This application relates generally to ear-level electronic systems and devices, including hearing aids, personal amplification devices, and hearables. In one embodiment, an ear-wearable device includes a reference microphone producing a reference signal in response to external sound outside an ear canal of a user. The device includes an error microphone producing an error signal in response to sound inside of the ear canal. A physical propagation path between the reference microphone and the error microphone defines a primary path. The device includes a receiver that produces amplified sound inside of the ear canal. The amplified sound propagates over a secondary path to combine with direct noise at the ear canal, the combination of which is sensed by the error microphone to produce the error signal.
The ear-wearable device includes a processor coupled to the reference microphone, the error microphone, and the receiver. The processor is operable via instructions to: estimate a noise signal from inside the ear canal from the reference signal by filtering with an equalization filter that is based on an estimate of the secondary path and by filtering with a spectrum shaping filter that is based on an estimate of the primary path; input the estimated noise signal from inside the ear canal and the estimated residual noise signal into a least mean square (LMS) algorithm, the LMS algorithm producing coefficients of an adaptive filter; and apply the adaptive filter to the reference signal to produce an anti-noise signal. The anti-noise signal is reproduced by the receiver to actively cancel noise in the ear canal.
The above summary is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The figures and the detailed description below more particularly exemplify illustrative embodiments.
The discussion below makes reference to the following figures.
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
Embodiments disclosed herein are directed to noise reduction in an ear-worn or ear-level electronic device. Such a device may include cochlear implants and bone conduction devices, without departing from the scope of this disclosure. The devices depicted in the figures are intended to demonstrate the subject matter, but not in a limited, exhaustive, or exclusive sense. Ear-worn electronic devices (also referred to herein as “hearing aids,” “hearing devices,” and “ear-wearable devices”), such as hearables (e.g., wearable earphones, ear monitors, and earbuds), hearing aids, hearing instruments, and hearing assistance devices, typically include an enclosure, such as a housing or shell, within which internal components are disposed.
Typical components of a hearing device can include a processor (e.g., a digital signal processor or DSP), memory circuitry, power management and charging circuitry, one or more communication devices (e.g., one or more radios, a near-field magnetic induction (NFMI) device), one or more antennas, one or more microphones, buttons and/or switches, and a receiver/speaker, for example. Hearing devices can incorporate a long-range communication device, such as a Bluetooth® transceiver or other type of radio frequency (RF) transceiver.
The term hearing device of the present disclosure refers to a wide variety of ear-level electronic devices that can aid a person with impaired hearing. The term hearing device also refers to a wide variety of devices that can produce processed sound for persons with normal hearing. Hearing devices include, but are not limited to, behind-the-ear (BTE), in-the-ear (ITE), in-the-canal (ITC), invisible-in-canal (IIC), receiver-in-canal (RIC), receiver-in-the-ear (RITE) or completely-in-the-canal (CIC) type hearing devices or some combination of the above. Throughout this disclosure, reference is made to a “hearing device” or “ear-wearable device,” which are understood to refer to a system comprising a single left ear device, a single right ear device, or a combination of a left ear device and a right ear device.
Embodiments described below include features that reduce the transmission of ambient noise to a user of a hearing device. Ambient noise exists everywhere in our daily environment, such as in a car, in an airplane cabin, or at places near a road, fan etc. Such noise has a significant amount of low-frequency energy and thus strong penetration capability. When a hearing aid (HA) user is exposed to an environment with such noise, the low-frequency part of the noise can bypass the hearing aids and enter the ear canal directly due to relatively longer wavelength. This results in direct noise in the ear canal that causes discomfort, fatigue, and degraded speech intelligibility.
In
Current HA noise reduction algorithms are designed to reduce noise that goes through the signal path of the HAs. Because these signals originate from a microphone, the noise that propagates directly into the ear canal cannot be corrected for by noise reduction algorithms. In embodiments described below, an active noise cancellation (ANC) system is described that is usable on HA devices. In one embodiment, the ANC system deploys a modified hybrid-structure to cancel the component of the direct ambient noise in the acoustic domain, with emphasis on low frequency ranges (i.e. <1500 Hz). A receiver (e.g., loudspeaker) is placed in the ear canal to generate an anti-phase signal based on the signals of one or both of an error microphone (ear-canal) and a reference microphone (external) in order to fully cancel or significantly reduce noise inside the ear canal already. The HA in these embodiments may include an occluded fitting or vented fitting with vent size 1.8 mm or smaller.
In
For purposes of ANC, the device 200 may also include an internal microphone 214 that detects sound inside the ear canal 204. The internal microphone 214 may also be referred to as an error microphone, as it can detect differences (errors) between noise detected in the ear canal 204 and anti-nose, which is an artificially generated signal output by the receiver to cancel out the noise within the ear canal 204. For purposes of the following discussion arrows 216 and 218 represent respective primary and secondary paths that will be represented as physical elements of an ANC implementation. The primary path 216 is a physical propagation path from the external reference microphone (in this example microphone 210) to the in-ear error microphone 214. The secondary path 218 is the physical propagation path from receiver 203 to the error microphone 214.
There are challenges in deploying ANC into an HA or similar device due to their relatively limited computing resources. For example, an adaptive filtering implementation on HA devices may have a relatively small number of taps, making it difficult to accurately characterize the primary path impulse responses due to the strong resonance mainly at high frequencies. Another challenge in implementing ANC in a HA is the tendency of an HA to shift positions, e.g., due to loose fit, movement of the wearer, etc. Noise suppression systems have been shown to be vulnerable to the change of noise source direction-of arrival angle or wearing angle of the devices that leads to primary path mismatch due to the non-causality issue. Non-causality generally refers to situations where sound arrives at the in-ear microphone 214 before the arrival at the external microphone 210.
In some embodiments described below, a hybrid ANC system is described that uses spectrum shaping and primary path equalization schemes that overcome these constraints of HA. In
The anti-noise signal is produced by an adaptive filter 310, e.g., finite impulse response (FIR) filter. The filter 310 is adapted via a least mean squares (LMS) algorithm, in this example a normalized least mean squares (NLMS) algorithm 312. The NLMS algorithm 312 is selected to operate effectively for noise cancellation in hearing aids, as discussed further below. The inputs to the NLMS algorithm include one or both of the reference signal 300 and the error signal 308. The reference signal 300 may be equalized via equalizer 314 and passed through a spectrum shaping (SS) filter 316. The error signal 308 may also be processed by an SS filter 318, which is based on an approximation of the primary path 302. The output of the variable filter 310 is also shaped via equalizer 320 before being reproduced via the receiver 306.
As noted above, the ANC attenuates the direct noise at ear-canal xec(n) by broadcasting from the receiver 306 an anti-noise signal yrecv(n) that has a similar magnitude envelope as xec(n) but a phase difference of about 180 degrees with respect to xec(n). As such, xec(n) and yrecv(n) would cancel each other when they meet and a quiet zone (near the eardrum) can be created. The system shown in
The signal received by the error microphone is the residual noise signal resulting from the linear superposition of the noise in the ear canal and the anti-noise signal yrecv(n) arriving from the receiver driver 306. The error microphone signal 308 and a secondary path filtered version xshaped(n) of the residual signal 300 are input into a least mean square (LMS) algorithm, the LMS algorithm producing coefficients of the adaptive filter 310.
The residual noise e(n) is passed to the ANC through the error microphone directly, along with the signal 300 from the reference microphone that is placed externally and is closer to the direct noise. The primary path 302 is the physical propagation path from the external reference microphone to the in-ear error microphone. The impulse response of the so-called secondary path (SP) includes the receiver 306, the acoustic summation point 304 and the in-ear microphone. The reference noise estimate xshaped (n) is fed to drive the adaptive filter W(z) 310 to produce the anti-noise. The spectrum shaping filter 316 includes weighting coefficients for various frequency ranges to reduce the effect of high-frequency resonances in the primary path 302.
The filtered-X NLMS (FX-NLMS) algorithm is computationally the simplest among common adaptive algorithms. It aims at minimizing the cost function eshape2 (n) using the gradient descent algorithm (see, e.g., Haykin, “Adaptive Filter Theory”). The updating of W(n) at time instant n is achieved by sequentially evaluating Equations 1(a)-1(c) below, where: W(n)=[W1(n), W2(n), . . . , WN(n)]T denotes the column vector containing the N coefficients of the adaptive filter W(z) at time instant n xshape(n)=[x1(n), x2(n), . . . , xN(n)]T contains the most recent N output samples of X-filter Hx(z); u is the step size; Px(n) and Pe(n) are the estimates of the absolute amplitudes of the X-filter output xshape(n) and the error signal eshape(n); and β is a small positive number serving as the forgetting factor in computing Px(n) and Pe(n).
An alternative to the FxNLMS algorithm is the RLS algorithm. The RLS algorithm provides faster adaptation of the filter coefficients, but at a higher computational complexity. The algorithm is also more sensitive to impulsive noise sources. Impulsive noise describes a noise process that has a rapid of onset of a very high amplitude signal. To address the issues of computational complexity and impulsive noise sensitivity, an FxRLS-FxLMS hybrid algorithm approach has been proposed. Another way of reducing the sensitivity to impulsive noise is to introduce a tan h non-linearity. This non-linearity is inserted just after the spectrum shaping filters 316 and 318.
Evaluation of the hybrid ANC shown in
The ANC shown in
The gain and group delay of the PP in consideration are shown in the graphs of
In order to address these issues, the FX-NLMS and FX-RLS algorithms may be guided to focus on a desired frequency region and make it fit the requirement of adaptive filtering with short filter lengths. Unlike the Frequency-domain Adaptive Filtering (FDAF), the FX-NLMS and the FX-RLS based adaptive filtering have equal control over their operational frequency region. However, in the applications to hearing aids it may be desirable to focus on certain low frequencies instead of the whole band as it effectively rolls off the resonance and reduces the effective length of the PP impulse responses such that it fits the FxNLMS system with limited filter length on hearing aids. The reason that PP is highlighted in this context (instead of SP) is that PP impulse response typically has a longer effective length as the external microphone and in-ear mic are more physically separated and the primary path involves the effects of human ear pinna.
In
In
In order to provide a feedback signal usable by the adaptive filter 310, the secondary path will be approximated so as to properly transform the signal received from the error microphone 616. In one embodiment, a test/calibration operation can involve sending a broadband digital stimulus from the device processor (e.g., based on a signal stored in memory) to the receiver 306. After the stimulus goes through the rest of the secondary path (e.g., acoustic coupling in the ear canal, error microphone 616 and its associated processing path), the response is stored by the processor on its memory. Due to the memory size constraints on the hearing device, the stimulus may be chosen as a periodic signal. For example, a complex tone may be used that includes a plurality of pure tones at frequencies of interest.
In one embodiment, the stimulus signal is formed with a sampling frequency of 80 kHz and includes tones of multiples of 100 Hz. The magnitudes of these tones have more emphasis on low frequencies to improve the poor signal-to-noise ratio (SNR) at low frequencies. The complex response of the secondary path is obtained taking the transfer function between the stimulus and the response stored on the hearing device memory. Averaging in the time domain can be used utilized to further increase the SNR.
The ANC system uses a secondary path equalization filter EQ 314 based on an estimate of the secondary path 313. Esp(z) is placed in the signal path while the other identical one is placed in the side branch that adjusts the coefficients of W(z). Note that the EQ 314 includes characteristics of the equalizer Esp(z), the receiver 306, the acoustic summation point 304 and the error microphone 616. This is also the underlying reason behind including equalization filter in the side branch to match the newly obtained SP with an equalizer.
In one embodiment, the SP equalizer includes three parts: a minimum-phase inversion of the SP; a 1st-order low-pass frequency with corner frequency 5 kHz; and second-order high-pass filter (12 db per octave band) with corner frequency dependent on the SP leakage (e.g., the magnitude difference of SP gain between 100 Hz and 1000 Hz). In Listing 1 below, a code listing how the high-pass filter corner frequency (HPFilt_eq_fc) in Hz can be chosen based on secondary path leakage (SPLeakage) in dB according to one example.
After obtaining an infinite impulse response (IIR) filter approximation of the SP, the SP is decomposed into two parts: a minimum-phase part, SPm; and an all-pass part, SPa. The minimum-phase part is invertible and its group delay can be fully compensated. The all-pass part is non-invertible thus preventing full compensation of the SP delay. The idea is to invert the minimum-phase part of the SP and leave the all-pass part intact. An example is given in the graphs of
A hybrid control system with practical primary path models can be implemented in a hearing device, assuming that both external microphone and internal microphone are on the same low-delay DSP path. Using prototypes that deploy both external and in-ear microphones on in-the-canal (ITC) hearing aid shells, the primary path measurement was conducted using an overhead headset in order to alleviate the non-causal issue. An over-the ear, open-back set of headphones was put over the head with the hearing device inserted for the measurements of related transfer function responses. The response of the headphones were pre-equalized for a flat magnitude response at the eardrum and the complex tone stimulus noise level was pre-calibrated to be at 80 dB sound pressure level (SPL) at ear position. The goal was to define the derived primary path responses using inverse filter approach reduces the residual error e(n) as defined as in Equation (2) below.
e(n)=sinner(n)−hpp(n)*souter(n) (2)
The length of the primary path filter used was 400, which is the maximum length available in the device firmware. It is also worthy to note that the length of the filters also affects the minimization of the residual error. Generally, the longer the filter length is, the smaller the error would be. The motivation for deploying this PP path measurement approach is to attenuate the non-causal components that lead to relatively large residual error in Equation (2). A reason for this residual error is that sound arriving at the inner microphone before arrives at the outer microphone for some noise fields including a diffuse noise field, which is a sign of non-causality. Impulse response and spectrum of this approach is shown in the graphs of
The broad-band residual error as seen in
High-order IIR filters can be highly sensitive to quantization of filter coefficients and can easily become unstable. The instability issue is much alleviated with first and second-order filters. Higher-order filters are typically implemented as serially cascaded biquad filters. A biquad filter is a second order recursive linear filter, containing two poles and two zeros. The two poles of the biquad filter must be inside the unit circle for it to be stable.
Primary path equalization was also shown in embodiments described above. The goal of the primary path equalization is to eliminate the minimum phase part and make the group delay flat over the frequency range of interests to compensate for characteristics of the primary path. It also equalizes the dynamic range of the PP IIR filter using 1st order high-pass and low-pass filters, which effectively reduces the effective length of the impulse responses such that it fits the adaptive filtering with limited filter length. Given the characteristics of the PP responses, the cut-off frequency of the 1st order high-pass and low-pass filters may be set at around 50 Hz and 2-2.5 kHz respectively for the spectrum shaping filter. The PP equalizer may also include a minimum-phase inversion of the PP together with the high- and low-pass filters.
By looking into a set of formulated reference PP paths with simpler responses, e.g. lower order BR filters, it suggests that the main limiting factor for the hybrid system with practical PPs is due to the limited taps number of FIR filter in the adaptation. The wide dynamic range of the measured PPs (especially the major resonance from 6 kHz to 7 kHz) make the effective lengths for the PP impulse responses significantly longer than the normal secondary paths (or equalized secondary paths). The term “effective length N” is defined as the tap N where h(1:N) includes 98% of the energy of the impulse response h. Due to the increased spacing between microphones, the primary path is longer than the secondary path The number of taps for the FIR filter for FxNLMS adaptation may be confined to 40 due to firmware capabilities, which is insufficient to characterize the full properties of the PPs, as shown in the graphs of
One design goal is reduces the effective length of the impulse responses such that it fits a FxNLMS system with limited filter length. However, unlike the secondary path, the primary paths are physical paths between two microphones, so the path cannot be altered by the addition of a filter, which makes it difficult to add an equalization module that equalizes the dynamic range of the PP IIR filter. One solution is to devise a spectrum shaping filter that controls the importance of adaptive filtering on different frequency ranges so that it has nulls at the primary path resonance frequencies, as well as at very low frequency ranges where the measurement is inaccurate (i.e. <50 Hz). The equalized PP (as described previous section) is used as the spectrum shaping filter. Examples of the spectrum shaping filter calculated based on real subject PP measurements are given in
In
The hearing device 1600 includes a processor 1620 operatively coupled to a main memory 1622 and a non-volatile memory 1623. The processor 1620 can be implemented as one or more of a multi-core processor, a digital signal processor (DSP), a microprocessor, a programmable controller, a general-purpose computer, a special-purpose computer, a hardware controller, a software controller, a combined hardware and software device, such as a programmable logic controller, and a programmable logic device (e.g., FPGA, ASIC). The processor 1620 can include or be operatively coupled to main memory 1622, such as RAM (e.g., DRAM, SRAM). The processor 1620 can include or be operatively coupled to non-volatile (persistent) memory 1623, such as ROM, EPROM, EEPROM or flash memory. As will be described in detail hereinbelow, the non-volatile memory 1623 is configured to store instructions that facilitate using a DNN based sound enhancer.
The hearing device 1600 includes an audio processing facility operably coupled to, or incorporating, the processor 1620. The audio processing facility includes audio signal processing circuitry (e.g., analog front-end, analog-to-digital converter, digital-to-analog converter, DSP, and various analog and digital filters), a microphone arrangement 1630, and a speaker or receiver 1632. The microphone arrangement 1630 can include one or more discrete microphones or a microphone array(s) (e.g., configured for microphone array beamforming). Each of the microphones of the microphone arrangement 1630 can be situated at different locations of the housing 1602. It is understood that the term microphone used herein can refer to a single microphone or multiple microphones unless specified otherwise.
At least one of the microphones 1630 is a reference microphone producing a reference signal in response to external sound outside an ear canal of a user. Another of the microphones 1630 is an error microphone producing an error signal in response to sound inside of the ear canal. A physical propagation path between the reference microphone and the error microphone defines a primary path of the hearing device 1600. The speaker/receiver 1632 produces amplified sound inside of the ear canal. The amplified sound propagates over a secondary path to combine with direct noise at the ear canal, the summation of which is sensed by the error microphone to produce the error signal.
The hearing device 1600 may also include a user interface with a user control interface 1627 operatively coupled to the processor 1620. The user control interface 1627 is configured to receive an input from the wearer of the hearing device 1600. The input from the wearer can be any type of user input, such as a touch input, a gesture input, or a voice input. The user control interface 1627 may be configured to receive an input from the wearer of the hearing device 1600 such as shown in
The hearing device 1600 also includes an active noise cancellation module 1638 operably coupled to the processor 1620. The active noise cancellation module 1638 can be implemented in software, hardware, or a combination of hardware and software. The active noise cancellation module 1638 can be a component of, or integral to, the processor 1620 or another processor coupled to the processor 1620. The active noise cancellation module 1638 is operable to estimate a noise signal from inside the ear canal from the reference signal based on an estimate of the primary path. A residual noise signal is estimated from the error signal based on an estimate of the secondary path. The estimated noise signal from inside the ear canal and the estimated residual noise signal are input into a least mean square (LMS) algorithm that produces coefficients of an adaptive filter which is applied to the reference signal to produce an anti-noise signal. The anti-noise signal is reproduced by the receiver 1632 to actively cancel noise in the ear canal
The hearing device 1600 can include one or more communication devices 1636 coupled to one or more antenna arrangements. For example, the one or more communication devices 1636 can include one or more radios that conform to an IEEE 802.11 (e.g., WiFi®) or Bluetooth® (e.g., BLE, Bluetooth® 4. 2, 5.0, 5.1, 5.2 or later) specification, for example. In addition, or alternatively, the hearing device 1600 can include a near-field magnetic induction (NFMI) sensor (e.g., an NFMI transceiver coupled to a magnetic antenna) for effecting short-range communications (e.g., ear-to-ear communications, ear-to-kiosk communications).
The hearing device 1600 also includes a power source, which can be a conventional battery, a rechargeable battery (e.g., a lithium-ion battery), or a power source comprising a supercapacitor. In the embodiment shown in
In
A noise signal inside the ear canal is estimated 1702 from the reference signal that is filtered by an equalization filter, the equalization filter being based on an estimate of the secondary path. The reference signal is also filtered by a spectrum shaping filter that is based on an estimate of the primary path. The estimated noise signal from inside the ear canal and the error signal are input 1704 into a least mean square (LMS) algorithm, the LMS algorithm producing coefficients of an adaptive filter. The adaptive filter is applied 1705 to the reference signal to produce an anti-noise signal. The anti-noise signal is reproduced 1706 by the receiver to actively cancel noise in the ear canal.
This document discloses numerous embodiments, including but not limited to the following: Embodiment 1 is an ear-wearable device, comprising: a reference microphone producing a reference signal in response to external sound outside an ear canal of a user; an error microphone producing an error signal in response to sound inside of the ear canal, wherein a physical propagation path between the reference microphone and the error microphone defines a primary path; a receiver that produces amplified sound inside of the ear canal, wherein the amplified sound propagates over a secondary path to combine with direct noise at the ear canal, the combination/summation of which is sensed by the error microphone to produce the error signal; a processor coupled to the reference microphone, the error microphone, and the receiver, the processor operable via instructions to: estimate a noise signal from inside the ear canal from the reference signal by filtering with an equalization filter that is based on an estimate of the secondary path and by filtering with a spectrum shaping filter that is based on an estimate of the primary path; input the estimated noise signal from inside the ear canal and the error signal into a least mean square (LMS) algorithm, the LMS algorithm producing coefficients of an adaptive filter; and apply the adaptive filter to the reference signal to produce an anti-noise signal, the anti-noise signal being reproduced by the receiver to actively cancel noise in the ear canal.
Embodiment 2 includes the ear-wearable device of embodiment 1, wherein the LMS algorithm comprises a normalized least mean square (NLMS) algorithm. Embodiment 3 includes the ear-wearable device of embodiment 2, wherein the NLMS algorithm comprises a filtered-x NLMS algorithm. Embodiment 4 includes the ear-wearable device of any one of embodiments 1-3, wherein the reference signal is downsampled, the estimated noise signal from inside the ear canal being estimated based on the downsampled reference signal.
Embodiment 5 includes the ear-wearable device of any one of embodiments 1-4, wherein the error signal is downsampled, the estimated residual noise signal being estimated based on the downsampled error signal. Embodiment 6 includes the ear-wearable device of any one of embodiments 1-5, wherein the adaptive filter comprises a finite-impulse response filter with 40 or fewer taps.
Embodiment 7 includes the ear-wearable device of any one of embodiments 1-6, wherein the spectrum shaping filter reduces effects of high-frequency resonances in the primary path. Embodiment 8 includes the ear-wearable device of embodiment 7, wherein the spectrum shaping filter further deemphasizes low frequencies where the response of the receiver is low. Embodiment 9 includes the ear-wearable device of embodiment 7, wherein the spectrum shaping filter comprises a cascaded biquad filter.
Embodiment 10 includes the ear-wearable device any one of embodiments 1-9, wherein the estimated noise signal from inside the ear canal is equalized via an equalization filter that inverses a minimum phase part of the estimated noise signal from inside the ear canal and applies low-pass and high-pass filters, wherein cutoff frequencies of the low-pass and high-pass filters are determined by characteristics of the secondary path. Embodiment 11 includes the ear-wearable device of any one of embodiments 1-10, wherein the processor is further configured to estimate the secondary path via a calibration process comprising: sending a stimulus signal to the receiver, the stimulus signal comprising a combination of tones at a selected set of frequencies; measuring, via the error microphone, an error microphone signal that is produced in response to the stimulus signal; and determining a transfer function between the stimulus signal and the error microphone signal, the transfer function being stored in a memory of the ear-wearable device and used as the estimate of the secondary path.
Embodiment 12 includes the ear-wearable device of embodiment 11, wherein the error signal is averaged in the time domain before determining the transfer function. Embodiment 13 includes the ear-wearable device of embodiment 11, wherein the tones have differing magnitudes that emphasize low frequencies. Embodiment 14 includes the ear-wearable device of any one of embodiments 1-10, wherein the processor is further configured to estimate the primary path via a calibration process comprising: receiving a stimulus signal via the external reference microphone, the stimulus signal generated in response to a combination of tones at a selected set of frequencies rendered via a headset worn over the ear-wearable device; determining a response to the stimulus signal at the error microphone; and determining a transfer function between the external microphone and the error microphone, the transfer function being stored in a memory of the ear-wearable device and used as the estimate of the primary path. Embodiment 15 includes the ear-wearable device of embodiment any one of embodiments 1-14, wherein the processor is further configured to: modify the reference signal to produce an enhanced hearing signal that compensates for hearing loss; and combine the enhanced hearing signal with the anti-noise at the receiver.
Embodiment 16 is a method, comprising: receiving a reference signal from a reference microphone in response to external sound outside an ear canal of a user; receiving an error signal from an error microphone in response to sound inside of the ear canal, wherein a physical propagation path between the reference microphone and the error microphone defines a primary path, and wherein amplified sound produced inside of the ear canal by a receiver propagates over a secondary path to combine with direct noise at the ear canal, the summation of which is sensed by the error microphone to produce the error signal; estimating a noise signal inside the ear canal from the reference signal by filtering with an equalization filter that is based on an estimate of the secondary path and by filtering with a spectrum shaping filter that is based on an estimate of the primary path; inputting the estimated noise signal from inside the ear canal and the error signal into a least mean square (LMS) algorithm, the LMS algorithm producing coefficients of an adaptive filter; applying the adaptive filter to the reference signal to produce an anti-noise signal; and reproducing the anti-noise signal in the ear canal by the receiver to actively cancel noise.
Embodiment 17 includes the method of embodiment 16, wherein the LMS algorithm comprises a normalized least mean square (NLMS) algorithm. Embodiment 18 includes the method of embodiment 17, wherein the NLMS algorithm comprises a filtered-x NLMS algorithm. Embodiment 19 includes the method of any one of embodiments 16-18, further comprising downsampling the reference signal, wherein the estimated noise signal from inside the ear canal is estimated based on the downsampled reference signal. Embodiment 20 includes the method of any one of embodiments 16-19, further comprising downsampling the error signal, and wherein the estimated residual noise signal is estimated based on the downsampled error signal.
Embodiment 21 includes the method of any one of embodiments 16-20, wherein the adaptive filter comprises a finite-impulse response filter with 40 or fewer taps. Embodiment 22 includes the method of any one of embodiments 16-21, wherein the spectrum shaping filter reduces effects of high-frequency resonances in the primary path. Embodiment 23 includes the method of embodiment 22, wherein the spectrum shaping filter further deemphasizes low frequencies where the response of the receiver is low. Embodiment 24 includes the method of embodiment 22, wherein the spectrum shaping filter comprises a cascaded biquad filter.
Embodiment 25 includes the method of any one of embodiments 16-24, further comprising equalizing the estimated noise signal from inside the ear canal via an equalization filter that inverses a minimum phase part of the estimated noise signal from inside the ear canal and applies low-pass and high-pass filters, wherein cutoff frequencies of the low-pass and high-pass filters are determined by characteristics of the secondary path.
Embodiment 26 includes the method of any one of embodiments 16-25, further comprising: sending a stimulus signal to the receiver, the stimulus signal comprising a combination of tones at a selected set of frequencies; measuring, via the error microphone, an error microphone signal that is produced in response to the stimulus signal; and determining a transfer function between the stimulus signal and the error microphone signal, the transfer function being stored in a memory of the method and used as the estimate of the secondary path.
Embodiment 27 includes the method of embodiment 26, further comprising averaging the error signal in the time domain before determining the transfer function. Embodiment 28 includes the method of embodiment 26, wherein the tones have differing magnitudes that emphasize low frequencies. Embodiment 29 includes the method of any one of embodiments 16-25, further comprising: receiving a stimulus signal via the external reference microphone, the stimulus signal generated in response to a combination of tones at a selected set of frequencies rendered via a headset worn over the ear-wearable device; determining a response to the stimulus signal at the error microphone; and determining a transfer function between the external microphone and the error microphone, the transfer function being stored in a memory of the ear-wearable device and used as the estimate of the primary path. Embodiment 30 includes the method of any one of embodiments 16-29, further comprising: modifying the reference signal to produce an enhanced hearing signal that compensates for hearing loss; and combining the enhanced hearing signal with the anti-noise at the receiver.
Although reference is made herein to the accompanying set of drawings that form part of this disclosure, one of at least ordinary skill in the art will appreciate that various adaptations and modifications of the embodiments described herein are within, or do not depart from, the scope of this disclosure. For example, aspects of the embodiments described herein may be combined in a variety of ways with each other. Therefore, it is to be understood that, within the scope of the appended claims, the claimed invention may be practiced other than as explicitly described herein.
All references and publications cited herein are expressly incorporated herein by reference in their entirety into this disclosure, except to the extent they may directly contradict this disclosure. Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “up to” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).
The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out at least some functionality (for example, a radio chip may be operably coupled to an antenna element to provide a radio frequency electric signal for wireless communication).
Terms related to orientation, such as “top,” “bottom,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated. For example, an embodiment described as having a “top” and “bottom” also encompasses embodiments thereof rotated in various directions unless the content clearly dictates otherwise.
Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.
The words “preferred” and “preferably” refer to embodiments of the disclosure that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful and is not intended to exclude other embodiments from the scope of the disclosure.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of,” “consisting of,” and the like are subsumed in “comprising,” and the like. The term “and/or” means one or all of the listed elements or a combination of at least two of the listed elements.
The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.
The present application claims the benefit of U.S. Provisional Patent Application No. 63/054,443, filed Jul. 21, 2020, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/041222 | 7/12/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63054443 | Jul 2020 | US |