This application relates generally to ear-worn electronic devices, including hearing devices, hearing aids, personal amplification devices, and other hearables.
Hearing devices provide sound for the wearer. Some examples of hearing devices are headsets, hearing aids, speakers, cochlear implants, bone conduction devices, and personal listening devices. For example, hearing aids provide amplification to compensate for hearing loss by transmitting amplified sounds to a wearer's ear canals. Hearing devices may be capable of performing wireless communication with other devices, such as receiving streaming audio from a streaming device via a wireless link. Wireless communication may also be performed for programming the hearing device and transmitting information from the hearing device. For performing such wireless communication, hearing devices such as hearing aids can include a wireless transceiver and an antenna.
Embodiments are directed to an ear-worn electronic device configured to be worn by a wearer. The device comprises an enclosure configured for at least partial insertion into an ear canal of the wearer. The enclosure comprises a preformed shape or a shapeable material that conforms to a shape of the wearer's ear canal. The enclosure also comprises a faceplate and a battery door supported by and movable relative to the faceplate. A processor is disposed in the enclosure. A speaker or a receiver is operably coupled to the processor. A radio frequency transceiver is disposed in the enclosure and operably coupled to the processor. An antenna is supported by or integral to the battery door. A magnetically coupled feed arrangement comprises a separable transformer. The separable transformer comprises a first coil coupled to the antenna and supported by the battery door, and a second coil coupled to the transceiver and supported by the faceplate, a structure of or within the enclosure or a component in the enclosure. A conductor of the second coil is physically and electrically separated from a conductor of the first coil. The feed arrangement is configured to feed the antenna via mutual inductance between the first and second coils.
Embodiments are directed to an ear-worn electronic device configured to be worn by a wearer. The device comprises an enclosure configured for at least partial insertion into an ear canal of the wearer. The enclosure comprises a faceplate and a shell having a preformed shape or comprising a shapeable material that conforms to a shape of the wearer's ear canal. A processor is disposed in the enclosure. A speaker or a receiver is operably coupled to the processor. A radio frequency transceiver is disposed in the enclosure and operably coupled to the processor. An antenna is supported by or integral to the faceplate. The antenna comprises a radiating element, a ground plane, and a substrate comprising dielectric material disposed between the radiating element and the ground plane. A magnetically coupled feed arrangement comprises a separable transformer. The separable transformer comprises a first coil coupled to the antenna and supported by the faceplate, and a second coil coupled to the transceiver and supported by the faceplate, a structure of or within the shell or a component in the shell. A conductor of the second coil is physically and electrically separated from a conductor of the first coil. The feed arrangement is configured to feed the antenna via mutual inductance between the first and second coils.
Embodiments are directed to an ear-worn electronic device configured to be worn by a wearer. The device comprises an enclosure configured to be supported at, by, in or on the wearer's ear. A processor is disposed in the enclosure. A speaker or a receiver is coupled to the processor. A radio frequency transceiver is disposed in the enclosure and coupled to the processor. An antenna is disposed in or on the enclosure. A magnetically coupled feed arrangement comprises a separable transformer. The separable transformer comprises a first coil coupled to the antenna and a second coil coupled to the transceiver, wherein a conductor of the second coil is physically and electrically separated from a conductor of the first coil. The feed arrangement is configured to feed the antenna via mutual inductance between the first and second coils
The above summary is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The figures and the detailed description below more particularly exemplify illustrative embodiments.
Throughout the specification reference is made to the appended drawings wherein:
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
It is understood that the embodiments described herein may be used with any ear-worn or ear-level electronic device without departing from the scope of this disclosure. The devices depicted in the figures are intended to demonstrate the subject matter, but not in a limited, exhaustive, or exclusive sense. Ear-worn electronic devices (also referred to herein as “hearing devices”), such as hearables (e.g., wearable earphones, ear monitors, and earbuds), hearing aids, hearing instruments, and hearing assistance devices, typically include an enclosure, such as a housing or shell, within which internal components are disposed. Typical components of a hearing device can include a processor (e.g., a digital signal processor or DSP), memory circuitry, power management circuitry, one or more communication devices (e.g., a radio, a near-field magnetic induction (NFMI) device), one or more antennas, one or more microphones, and a receiver/speaker, for example. Hearing devices can incorporate a long-range communication device, such as a Bluetooth® transceiver or other type of radio frequency (RF) transceiver. A communication device (e.g., a radio or NFMI device) of a hearing device can be configured to facilitate communication between a left ear device and a right ear device of the hearing device.
Hearing devices of the present disclosure can incorporate an antenna coupled to a high-frequency transceiver, such as a 2.4 GHz radio. The RF transceiver can conform to an IEEE 802.11 (e.g., WiFi®) or Bluetooth® (e.g., BLE, Bluetooth® 4.2 or 5.0) specification, for example. It is understood that hearing devices of the present disclosure can employ other transceivers or radios, such as a 900 MHz radio. Hearing devices of the present disclosure can be configured to receive streaming audio (e.g., digital audio data or files) from an electronic or digital source. Representative electronic/digital sources (e.g., accessory devices) include an assistive listening system, a TV streamer, a radio, a smartphone, a laptop, a cell phone/entertainment device (CPED) or other electronic device that serves as a source of digital audio data or other types of data files. Hearing devices of the present disclosure can be configured to effect bi-directional communication (e.g., wireless communication) of data with an external source, such as a remote server via the Internet or other communication infrastructure. Hearing devices that include a left ear device and a right ear device can be configured to effect bi-directional communication (e.g., wireless communication) therebetween, so as to implement ear-to-ear communication between the left and right ear devices.
The term hearing device of the present disclosure refers to a wide variety of ear-level electronic devices that can aid a person with impaired hearing. The term hearing device also refers to a wide variety of devices that can produce processed sound for persons with normal hearing. Hearing devices of the present disclosure include hearables (e.g., wearable earphones, headphones, earbuds, virtual reality headsets), hearing aids (e.g., hearing instruments), cochlear implants, and bone-conduction devices, for example. Hearing devices include, but are not limited to, behind-the-ear (BTE), in-the-ear (ITE), in-the-canal (ITC), invisible-in-canal (IIC), receiver-in-canal (RIC), receiver-in-the-ear (RITE) or completely-in-the-canal (CIC) type hearing devices or some combination of the above. Throughout this disclosure, reference is made to a “hearing device,” which is understood to refer to a system comprising a single left ear device, a single right ear device, or a combination of a left ear device and a right ear device.
Ear-worn electronic devices configured for wireless communication, such as hearing aids and other types of hearing devices, can be relatively small in size. Custom hearing devices, such as ITE, ITC, and CIC devices for example, are quite small in size. In the manufacture of a custom hearing device, for example, an ear impression or ear mold is taken for a particular wearer and processed to construct the housing of the hearing device. Because custom hearing devices are designed to be partially or fully inserted into a wearer's ear canal, the housing is necessarily quite small. In order to implement a functional wireless platform (e.g., @ 2.4 GHz), the antenna must be small enough to fit within such devices. The severe space limitations within the housing of an ear-worn electronic device impose a physical challenge on designing the antenna.
For some hearing devices, it is desirable to mount the antenna on a movable door or drawer which is used to insert and remove a battery into/from the hearing device. Mounting the antenna to the movable battery door of relatively small hearing devices, such as custom hearing aids, provides the opportunity to significantly reduce the size of the hearing device.
However, feeding the antenna in this location presents a unique challenge, since the feed cannot have a soldered physical connection. This is particularly important in order for the battery door to be field replaceable, which is highly desirable for some hearing devices. One approach to implementing an antenna arrangement with a connection-less feed involves the use of scratch pads, which would likely shorten the life of the hearing device by an unacceptable degree. Scratch pads can also negatively impact the antenna performance at high frequencies (e.g., @ 2.4 GHz).
Embodiments of the disclosure are directed to an antenna arrangement of a hearing device which includes a magnetically coupled feed for the antenna. A magnetically coupled feed for the antenna of a hearing device eliminates the need for a physical (e.g., soldered) connection between the antenna and a transceiver (e.g., via a matching network) of the hearing device. A magnetically coupled feed for the antenna of a hearing device provides the flexibility of mounting different components of the antenna arrangement on different structures or components of the hearing device. For example, some components of the antenna arrangement can be mounted on a fixed structure of the hearing device, while other antenna components can be mounted on a movable structure of the hearing device. More particularly, the antenna and a first section of the feed arrangement can be mounted on a movable structure of the hearing device. A second section of the feed arrangement is coupled to a transceiver, and can be mounted on a fixed (or, alternatively, a movable) structure of the hearing device. When moved into close proximity to one another, such as by moving the movable structure into proximity to the fixed structure, the first and second feed sections serve as a magnetically coupled feed for the antenna.
According to any of the embodiments disclosed herein, a magnetically coupled feed arrangement comprises at least a first section and a second section, such that a conductor of the first section is physically and electrically separated from a conductor of the second section. More particularly, a conductor of the first section is not electrically (as opposed to magnetically or electromagnetically) connected to a conductor of the second section, such that the conductors (e.g., metal components) of the first and section sections are not in physical (e.g., mechanical) contact with one another. It is understood that conductors of the first and/or second sections can be covered by thin insulating material (e.g., polyimide), and this insulating material can be in physical contact, while the conductors (e.g., metal components) of the first and second sections remain physically separated from one another (e.g., no metal-to-metal contact between the first and second sections).
The first and second hearing devices 100A and 100B include an enclosure 101 configured for placement, for example, over or on the ear, entirely or partially within the external ear canal (e.g., between the pinna and ear drum) or behind the ear. Disposed within the enclosure 101 is a processor 102 which incorporates or is coupled to memory circuitry. The processor 102 can include or be implemented as a multi-core processor, a digital signal processor (DSP), an audio processor or any combination of these processors. For example, the processor 102 may be implemented in a variety of different ways, such as with a mixture of discrete analog and digital components that include a processor configured to execute programmed instructions contained in a processor-readable storage medium (e.g., solid-state memory, e.g., Flash).
The processor 102 is coupled to a wireless transceiver 104 (also referred to herein as a radio), such as a BLE transceiver. The wireless transceiver 104 is operably coupled to an antenna 106 configured for transmitting and receiving radio signals. The antenna 106, according to any of the embodiments disclosed herein, is mounted to a movable (e.g., separable, removable) section 105 of the enclosure or shell 101. The movable section 105 can be a plate (e.g., a faceplate) that covers a major opening of the shell of the enclosure 101. For example, the faceplate can be attached to the shell during hearing device assembly. The faceplate is typically a structure separate from the shell and is not designed to be separable by the wearer. By way of further example, the movable section 105 can be a battery door or drawer of a faceplate of the enclosure 101. In such a configuration, the faceplate is fixed to the shell of the enclosure 101 and the antenna 106 travels with the battery door as the battery door is moved into and out of the faceplate (see, e.g.,
The antenna 106 is operably coupled to the wireless transceiver 104 by a magnetically coupled feed arrangement 107. The wireless transceiver 104 can include or be coupled to a matching network, and the matching network can be coupled to the magnetically coupled feed arrangement 107. The magnetically coupled feed arrangement 107 comprises multiple coupling elements. At least one of the coupling elements is mounted on or supported by the movable section 105 of the enclosure 101, and at least one other coupling element is mounted on or supported by a structure (e.g., a flexible electrical circuit, a spine structure, an enclosure wall) of the fixed portion (e.g., shell) of the enclosure 101.
According to any of the embodiments disclosed herein, the magnetically coupled feed arrangement 107 comprises a separable transformer, such that elements of the transformer are movable relative to one another. For example, the separable transformer can include a first coupling element 107a supported on or by the movable section 105 of the enclosure 101. A second coupling element 107b can be mounted on or supported by a structure of the fixed portion of the enclosure 101. The magnetically coupled feed arrangement 107 is configured to feed the antenna 106 via mutual inductance between the first and second coupling elements 107a, 107b. Provision of separable first and second coupling elements 107a, 107b of the magnetically coupled feed arrangement 107 eliminates a physical connection between the antenna 106 and the transceiver 104 (or a matching network), allowing the antenna 106 to be mounted on a movable section 105 of the enclosure 101.
In some embodiments, the hearing devices 100A and 100B need not include a movable section 105. In such embodiments, the antenna 106 can be mounted on or within the enclosure 101 and coupled to the transceiver 104 via the magnetically coupled feed arrangement 107. For example, the antenna 106 can be implemented on a laser direct structuring (LD S) structure one or inside of the enclosure 101. By way of further examples, the antenna 106 can be integrated into the spine or a flexible electrical circuit disposed within the enclosure 101. In each of these embodiments, the antenna 106 is coupled to the transceiver 104 via the magnetically coupled feed arrangement 107, which need not include a separable transformer.
The wireless transceiver 104 and antenna 106 can be configured to enable ear-to-ear communication between the two hearing devices 100A and 100B, as well as communications with an external device (e.g., a smartphone or a digital music player). A battery 110 or other power source (rechargeable or conventional) is provided within the enclosure 101 and configured to provide power to the various components of the hearing devices 100A and 100B. In some embodiments, the battery 110 can be inserted into and removed from the enclosure 101 via a battery door or drawer. A speaker or receiver 108 is coupled to an amplifier (not shown) and the processor 102. The speaker or receiver 108 is configured to generate sound which is communicated to the wearer's ear.
In some embodiments, the hearing devices 100A and 100B include a microphone 112 mounted on or inside the enclosure 101. The microphone 112 may be a single microphone or multiple microphones, such as a microphone array. The microphone 112 can be coupled to a preamplifier (not shown), the output of which is coupled to the processor 102. The microphone 112 receives sound waves from the environment and converts the sound into an input signal. The input signal is amplified by the preamplifier and sampled and digitized by an analog-to-digital converter of the processor 102, resulting in a digitized input signal. In some embodiments (e.g., hearing aids), the processor 102 (e.g., DSP circuitry) is configured to process the digitized input signal into an output signal in a manner that compensates for the wearer's hearing loss. When receiving an audio signal from an external source, the wireless transceiver 104 may produce a second input signal for the DSP circuitry of the processor 102 that may be combined with the input signal produced by the microphone 112 or used in place thereof. In other embodiments, (e.g., hearables), the processor 102 can be configured to process the digitized input signal into an output signal in a manner that is tailored or optimized for the wearer (e.g., based on wearer preferences). The output signal is then passed to an audio output stage that drives the speaker or receiver 108, which converts the output signal into an audio output.
Some embodiments are directed to a custom hearing aid, such as an ITC, CIC, or IIC hearing aid. For example, some embodiments are directed to a custom hearing aid which includes a wireless transceiver and an antenna arrangement configured to operate in the 2.4 GHz ISM frequency band or other applicable communication band (referred to as the “Bluetooth® band” herein). As was discussed previously, creating a robust antenna arrangement for a 2.4 GHz custom hearing aid represents a significant engineering challenge. A custom hearing aid is severely limited in space. Provision of the magnetically coupled feed arrangement 107 allows the antenna 106 to be mounted on the movable battery door 105, which provides for a significant reduction in the overall size of the hearing device enclosure 101 while delivering good antenna performance.
Each hearing device 201a, 201b includes a physical enclosure 205a, 205b that encloses an internal volume. The enclosure 205a, 205b is configured for at least partial insertion within the wearer's ear canal. The enclosure 205a, 205b includes an external side 202a, 202b that faces away from the wearer and an internal side 203a, 203b that is inserted in the ear canal. The enclosure 205a, 205b comprises a shell 206a, 206b and a faceplate 207a, 207b. The shell 206a, 206b typically has a shape that is customized to the shape of a particular wearer's ear canal (e.g., based on an ear mold taken for the particular wearer). In some embodiments, the shell 206a, 206b can be a semi-custom shell formed from soft conforming material that assumes the shape of a wearer's ear canal when inserted. The faceplate 207a, 207b may include a battery door 208a, 208b or drawer disposed near the external side 202a, 202b of the enclosure 205a, 205b and configured to allow the battery 240a, 240b to be inserted and removed from the enclosure 205a, 205b. The battery 240a, 240b powers electronic circuitry 230a, 230b which is also disposed within the shell 206a, 206b. An antenna 220a, 220b can be mounted on the faceplate 207a, 207b or, more particularly, to the battery door 208a, 208b. A magnetically coupled feed arrangement 209a, 209b facilitates connection-less coupling between the antenna 220a, 220b and a transceiver 232 (e.g., via a matching network) of the electronic circuitry 230a, 230b.
As illustrated in
The processor 260 is configured to control wireless communication between the hearing devices 201a, 201b and/or an external accessory device (e.g., a smartphone, a digital music player) via the antenna 220a, 220b and transceiver 232. The wireless communication may include, for example, audio streaming data and/or control signals. The transceiver 232 has a receiver portion that receives communication signals from the antenna 220a, 220b, demodulates the communication signals, and transfers the signals to the processor 260 for further processing. The transceiver 232 also includes a transmitter portion that modulates output signals from the processor 260 for transmission via the antenna 220a, 220b. Electrical signals from the microphone 251a, 251b and/or wireless communication received via the antenna 220a, 220b may be processed by the processor 260 and converted to acoustic signals played to the wearer's ear 299 via a speaker 252a, 252b.
The antenna 302 and the first and second coils 304a, 304b shown in
The hearing device 300a shown in
As shown in
The antenna 420 can be arranged such that the plane of the antenna extends along the plane of the faceplate 407. In some embodiments, the plane of the antenna 420 may be substantially parallel or at a slight angle with respect to the plane of the faceplate 407. The antenna 420 may be implemented as a Planar Inverted-F Antenna (PIFA), as illustrated in connection with
When the battery 440 is arranged in the enclosure 405 such that the plane, a, of the battery 440 lies substantially along the plane of the faceplate 407, the battery door 408 provides a relatively large area for the antenna 420 at a location where mechanical interference from other structures and/or electromagnetic interference from the device electronics is reduced or eliminated. The hearing device 400 is configured to be inserted within the user's ear canal with the external surface 417 of the faceplate 407 facing away from the wearer's ear drum (e.g., towards the pinna). When properly inserted within the wearer's ear canal, and depending on the configuration of the hearing device 400, the faceplate 407 may reside entirely within the ear canal, extend out of the ear canal, or be located close to the opening of the ear canal. Locating the antenna 420 in, on, or near the faceplate 407 serves to reduce loading of the electromagnetic signal caused by the wearer's head. In the arrangements shown in
As is further shown in
When the battery door 408 is in a closed configuration (see
The antenna 700 shown in
The antenna 700 includes a ground plane 702 separated from a conductive patch 704 by a dielectric 706. A suitable PCB material for the dielectric 706 can have an isotropic dielectric constant in a range of about 12 to about 13, for example (e.g., TMM13i available from Rogers Corporation). Materials with a dielectric constant in this range or greater are useful to reduce the physical dimensions of the antenna 700 when compared, for example, to the physical dimensions of an antenna that uses air as the dielectric. The antenna 700 includes a shorting wall, frame or pin 703 that shorts the patch 704 to the ground plane 702. To achieve a desired antenna response, the antenna 700 may include multiple shorting pins, for example.
The antenna 700 is fed by a magnetically coupled feed arrangement 710 which includes a first coil 712 and a second coil 714. In
The antenna 700 and first coil 712 can be mounted to a first structure or component of the hearing device, and the second coil 714 can be mounted to a second structure or component of the hearing device. In some implementations, the first structure or component supporting the antenna 700 and first coil 712 is movable relative to the structure or component supporting the second coil 714. In other implementations, the structure or component supporting the second coil 714 is movable relative to the structure or component supporting the antenna 700 and first coil 712. In further implementations, the first and second structures or components are static structures or components of the hearing device.
By way of example, the antenna 700 and first coil 712 can be mounted on a movable battery door or drawer supported by a faceplate of the hearing device. The second coil 714 can be mounted to a fixed structure or component within the shell of the hearing device. When the battery door is closed, the first and second coils 712, 714 are substantially parallel to one another, allowing the antenna 700 to be fed via mutual induction between the first and second coil 712, 714. When the battery door is open, the first and second coils 712, 714 are moved apart from one another (e.g., move substantially non-parallel to one another), which prohibits or inhibits mutual induction between the first and second coils 712, 714.
The first coil 812 is connected to a feed arm 808 of the antenna 800. The second coil 814 is coupled to a radio transceiver of the hearing device either directly or via a matching network. The first and second coils 812, 814 are shown as having a planar configuration (e.g., a flat rectangular or square configuration), and are in close proximity and substantially parallel to one another. In this orientation, the first and second coils 812, 814 are configured to feed the antenna 800 via mutual induction between the first and second coil 812, 814.
The antenna 800 and first coil 812 can be mounted to a first structure or component of the hearing device, and the second coil 814 can be mounted to a second structure or component of the hearing device. In some implementations, the first structure or component supporting the antenna 800 and first coil 812 is movable relative to the structure or component supporting the second coil 814. In other implementations, the structure or component supporting the second coil 814 is movable relative to the structure or component supporting the antenna 800 and first coil 812. In further implementations the first and second structures or components are static structures or components of the hearing device.
By way of example, the antenna 800 and first coil 812 can be mounted on a movable battery door or drawer supported by a faceplate of the hearing device. The second coil 814 can be mounted to a fixed structure or component within the shell of the hearing device. When the battery door is closed, the first and second coils 812, 814 are substantially parallel to one another, allowing the antenna 800 to be fed via mutual induction between the first and second coil 812, 814. When the battery door is open, the first and second coils 812, 814 are moved apart from one another (e.g., move substantially non-parallel to one another), which prohibits or inhibits mutual induction between the first and second coils 812, 814.
The tuning capacitors incorporated in the magnetically coupled feed arrangements 1100a-1100d provide for a tuned transformer (both input and output being tuned to resonance) that typically has much higher coupling than an untuned transformer. This is especially true if the Q of the tuned LCR circuits is high, and if the mutual inductance of the two coils 1102, 1104 is not near 1. For the transformers shown in
A magnetically coupled feed arrangement can incorporate a balun in accordance with any of the embodiments disclosed herein. In general terms, a balun can be considered a type of transformer that is used to convert an unbalanced signal to a balanced signal or vice a versa. A balun can be integrated into the magnetically coupled feed arrangement to interface a balanced RF port (e.g., primary coupling port 1204) of a radio transceiver to an unbalanced antenna (e.g., antenna 1202 coupled to secondary coupling port 1206), such as that shown in
This document discloses numerous embodiments, including but not limited to the following:
Although reference is made herein to the accompanying set of drawings that form part of this disclosure, one of at least ordinary skill in the art will appreciate that various adaptations and modifications of the embodiments described herein are within, or do not depart from, the scope of this disclosure. For example, aspects of the embodiments described herein may be combined in a variety of ways with each other. Therefore, it is to be understood that, within the scope of the appended claims, the claimed invention may be practiced other than as explicitly described herein.
All references and publications cited herein are expressly incorporated herein by reference in their entirety into this disclosure, except to the extent they may directly contradict this disclosure. Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “up to” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).
The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out at least some functionality (for example, a radio chip may be operably coupled to an antenna element to provide a radio frequency electromagnetic signal for wireless communication).
Terms related to orientation, such as “top,” “bottom,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated. For example, an embodiment described as having a “top” and “bottom” also encompasses embodiments thereof rotated in various directions unless the content clearly dictates otherwise.
Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.
The words “preferred” and “preferably” refer to embodiments of the disclosure that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful and is not intended to exclude other embodiments from the scope of the disclosure.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of” “consisting of,” and the like are subsumed in “comprising,” and the like. The term “and/or” means one or all of the listed elements or a combination of at least two of the listed elements.
The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.
This application is a continuation of U.S. patent application Ser. No. 16/371,495, filed Apr. 1, 2019, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6292153 | Aiello et al. | Sep 2001 | B1 |
7593538 | Polinske | Sep 2009 | B2 |
7742614 | Christensen | Jun 2010 | B2 |
8878735 | Kvist et al. | Nov 2014 | B2 |
9191757 | Bauman | Nov 2015 | B2 |
9237404 | Ozden | Jan 2016 | B2 |
9397399 | Pajona et al. | Jul 2016 | B2 |
9432779 | Kerselaers | Aug 2016 | B2 |
9554219 | Kvist | Jan 2017 | B2 |
9577348 | Gomme et al. | Feb 2017 | B2 |
9635475 | Polinske et al. | Apr 2017 | B2 |
9661427 | Bauman et al. | May 2017 | B2 |
9729979 | Özden | Aug 2017 | B2 |
9819097 | Kerselaers et al. | Nov 2017 | B2 |
9888327 | Nikles et al. | Feb 2018 | B2 |
9906879 | Prchal et al. | Feb 2018 | B2 |
9913052 | Dzarnoski et al. | Mar 2018 | B2 |
9973864 | Henriksen et al. | May 2018 | B2 |
10165376 | Vajha et al. | Dec 2018 | B2 |
10320086 | Kerselaers et al. | Jun 2019 | B2 |
10321248 | Thaysen | Jun 2019 | B2 |
10349192 | Pooladian et al. | Jul 2019 | B2 |
10448173 | Hesselballe et al. | Oct 2019 | B2 |
10595138 | Pinto | Mar 2020 | B2 |
11011845 | Flood et al. | May 2021 | B2 |
20050099341 | Zhang et al. | May 2005 | A1 |
20090169038 | Knudsen | Jul 2009 | A1 |
20130307740 | Pajona | Nov 2013 | A1 |
20130342407 | Kvist | Dec 2013 | A1 |
20130343586 | Kvist et al. | Dec 2013 | A1 |
20150036854 | Polinske | Feb 2015 | A1 |
20160050501 | Pinto | Feb 2016 | A1 |
20160330552 | Flood | Nov 2016 | A1 |
20160381471 | Henriksen | Dec 2016 | A1 |
20170026762 | Ruaro | Jan 2017 | A1 |
20170062949 | Kerselaers | Mar 2017 | A1 |
20170064466 | Pooladian | Mar 2017 | A1 |
20170094386 | Trainer | Mar 2017 | A1 |
20170250728 | Afsahi | Aug 2017 | A1 |
20180124528 | Polinske | May 2018 | A1 |
20190116431 | Hesselballe | Apr 2019 | A1 |
20200077210 | Polinske | Mar 2020 | A1 |
20210187293 | Friedling | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2076065 | Jul 2009 | EP |
2723101 | Jun 2014 | EP |
2765650 | Aug 2014 | EP |
2985834 | Feb 2016 | EP |
3094111 | Nov 2016 | EP |
3316598 | May 2018 | EP |
0653859 | Feb 1994 | JP |
Entry |
---|
European Search Report for Application No. 20164420.0 dated Sep. 8, 2020 (8 pages). |
European Office Action for Application No. 20164420.0 dated Mar. 2, 2022 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20220021989 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16371495 | Apr 2019 | US |
Child | 17462478 | US |