This application claims the priority under 35 U.S.C. § 119(a) to Korean Patent Application Serial No. 10-2015-0083403, which was filed in the Korean Intellectual Property Office on Jun. 12, 2015, the entire contents of which is incorporated herein by reference.
1. Field of the Disclosure
The present disclosure relates generally to a wearable device, and more particularly, to an ear mold for an auditory device that is worn in the ears of a user.
2. Description of the Related Art
The electronic devices may be carried by putting the same into a user's pocket or bag; holding the same by hand; or wearing the same on a specific position of a human body. The wearable device may be worn on a variety of human body parts to then be used.
The methods for wearing the wearable device on the body may include: 1. a method of wearing the watch type of device on the body part, such as a wrist; 2. a method of wearing the necklace type of device around the neck; 3. a method of wearing the glasses type of device in a similar manner of wearing glasses on the face; 4. a method of fitting the clip type of device to a part of the body, clothing, or belongings; or 5. a wearing method of directly/indirectly attaching the body, belongings, or accessories.
In addition, with regards to the schematic configuration of the wearable device, the wearable device is comprised of a body and a wearing part, and the wearable device may be worn on the various body parts depending on the configuration of the wearing part. The electronic device that is worn in the ears among the various body parts may be referred to as an auditory device. In general, users may obtain sound information through the auditory device.
Referring to
Each auditory device 10 or 11 may have a variety of forms depending on the personal using purpose of the user. For example, the auditory device 10 or 11 may be referred to as a headset, headphones, earpieces, hearing aids, or personal sound amplification products. The auditory devices 10 and 11, such as the hearing aids, may be implemented as the behind-the-ear (BTE) type, the receiver-in-canal (RIC) type, the in-the-ear (ITE) type, the in-the-canal (ITC) type, the completely-in-canal (CIC) type, or the like.
The auditory devices have used the open-type of ear mold or the closed-type of ear mold. However, while the open-type of ear mold has a low possibility of generating feedback (howling), it has a problem in which the user's voice becomes louder. In addition, the closed-type of ear mold provides a comfortable fit, while the generation of feedback will increase.
Various embodiments of the present disclosure provide an auditory device that can be selectively used as the open-type of ear mold or as the closed-type of ear mold.
In accordance with an aspect of the present disclosure, there is provided a portable device. The portable device includes an earpiece including a receiver configured to convert an electric signal into a sound signal and an ear mold configured to be coupled to the earpiece and including a cylinder formed about a first axis of the ear mold and including an inner side that surrounds at least a part of the receiver and an outer side that is disposed opposite the inner side, a first cap extending from one end of the cylinder and including a portion spaced apart from the outer side of the cylinder and surrounding at least a part thereof, and a second cap disposed adjacent to the first cap and extending parallel in relation to at least a part of the first cap, wherein the first cap has a first hole passing through a first side of the first cap and a second side, which is disposed opposite the first side, and the second cap has a second hole passing through a third side of the second cap and a fourth side, which is disposed opposite the third side.
In accordance with an aspect of the present disclosure, there is provided an auditory device including a receiver and at least one ear mold coupleable to the receiver and operable in a first configuration and a second configuration, such that in the first configuration a though hole of the ear mold is in an open configuration and in the second configuration the through hole is in a closed configuration.
In accordance with an aspect of the present disclosure, there is provided a wearable device including a microphone, an ear mold coupleable to a receiver and operable in an open configuration for opening a path between an inner ear and an outer ear of a user of the wearable device and a closed configuration for blocking the path between the inner ear and the outer ear, the ear mold including a first ear dome and a second ear dome that is rotatably coupled to the first ear dome for operating the ear mold in the open configuration and the closed configuration, and a tube configured to connect the receiver to the microphone.
The above and other aspects, features, and advantages of certain embodiments of the present disclosure will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure will be described herein below with reference to the accompanying drawings. However, the embodiments of the present disclosure are not limited to the specific embodiments and should be construed as including all modifications, changes, equivalent devices and methods, and/or alternative embodiments of the present disclosure.
The terms “have,” “may have,” “include,” and “may include” as used herein indicate the presence of corresponding features (for example, elements such as numerical values, functions, operations, or parts), and do not preclude the presence of additional features.
The terms “A or B,” “at least one of A or/and B,” or “one or more of A or/and B” as used herein include all possible combinations of items enumerated with them. For example, “A or B,” “at least one of A and B,” or “at least one of A or B” means (1) including at least one A, (2) including at least one B, or (3) including both at least one A and at least one B.
The terms such as “first” and “second” as used herein may modify various elements regardless of an order and/or importance of the corresponding elements, and do not limit the corresponding elements. These terms may be used for the purpose of distinguishing one element from another element. For example, a first user device and a second user device may indicate different user devices regardless of the order or importance. For example, a first element may be referred to as a second element without departing from the scope the present invention, and similarly, a second element may be referred to as a first element.
It will be understood that, when an element (for example, a first element) is “(operatively or communicatively) coupled with/to” or “connected to” another element (for example, a second element), the element may be directly coupled with/to another element, and there may be an intervening element (for example, a third element) between the element and another element. To the contrary, it will be understood that, when an element (for example, a first element) is “directly coupled with/to” or “directly connected to” another element (for example, a second element), there is no intervening element (for example, a third element) between the element and another element.
The terms used in describing the various embodiments of the present disclosure are for the purpose of describing particular embodiments and are not intended to limit the present disclosure. As used herein, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. All of the terms used herein including technical or scientific terms have the same meanings as those generally understood by an ordinary skilled person in the related art unless they are defined otherwise. The terms defined in a generally used dictionary should be interpreted as having the same or similar meanings as the contextual meanings of the relevant technology and should not be interpreted as having ideal or exaggerated meanings unless they are clearly defined herein. According to circumstances, even the terms defined in this disclosure should not be interpreted as excluding the embodiments of the present disclosure.
The term “module” as used herein may be defined as, for example, a unit including one of hardware, software, and firmware or two or more combinations thereof. The term “module” may be interchangeably used with, for example, the terms “unit”, “logic”, “logical block”, “component”, or “circuit”, and the like. The “module” may be a minimum unit of an integrated component or a part thereof. The “module” may be a minimum unit performing one or more functions or a part thereof. The “module” may be mechanically or electronically implemented. For example, the “module” may include at least one of an application-specific integrated circuit (ASIC) chip, field-programmable gate arrays (FPGAs), or a programmable-logic device, which is well known or will be developed in the future, for performing certain operations.
An electronic device of the disclosure may be a device including a communication function. For example, an electronic device may include at least one of a smartphone, a tablet personal computer (PC), a mobile phone, a video phone, an e-book reader, a desktop PC, a laptop PC, a netbook computer, a personal digital assistant (PDA), a portable multimedia player (PMP), an MP3 player, a mobile medical device, a camera, or a wearable device (e.g., a head-mounted-device (HMD) such as electronic glasses, an electronic clothing, an electronic bracelet, an electronic necklace, an electronic appcessory, an electronic tattoo, or a smartwatch).
According to certain embodiments, an electronic device may be a smart home appliance having a communication function. A smart home appliance may include, for example, at least one of a television, a digital video disk (DVD) player, an audio, a refrigerator, an air conditioner, a cleaner, an oven, an electronic range, a washing machine, an air purifier, a set-top box, a TV box (e.g., Samsung HomeSync™, Apple TV™, or Google TV™), game consoles, an electronic dictionary, an electronic key, a camcorder, or an electronic frame.
According to certain embodiments, an electronic device may include at least one of various medical devices (e.g., magnetic resonance angiography (MRA), magnetic resonance imaging (MRI), computed tomography (CT), a shooting device, an ultrasonic device, etc.), a navigation device, a global positioning system (GPS) receiver, an event data recorder (EDR), a flight data recorder (FDR), an automobile infotainment device, electronic equipment for a ship (e.g., a navigation device for a ship, a gyro compass, etc.), an avionics, a security device, or a robot for an industrial use or a home use.
According to certain embodiments, an electronic device may include at least one of a furniture or a portion of a building/structure including a communication function, an electronic board, an electronic signature receiving device, a projector, or various measurement devices (e.g., waterworks, electricity, gas, or radio wave measuring device, etc.). An electronic device according to the disclosure may be a combination of one or more of the above-described devices. Also, it will be apparent to one skilled in the art that the electronic device examples of the disclosure are not limited to the above-described devices.
An electronic device according to the present disclosure is described with reference to the accompanying drawings. A user used may indicate a person who uses an electronic device or a device (e.g., an artificial intelligence electronic device) that uses the electronic device.
Since the various embodiments of the present disclosure may selectively switch to the open-type of ear mold or to the closed-type of ear mold depending on the user's preference, it is convenient to use the same.
In addition, according to various embodiments of the present disclosure, the receiver and the ear dome can be easily coupled and detached, and the first and second ear domes can be easily coupled and detached, as well.
In addition, the various embodiments of the present disclosure can provide a comfortable fit for the ear canal by adopting a soft material. In particular, since the rotation operation of the ear dome is easy, it is convenient to use the same.
Referring to
The auditory device 20, according to various embodiments, may be wiredly or wirelessly connected to other electronic devices (mobile devices, mobile phones, tablets, or the like) and a network. In the case of a wireless connection, the communication control unit 213 may process an input signal (applying an audio filter or amplifying the signal) that is received through an antenna 216, and may transmit the same to the control unit 210. The control unit 210 may process the input signal and may then output a sound through the output unit 212.
The control unit 210, according to various embodiments, may differently configure the signal processing method (applying an audio filter or amplifying the signal) depending on the input signal that is received through the communication control unit 213 or the input unit 211. The control unit 210 may set an audio path according to the presence or absence of the input signal through the communication control unit 213 and the input unit 211. For example, in the case of a normal mode, the input signal is input to the control unit 210 through the input unit 211. The control unit 210 may set a signal path of the input unit 211 to the output unit 212, and may then output a sound. If there is an input signal through the communication control unit 213, the control unit 210 may convert the signal path through the input unit 211 into the signal path through the communication control unit 213.
The control unit 210, according to various embodiments, may process information on whether or not an input signal is received through the input unit 211 by using the intensity of power for each time period. If there is an input signal, the control unit 210 may analyze the input signal in order to thereby determine the mode to be performed. The control unit 210 may determine whether or not the input signal is similar to the signal of a user, the signal of an object, or the signal that is registered in a DB. The mode of the auditory device 20 may be changed according to the voice information of the input signal. If the input signal is determined to be a noise, the control unit 210 may eliminate the same. If the input signal does not occur more than a specific value for a specific period of time, at least some of the auditory device 20 may operate in the low power mode.
Referring to
The electronic device 30, according to various embodiments, may include one or more control units 303, a wireless communication unit 305, a storage unit 311, a sensor unit 315, an input device unit 307, a display unit 317, and an audio processing unit 309.
The control unit 303, according to various embodiments, may control a multitude of hardware or software elements that are connected with the control unit, and may perform the processing of various pieces of data and a calculation, for example, by driving an operating system or application programs. The control unit 303 may be implemented by, for example, a system on chip (SoC). According to an embodiment, the control unit 303 may further include a graphic processing unit (GPU) and/or an image signal processor. The control unit 303 may load instructions or data received from one or more other elements (e.g., a non-volatile memory) to a volatile memory to then process the same, and may store a variety of data in a non-volatile memory.
The wireless communication unit 305, according to various embodiments, may include, for example, a cellular module, a wireless fidelity (WiFi) module, a Bluetooth module, a global navigation satellite system (GNSS) module (e.g., a global positioning system (GPS) module, a Glonass module, the Beidou module, or the Galileo module), an near field communication (NFC) module, and a radio frequency (RF) module.
The cellular module, for example, may provide services of voice calls, video calls, text messaging, or the Internet through communication networks. According to an embodiment, the cellular module may perform identification and verification of the electronic device 30 in communication networks by using a subscriber identification module (e.g., a SIM card). The cellular module may perform at least some of the functions that are provided by the processor. The cellular module may include a communication processor (CP).
For example, each of the WiFi module, the Bluetooth module, the GNSS module, or the NFC module may include a processor for processing data that is transmitted and received through the corresponding module. According to an embodiment, at least some (e.g., two or more) of the cellular module, the WiFi module, the Bluetooth module, the GNSS module, or the NFC module may be included in one integrated chip (IC) or one IC package.
The RF module, for example, may transmit and receive communication signals (e.g., RF signals). The RF module may include, for example, a transceiver, a power amplifier module (PAM), a frequency filter, a low noise amplifier (LNA), antennas, or the like. According to another embodiment, at least one of: the cellular module; the WiFi module; the Bluetooth module; the GNSS module; or the NFC module may transmit and receive RF signals through separated RF modules.
The subscriber identification module (SIM) card may be an embedded SIM, and may include inherent identification information (e.g., an integrated circuit card identifier (ICCID)) or subscriber information (e.g., an international mobile subscriber identity (IMSI)).
The storage unit 311, according to various embodiments, may include, for example, an internal memory or an external memory. The internal memory, for example, may include at least one of: volatile memories (e.g., a dynamic random access memory (RAM) (DRAM), a static RAM (SRAM), a synchronous dynamic RAM (SDRAM), or the like); or non-volatile memories (e.g., an one time programmable read only memory (ROM) (OTPROM), a programmable ROM (PROM), an erasable and programmable ROM (EPROM), an electrically erasable and programmable ROM (EEPROM), a mask ROM, a flash ROM, a flash memory (e.g., NAND flash or NOR flash), a hard drive, a solid state drive (SSD), or the like).
The external memory may further include a flash drive, for example, compact flash (CF), secure digital (SD), micro secure digital (Micro-SD), mini secure digital (Mini-SD), extreme digital (xD), a multi-media card (MMC), a memory stick, or the like. The external memory may be functionally and/or physically connected with the electronic device 30 through various interfaces.
The sensor unit 315, according to various embodiments, for example, may measure physical quantities and may detect the operation state of the electronic device 30 to thereby convert the measured or detected information to electric signals. The sensor unit 315 may include at least one of: for example, a gesture sensor; a gyro-sensor; an air-pressure sensor; a magnetic sensor; an acceleration sensor; a grip sensor; a proximity sensor; a color sensor (e.g., a red-green-blue (RGB) sensor); a biometric sensor; a temperature/humidity sensor; an illuminance sensor; or an ultra violet (UV) sensor. Alternatively or additionally, the sensor unit, for example, may include an E-nose sensor, an electromyography (EMG) sensor, an electroencephalogram (EEG) sensor, an electrocardiogram (ECG) sensor, an iris sensor, and/or a fingerprint sensor. The sensor unit may further include a control circuit for controlling one or more sensors that are included therein. In some embodiments, the electronic device 30 may further include a control unit as a part of the control unit 303 or separately from the control unit 303, which is configured to control the sensor unit 315 in order to thereby control the sensor unit 315 while the control unit 303 is in the sleep mode.
The input device unit 307, according to various embodiments, for example, may include a touch panel, a (digital) pen sensor, keys, or an ultrasonic input device. The touch panel may use at least one of, for example, a capacitive type, a pressure-sensitive type, an infrared type, or an ultrasonic type. In addition, the touch panel may further include a control circuit. The touch panel may further include a tactile layer in order to thereby provide a user with a tactile reaction.
For example, the (digital) pen sensor may be a part of the touch panel, or may include a separate recognition sheet. The keys may include, for example, physical buttons, optical keys, or a keypad. The ultrasonic input device may detect ultrasonic waves generated in input means through a microphone in order to thereby identify data corresponding to the ultrasonic waves.
The display unit 317, according to various embodiments, may include a panel, a hologram device, or a projector. The panel may be implemented to be, for example, flexible, transparent, or wearable. The panel may be configured with the touch panel as a single module. The hologram device may display 3D images in the air by using interference of light. The projector may display images by projecting light onto a screen. The screen may be positioned, for example, inside or outside the electronic device 30. The display may further include a control circuit for controlling the panel, the hologram device, or the projector.
The audio processing unit 309, for example, may convert a sound into an electric signal, and vice versa. At least some elements of the audio processing unit 309 may process sound information that is input or output through a speaker, a receiver, earphones, or a microphone.
The auditory device 32, according to various embodiments, may change the configuration of the auditory device 32 through the other electronic device 30. The auditory device 32: may be small; may not have a separate display device; and may be comprised of a limited input device unit (buttons) 327. For example, the auditory device 32 may be a type of hearing aid, and may include a plurality of filter modes (e.g., wide dynamic range compression), volume adjustment, or the like. When configuring the mode or volume through the input device unit 327 of the auditory device 32, it may be inconvenient to check the configuration state and to configure a desired mode. For example, when the volume level is changed from 3 to 2 by using a button, the button may be pressed five times (for example, 3→4→5→→1→2). The mode of the auditory device 32 may be conveniently configured when it is configured in association with the other electronic device 30. For example, in the case of using the electronic device 30 that includes a variety of the input device units 307 (touch keys, buttons, or the like) and the display unit 317, a user interface (UI) may be provided to the user through the electronic device 30 so that the user may easily change the configuration of the auditory device 32 according to the provided UI.
The auditory device 32, according to various embodiments, may include a sensor unit 335. The sensor unit 335 may include a proximity sensor, an acceleration sensor, a geomagnetic sensor, a biometric sensor, or the like. The auditory device 32 may identify whether or not the auditory device is worn on the user through the sensor unit 335. The power control mode of the auditory device 32 may be configured by determining whether or not the auditory device is worn on the user. In the case where the auditory device 32 adopts an acceleration sensor, the auditory device may detect whether or not the user moves through the acceleration sensor, and if a specific movement is not detected, the auditory device may operate in the sleep mode.
The auditory device 32, according to various embodiments, may be connected to the mobile electronic device 30 in order to thereby allow the user to hear the sound of a remote place clearly. The auditory device may be used to reproduce and listen to sound sources that are recorded in the mobile electronic device 30, or may be used to convert collected sounds to audio files or text files to then be stored in the mobile electronic device 30. If the input unit (e.g., a microphone) of the mobile electronic device 30 is configured to be a remote microphone in order to hear the sound of the remote place clearly, the auditory device 32 may receive audio signals of the microphone of the mobile electronic device 30. The audio signals of the microphone, which are received in the mobile electronic device 30, may be processed to the compressed data through a data compression operation, and the compressed data may be transmitted to the auditory device 32 through the antenna of the wireless communication unit 325. The auditory device 32 may: receive the data through the antenna of the wireless communication unit 325; separate audio information that is contained in the data format; and reproduce the same through an audio information decompression operation to then be output to a receiver.
The auditory device 32, according to various embodiments, may receive an audio signal that is stored in the mobile electronic device 30 in order to thereby reproduce the same. The mobile electronic device 30 may store a number of alarm sounds. The mobile electronic device 30 may transmit, to the auditory device 32, different alarm sounds depending on the user's situation, the state of a system, time, reception or non-reception of a message, or reception or non-reception of an e-mail to then be reproduced. The auditory device 32 may separate audio information, which is contained in the data format, from the data that is transmitted from the mobile electronic device 30, and may reproduce the same through the audio information decompression operation to then be output to the receiver of the audio processing unit 329.
The auditory device 32, according to various embodiments, may record a signal by using the mobile electronic device 30. The audio data may be stored after being compressed for effective use of the mobile electronic device 30. The mobile electronic device 30 may convert the audio signal into text information by using speech-to-text (STT) technology to then be stored. The mobile electronic device 30 may store text corresponding to a conversation by using the STT method. The text of the conversation may be stored together with a variety of information, such as time information, sensor information, or location information. The stored conversation may be viewed by using the display unit of the mobile electronic device 30. Alternatively, the stored conversation may be converted to an audio signal by using text-to-speech (TTS) technology to then be transmitted to the receiver of the auditory device 32.
The auditory device 32, according to various embodiments, may transmit signals that are received through the microphone to the mobile storage unit 331 to then be stored. In order to reduce the power consumption for transmitting the signal received through the microphone of the auditory device 32 to the mobile electronic device 30, the data signal may be compressed, and then the compressed signal data may be transmitted. The auditory device 32 may include a codec for compressing, or decompressing, the audio data. The signal received through the microphone of the auditory device 32 may be transmitted to the mobile electronic device 30, and may be processed through the speech-to-text conversion to then be stored as text. It may be output to the speaker of the mobile electronic device. The auditory device 32 and the mobile electronic device 30 may be used as communication means between remote places by using the microphone and the receiver.
Referring to
Referring to
Referring to
Referring to
The auditory device 72, according to various embodiments, may make the second communication connection ({circle around (2)}) with the second electronic device 71. The auditory device 72 may support the standard to communicate with the second electronic device 71 or the network. For example, the auditory device 72 may provide the standard for telephony communication (e.g., 3G or long term evolution (LTE)), and may communicate with a base station in order to thereby provide a telephone function.
Referring to
Referring to
In addition, the ear mold 90, according to various embodiments of the present disclosure, may be disposed between the inner ear and the outer ear to provide a spatial path for connecting the inner ear (the ear tunnel) and the outer ear, or to not provide the same. That is, the provision of the spatial path may be selected according to the user's intention. The aforementioned space may be defined to be the tunnel type of space, which includes the ear canal.
In addition, when the path for connecting the inner ear and the outer ear is provided, the ear mold 90 may be defined to be in the open state, whereas, when the path for connecting the inner ear and the outer ear is not provided, the ear mold 90 may be defined to be in the closed state. The spatial path may be implemented by a through hole or a through opening, which is formed in the ear mold 90.
The ear mold 90 may include a plurality of ear domes 901 and 903, and the ear domes 901 and 903 may have dome halls 9011 and 9031, respectively. The dome holes 9011 and 9031 may be a path for connecting the inside and the outside of the ear when the receiver 92 is worn.
Referring to
Since the dome holes 9011 and 9031 may be paths extending through the inner ear and the outer ear, the dome holes 9011 and 9031 may be referred to as through holes. Therefore, the dome holes 9011 and 9031 may be interchangeably used with the through holes. The dome holes may include the first and second dome holes 9011 and 9031. The first dome holes 9011 may be formed to penetrate between the first side of the first ear dome 901 and the second side, which is the opposite side of the first side. The second dome holes 9031 may be formed to penetrate between the third side of the second ear dome 903 and the fourth side, which is the opposite side of the third side. The first and second dome holes 9011 and 9031 may be formed in one direction, respectively. The one direction may be the direction in which a receiver mounting part is extended.
The dome holes 9011 and 9031 may be paths for connecting the inside and the outside of the ear when the receiver 92 is worn. The receiver 92 of the auditory device is not limited to an approximately cylindrical shape, and may be formed in a variety of shapes. For example, the receiver 92 may be formed in an approximately cylindrical shape, or in a square pillar shape. The ear domes shown in
According to various embodiments of the present disclosure, a sound hole 9012 may be provided in the first ear dome 901. The sound hole 9012 may be an opening through which the audio signal, which is output from the receiver 92, passes. The output of the receiver 92 may be made through the sound hole 9012. Since a sound passes through the sound hole 9012, the sound hole 9012 may be referred to as a through hole.
The first ear dome 901 and the second ear dome 903 may be arranged side by side so that the first dome hole 9011 of the first ear dome and the second dome hole 9031 of the second ear dome may be aligned with each other. The receiver 92 may be coupled to a part of the ear mold. The coupling structure of the receiver will be described later.
The second ear dome 903, according to various embodiments, may include a receiver mounting part 9033 in a cylindrical shape. The receiver mounting part 9033 may be extended along the direction in which the receiver 92 is coupled. The coupling direction may be a central axis. The central axis may be a rotational central axis of the first ear dome 901. The receiver mounting part 9033 may have an inner side that surrounds at least a part of the receiver 92 and an outer side that is formed on the opposite side of the inner side.
The first ear dome 901 may have a portion that surrounds at least a part of the receiver mounting part 9033 and that is spaced apart from the outer side, and may be extended from one end of the receiver mounting part 9033. The second ear dome 903 may be disposed to be adjacent to the first ear dome 901, and at least a part of the second ear dome 903 may be extended to be parallel with at least a part of the first ear dome 901.
The first dome hole 9011 of the first ear dome and the second dome hole 9031 of the second ear dome may be disposed to: fully communicate with each other; overlap, in part, each other (to be aligned at least in part); or not communicate with each other (the offset state). If the first and second dome holes 9011 and 9031 are disposed to communicate with each other, the first and second dome holes 9011 and 9031 may provide a single dome hole together, and may serve as a connecting path that passes through the front side and back side of the dome. This condition may be referred to as the open state of the ear dome, and may mean that a dome hole is provided.
Referring to
According to various embodiments of the present disclosure, the first ear dome 901 may be rotatably coupled to the second ear dome 903. That is, the first ear dome 901 may rotate. According to the rotation of the first ear dome 901, the position of the first dome hole 9011 of the first ear dome may vary. The first dome hole 9011 of first ear dome and the second dome hole 9031 of the second ear dome may be positioned such that they are not adjacent to each other. The number of first dome holes 9011 may be four, and the first dome holes may be formed in the positions at angles of 45°, 135°, 225°, and 315° based on the center of the sound hole 9012. The number of dome holes 9031 of the second ear dome 903 may be four, and the dome holes may be formed in the positions at angles of 90°, 180°, 270°, and 360°.
In addition, the first and second ear domes 901 and 903 may be disposed to come into contact with each other. In other words, at least some of the inner side of the first ear dome 901 may come into contact with at least some of the outer side of the second ear dome 903.
In addition, the end portion 9035 of the second ear dome 903 may wrap around the end portion of the first ear dome 901 in order to thereby provide a smooth appearance. In addition, the second ear dome 903 may have a protruding portion 9038 on the top in order to thereby fix and support the engagement with the first ear dome 901 more strongly.
The second ear dome 903 may have a structure 9037 for reinforcement (support) that is formed thereon. The structure 9037 may have a shape to connect the dome portion and the receiver mounting part 9033 of the second ear dome 903, and may be formed in the position in which the dome hole 9031 is not formed (between dome holes). The size of the structure 9037 may be variable. The structure 9037 may serve as a handle.
Referring to 13B, one or more structures 9036 for reinforcement (support), or one or more pairs of structures 9036 for reinforcement (support) may be formed on the second ear dome 903. The structure 9036 may have a shape to connect the dome portion with the receiver mounting part 9033 of the second ear dome 903, and may be formed in the area excluding hole position lines L2 in which the dome holes 9031 are formed (for example, may be formed along structure end position lines L1). The size of the structure 9036 may be variable. The structure 9036 may serve as a handle. The structure 9036 may be formed to be extended to the receiver mounting part 9033 (as shown in
Referring to
According to various embodiments of the present disclosure, the first ear dome 901 and the second ear dome 903 may be separated from each other, and may be coupled to each other again. The first dome hole 9011 of the first ear dome and the second dome hole 9031 of the second ear dome may be positioned to not be adjacent to each other. The number of second dome holes 9031 of the second ear dome may be four, and the second dome holes may be formed in the positions at angles of 45°, 135°, 225°, and 315° based on the center of the sound hole. The number of dome holes 9011 of the first ear dome may be four, and the dome holes may be formed in the positions at angles of 90°, 180°, 270°, and 360°. The positions of the areas of the dome holes of the domes may not be shared. The path passing through the front side and the back side of the ear dome may be eliminated. The number of dome holes formed in each dome is not limited to four.
According to various embodiments of the present disclosure, the spatially connecting path between the inside and the outside of the ear may be created or blocked depending on a change in the position of the dome hole. The user may change the position of the dome hole according to the user's intention in order to thereby create or block the connecting path.
Referring to
Referring to
In addition, according to various embodiments of the present disclosure, the length of the first ear dome may be the same as the length of the second ear dome. Alternatively, the first ear dome may be formed to be longer than the second ear dome so that the first ear dome may fully cover the second ear dome.
In addition, according to various embodiments of the present disclosure, the number of dome holes, which are formed in the first ear dome and the second ear dome, may be more, or less, than the illustrated embodiment.
In addition to the two domes shown in the drawing, according to various embodiments of the present disclosure, three or more domes may be provided.
In addition, according to various embodiments of the present disclosure, the sizes of the dome holes in each ear dome may be configured to be different from each other.
In addition, according to various embodiments of the present disclosure, display protrusions may be formed to show the alignment, or misalignment, of the dome holes in order to guide the user when the first ear dome rotates.
Referring to
Referring to
In addition, the second ear dome 907 may have a structure 9075 for reinforcement (support), which is formed therein in order to easily rotate the second ear dome 907 during the rotation operation. The structure 9075 may be formed in the portion in which the dome holes are not formed (see
Referring to
Referring to
According to various embodiments, at least some of the devices (for example, modules or functions thereof) or the method (for example, operations) according to the present disclosure may be implemented by a command stored in a non-transitory computer-readable storage medium in a programming module form. When the command is executed by one or more processors (for example, the processor 210), the one or more processors may execute a function corresponding to the command. The computer-readable storage medium may be, for example, the memory 220. At least some of the programming modules may be implemented (for example, executed) by, for example, the processor. At least some of the programming modules may include, for example, a module, a program, a routine, a set of instructions or a process for performing one or more functions.
The non-transitory computer readable recording medium may include magnetic media such as a hard disc, a floppy disc, and a magnetic tape, optical media such as a compact disc read only memory (CD-ROM) and a digital versatile disc (DVD), magneto-optical media such as a floptical disk, and hardware devices specifically configured to store and execute program commands, such as a read only memory (ROM), a random access memory (RAM), and a flash memory. In addition, the program instructions may include high class language codes, which can be executed in a computer by using an interpreter, as well as machine codes made by a compiler. The aforementioned hardware device may be configured to operate as one or more software modules in order to perform the operation of the present disclosure, and vice versa.
The programming module according to the present disclosure may include one or more of the aforementioned components or may further include other additional components, or some of the aforementioned components may be omitted. Operations executed by a module, a programming module, or other component elements according to various embodiments of the present disclosure may be executed sequentially, in parallel, repeatedly, or in a heuristic manner. Further, some operations may be executed according to another order or may be omitted, or other operations may be added.
While the present disclosure has been shown and described with reference to certain embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be defined as being limited to the embodiments, but should be defined by the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0083403 | Aug 2015 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3935401 | Shore | Jan 1976 | A |
6724902 | Shennib | Apr 2004 | B1 |
8208676 | Murozaki | Jun 2012 | B2 |
8270657 | Takigawa | Sep 2012 | B2 |
8515116 | Lee | Aug 2013 | B2 |
8755548 | Zhao | Jun 2014 | B2 |
20040105562 | Kulman | Jun 2004 | A1 |
20050244026 | Nielsen | Nov 2005 | A1 |
20070201717 | Dyer | Aug 2007 | A1 |
20150030196 | Basseas et al. | Jan 2015 | A1 |
20150055809 | Rasmussen et al. | Feb 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170048631 A1 | Feb 2017 | US |