that all operate in a stationary manner. Each a the key is pressed, the same note is produced, repeatedly. Electronic keyboard organs and synthesizers use a similar type of technology of producing the same note each time a key is pressed. It is often possible to change the entire musical key of the instrument, which shifts the note outputs. As an example, a middle C doesn't produce a C any more, but produces another note with surrounding notes shifted accordingly, relative in frequency to the C. Using this technique the musical key of smaller selectable sections of the keyboard can also be shifted. Traditionally, this technique requires setting the musical key using a keyboard control button. The setting of the new musical key doesn't generate a note, but simply adjusts a range of subsequently played notes. After the musical key is adjusted, the musician plays the keyboard in the conventional manner.
Often times there is internal or external software or hardware that remaps the notes to produce various note ranges along the keyboard span. For many years software has been available that remaps the notes on various instruments. Sequencer programs that record and edit multiple tracks of a song have available that perform extensive remapping of notes and that can produce elaborate chords.
For years instruments have also delivered the capability of generating arpeggios that are chord notes that automatically sequence through as various notes are held down. Using hardware and/or software, they cycle through the held down notes using various patterns and timing. This often creates mechanical sounding arpeggios. Another technique is to have various sequences of notes or chords stored in memory and play them automatically while the musician harmonizes with them, or plays other melodic notes at the same time. Here again, there can be a “canned” mechanical sound to the computer generated sequences. Often times there are entire songs recorded into memory that manufacturers have provided for the musician to play along and harmonize with.
The above mentioned techniques are often used with other electronic instruments, such as electronic guitars, drums, or clarinet type controllers, just to mention a few. These instruments often produce what is called a MIDI, which stands for Musical Instrument Digital Interface, output through a port, which generates a 31.25 thousand bits per second serial stream of digital data. This stream encodes the note number, note velocity, and note on or note off event to be sent to external synthesizers or computers, among a host of other MIDI functions. These other functions can contain pitch bend, sustain, and volume commands, just to name a few.
The most closely applicable portions of the prior art have offered a wide assortment of extremely commendable techniques used to alter the pitch of musical output notes in very creative ways. However, none of previous techniques use the powerful, specific, completely user controlled, input note triggering source of the present invention. In past inventions, arpeggio note values are generated using various algorithms and placed in pattern tables or shift registers to be automatically cycled through while various notes are pressed. The present invention uses no such pattern tables to cycle through. It uses the playing surface, itself, to generate patterns of moving notes and the musician directly produces the sequencing based upon the specific played input notes, rather than using any internally cycled pattern tables. This is a huge distinction. The input notes may be assigned to index into interval producing tables while being played. The tables are judiciously set up ahead of time by the musician, who subsequently generates the final output sequences, on a note-by-note basis. Moving note or arpeggio variations are created by the musician during a performance based upon the variable interval producing events assigned to the playing surface notes, rather than being stored in pattern tables. Since no pattern tables are used, the musician has ultimate control over the output timing and output note values, since each note or chord played is chosen and triggered, intelligently, on-the-fly.
One advantage to this interval producing moving note approach is that a musician can almost immediately start playing gorgeous musical arpeggios with ease. What took years of work for people to learn in the past can now be done in a few minutes. Another advantage is that the hands don't have to move all over the keyboard any more. In the past producing intricate, interwoven, note sequences took a lot of talent, effort, and much hand movement to play the complex note sequences. Now this can be powerfully accomplished with the hands moving very little. Subsequently, the hands and arms won't tire as easily. The full back and forth musical span of the output note range can be accomplished with as little as two fingers on one hand. Another advantage is that the musical key can be routinely continuously changing. The musician can weave in and out of effective musical keys as easily as it was to stay in one musical key before the invention. As the musical key dynamically shifts it eliminates the requirement to learn 12 different keyboard patterns. Only one pattern need be learned to provide a unified, elegant solution. As compared to previous approaches that used computer generated arpeggio patterns, another advantage is that all the various timings of the arpeggios and note sequences are completely controlled by the musician and hence emotional content of the music can be fully dictated and enhanced. This is because each note is actually played. Often automatic computer generated timing sounds empty, while this approach doesn't. As a further advantage, the invention much opens up the usefulness of far smaller keyboards and instrument controllers such as electronic drums, since their previous stationary notes tended to confine them to smaller note ranges. A few drum pads that trigger notes or drum events, or a keyboard that is one or two octaves wide can powerfully span the entire range of notes with ease.
This simple, yet powerful invention allows people to play their electronic musical instruments in delightfully new ways. Notes that have traditionally stood still while being played now dynamically move up or down by various musical intervals, or steps. In the case of a keyboard, when a key is pressed it produces a new note that is a new frequency above or below the last note played. This note position then becomes the new reference for the next note played. The assigned keyboard step quantities can be intelligently arranged in various patterns so simple or complex arpeggios or note sequences can be played with ease. This technique also produces the foundation on which many various key functions can be applied. For instance, a key function may be defined to repeat the last interval jump, whatever it was. Playing other keys can silently move the reference. Also, sections of the keyboard may be defined to operate in a stationary manner, until the musical reference is changed. When the reference changes the sections shift by the updated reference amount, but don't move until the reference is again updated. This is useful for performing real time multiple note chords where one hand generates intervals, while the other hand generates a variety of ever changing chords, with respect to the new moving reference. Using multiple tables opens up the option of powerfully weaving in and out of various tables during play. The functions applied using the tables give the musician ultimate control over the simplicity or the complexity of the playing surface.
This invention produces a method of playing notes, whereby they don't stand still anymore, but move up or down by selectable musical intervals. In the case of a keyboard, each time a key is pressed the resultant output note may move up or down with respect to the last output note by a selectable quantity of semitones. Thus, instead of standing still, a played note effectively moves. Each time a note is played, a new shifted pitch is sounded and a new shifted musical reference is obtained to be the starting point for the next note. The new note gets played relative to this new starting point, and so on. As a simple example, refer to
The preferred embodiment gives the musician full flexibility in choosing and assigning functionality of all the musical instrument controller notes. Most musical controllers have what's called a MIDI (Musical Instrument Digital Interface) output that sends note information out in a serial stream of data. There are 7 bits of data that describe each note, hence there are 128 different possibilities. The preferred embodiment has hundreds of each of the shown tables in
One implementation possibility is for the method to be embedded directly inside electronic musical instruments. In this case hardware or software tables store the data that assigns functionality to the notes. MIDI need not be used, as the invention applies to any played, stored, or generated musical input note values used as a source. A second approach is to embed the method inside a hardware device that reinterprets MIDI type events and generates MIDI outputs. A third approach is a software program operated on a computer that gives the musician a powerful user interface. The third software version is operated by providing a path between the musical controller and the output synthesizers. The output synthesizers may be within the computer or external to the computer. In all three cases the basic operation is the same. There are tables that are either filled in by the manufacturer, tables the musician adjusts, or both. Also, for that matter, tables need not be used, but the function events may be calculated on the fly by any processing activity. It is also feasible to use a combination of tables and on the fly processing to come up with the intervals or various functions used.
As an example, shown in
Viewing tables in
Some of the note functions include:
This list provides a foundation of the functions 18 from which the musician can select during a performance. The tables are edited ahead of time. There are many other possibilities for interacting with the instruments. For instance, the interval need not be a consistent quantity of semitones, but other tables or software patterns may be used to update the interval offset each time a note is played. Also, various output scale tables may be used and selected with other functions 18. Scale tables simply remap all 128 MIDI notes to 128 selectable MIDI notes. For instance, it is easily possible to have all the MIDI notes mapped backwards to create an unusual output note effect. There is a wide range of possibilities for applying various tables to give the musicians wide flexibility in choosing how their music is performed. For instance, one possibility is to cluster the data together in the cells of the tables instead of having separate tables for each data type. Another possibility is to use a music notation style staff to select various intervals, instead of using tables.
The
The invention can also give the musician capability to record multiple tracks of a song using a software sequencer recording technique. The software sequencer isn't shown, because it's beyond the scope of the patent. In this case, individual input note events that take up 4–6 bytes of memory space can be recorded into the tracks of a song. Using this approach the input note events are recorded, then during playback the events feed the said function maps 18 in very powerful ways. Short events consisting of a few bytes can trigger vast chords of hundreds of notes, but these hundreds of notes are not recorded into the song. After a track is recorded, by changing a single number in a recorded map event, the entire operation, sound, and complexity of the song can be completely changed, almost instantly. This is because completely different sets of map tables are selected that may operate entirely differently. They may produce a completely different set of chords sent to a completely different set of synths. The functions 18 may be entirely different, further producing a completely different pattern of sound. The output of the song index into the various tables and they produce the final output.
There are also tables that allow the musician to design their
Much mention has been made of switching to various mappings of the table functions. The tables shown in the patent figures represent one of hundreds of complete mappings of table data. The tables of
Referring to
The Function “Follow Interval” decodes the output note variable to be equal to the current Reference plus the Offset. Notice this does not change the Reference, but simply produced a note relative to it. The function “Repeat Interval” shifts the Reference by the previous interval amount, then sets the output note variable to be equal to this newly shifted reference, thus repeating the previous interval, whatever it was.
The Function “Home” simply sets the Reference to a known value. The Functions: Map, +Map, Synths Map, and +Synths Map set, or increment the associated map array pointers. This way entire new mappings of functions, or synth settings can get instantly updated with a single input note event.
The bottom right circle of
If the Output Type is a plain “C”, then the software further decodes the chord using the Chord Synthesizer tables to send the chord notes to various synths during output while using the synths table for final decoding. Then the program loops back to retrieve the next note.
There are various methods for generating the final output notes. This invention applies to the two distinct processes of triggering musical notes, or generating musical note pitches by any arithmetic means. In the case of triggering musical notes the frequency of the resultant notes are often logarithmically scaled across the note range, just like tradition piano pitches. Using this approach the note pitches don't increase or decrease linearly, but they do increase or decrease. The invention apples to the process of generating or triggering final pitches that increase or decrease by any amount. Also the invention applies to the internal generation of pitches by any electronic means, whatsoever. The traditional concept of the musical key of a song being shifted need not be adhered to. Also, the moving reference need not be related to the musical key of a song. The output pitches need not produce notes that are related to any conventional use of a musical key. In the industry music is often produced by synthesizers that produce microtonal pitch shifts. The patent applies to a note reference that can shift to any frequency, whatsoever. The reference or references may shift by any amount produced by any arithmetic means. The invention not only applies to played note inputs, but also applies to the use of any type of input note values, whether they be calculated, or stored by any means.
An inherent disadvantage to this moving note approach is that if an interval function note is accidentally pressed that was not intended, it will send the song into a completely unexpected musical key or frequency. In particular, during a stage performance, this could be quite undesired. One way around this is to have a function that remembers interval steps and backs up to the last reference used, or backs up repeatedly until the desired reference location is found. Another solution is to use the home function to send the reference to a known location. Another disadvantage is that it may be more complicated for a seasoned musician to play two simultaneous melodies or sets of unrelated chords. This can be minimized by switching back and forth from using many Interval 12 producing key functions to using just a few at a time. It's also possible to have multiple interval musical references that operate independently. In the multiple reference case many of the map functions would need to be duplicated. Perhaps these could be called A, B, and C Functions, for instance.
Having musical notes that effectively, dynamically move as they're played, open up tremendous possibilities for even the novice musician. Instantly, what was previously very complicated playing, becomes far simpler and much more fluid. Gorgeous note sequences become the norm. Songs that have previously been most easily confined to one musical key at a time, become intricate interwoven blends, even for the beginner. The ramifications are far reaching. Music university classes, music theory, keyboard classes, electronic guitar classes, may all drastically change. Even a person that has no music experience can now start playing with far greater joy. Kids will love the added capability. There may be a much larger market enjoyed by electronic instrument manufacturers, who will probably exhibit highly increased sales. The professional musician will be able to perform incredibly beautiful, complex music further adding to their existing talent.
SEQUENCE LISTING: not applicable
Relevant Prior Art Patents:
Number | Name | Date | Kind |
---|---|---|---|
4217804 | Yamaga et al. | Aug 1980 | A |
4379420 | Deutsch | Apr 1983 | A |
4708046 | Kozuki | Nov 1987 | A |
4716804 | Chadabe | Jan 1988 | A |
5281754 | Farrett | Jan 1994 | A |
5357048 | Sgroi | Oct 1994 | A |
5375501 | Okuda | Dec 1994 | A |
5406020 | Imaizumi | Apr 1995 | A |
5418322 | Minamitaka | May 1995 | A |
5424486 | Aoki | Jun 1995 | A |
5451709 | Minamitaka | Sep 1995 | A |
5488196 | Zimmerman | Jan 1996 | A |
5496962 | Meier | Mar 1996 | A |
5502274 | Hotz | Mar 1996 | A |
5612501 | Kondo | Mar 1997 | A |
5619003 | Hotz | Apr 1997 | A |
5714705 | Kishimoto | Feb 1998 | A |
5739453 | Chihana | Apr 1998 | A |
5783767 | Shinsky | Jul 1998 | A |
5864079 | Matsuda | Jan 1999 | A |
5883325 | Peirce | Mar 1999 | A |
6201178 | Shinsky | Mar 2001 | B1 |
6245984 | Aoki | Jun 2001 | B1 |
6448486 | Shinsky | Sep 2002 | B1 |
6639141 | Kay | Oct 2003 | B2 |
6642444 | Hagiwara | Nov 2003 | B2 |
6683241 | Wieder | Jan 2004 | B2 |
6696631 | Smith | Feb 2004 | B2 |
6979767 | Georges et al. | Dec 2005 | B2 |
20040089141 | Georges et al. | May 2004 | A1 |