The present invention relates to an e-mail address verification system. E-mail is a popular method for disseminating information, even when that information is confidential communications to a company's senior executives. However, because of similarities between e-mail addresses, e-mails are frequently sent to the wrong people. At best, this can cause inconvenience and inefficiency for both the recipient and the sender. Unfortunately, in some cases, the delivery of sensitive information to the wrong people can have serious consequences.
One embodiment of the present invention is a method for verifying a sender's intent to send an e-mail message to a recipient. Embodiments of the invention may also include the steps of obtaining a list of e-mail addresses in an e-mail message, obtaining a list of the sender's previous correspondents, and responsive to find a match for an e-mail address in the list of e-mail addresses in the e-mail message in the list of the sender's previous correspondents, sending the e-mail message to the matched e-mail address.
Another embodiment of the present invention is a method for verifying a sender's intent to send an e-mail message to a recipient. Embodiments of the invention may also include the steps of obtaining a list of e-mail addresses in an e-mail message, obtaining the sender's warning list, responsive to finding a match for an e-mail address in the list of e-mail addresses in the e-mail message in the sender's warning list, asking the sender to confirm the matched e-mail address is correct, and responsive to the sender confirming the matched e-mail address is correct, sending the e-mail message to the confirmed e-mail address.
According to one embodiment of the present invention, a system for verifying a sender's intent to send an e-mail message to a recipient includes a sender computer having memory and a processor, a sender mail server having memory and a processor, wherein the sender mail server is connected to the sender computer, an e-mail program, wherein the e-mail program is stored in the sender computer's memory, an e-mail message, wherein the e-mail message is stored in the sender computer's memory, an e-mail address verification program, wherein the e-mail address verification program is stored in the sender computer's memory, and a sender correspondence database, wherein the sender correspondence database is stored in the sender computer's memory.
As will be appreciated by one skilled in the art, the present invention may be embodied as a system, method, or computer program product. Accordingly, embodiments of the invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, the embodiments of the invention may take the form of a computer program product embodied in any tangible medium of expression having computer usable program code embodied in the medium.
Any combination of one or more computer usable or computer readable mediums may be utilized. The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer-readable medium include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CDROM), an optical storage device, a transmission media such as those supporting the Internet or an intranet, or a magnetic storage device. Note that the computer-usable or computer-readable medium may even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory. In the context of this document, a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer-usable medium may include a propagated data signal with the computer-usable program code embodied therewith, either in baseband or as part of a carrier wave. The computer usable program code may be transmitted using any appropriate medium, including, but not limited to wireless, wireline, optical fiber cable, RF, etc. The medium may be remote to the user, thus allowing the use of the program over a large area computer network, including a global network such as the Internet.
Computer program code for carrying out operations of embodiments of the invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider), whether via wireless, wireline or other transmission means.
An embodiment of the present invention is described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
When the e-mail address verification program 100 or 200 is installed on the recipient computer 64, it functions in a similar manner to that previously described. In this case, however, the e-mail address verification program 100 asks the recipient to confirm his or her intent to receive an e-mail message from the sender if the sender has not previously corresponded with the recipient or the e-mail message does not meet for a confidence index threshold established by the recipient prior to delivering the received e-mail message to the recipient.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.