The present disclosure is best understood with reference to the accompanying figures in which like numerals refer to like elements and in which:
During drilling operations, a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34. The drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21. The drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50. The drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35. The drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50. A sensor S1 typically placed in the line 38 provides information about the fluid flow rate. A surface torque sensor S2 and a sensor S3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring. Additionally, a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
In one embodiment of the disclosure, the drill bit 50 is rotated by only rotating the drill pipe 22. In another embodiment of the disclosure, a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction.
In an exemplary embodiment of
In one embodiment of the disclosure, a drilling sensor module 59 is placed near the drill bit 50. The drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition. A suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90. The drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
The communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50. The drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled. The communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
The surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S1-S3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40. The surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations. The surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals. The control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
Turning now to
As shown in
As shown in
The present disclosure relies on the signals recorded by excitation of the transducer as an indication of gas in the borehole fluid. Free gas in the borehole fluid has three main effects on the acoustic properties of the fluid. The first effect is a reduction in density of the fluid. A more important effect is the dramatic reduction in the bulk modulus of the fluid (and hence the acoustic velocity). This is the phenomenon that is the basis for the so-called “bright spot” effect in hydrocarbon exploration wherein the presence of gas in a reservoir can produce strong reflections on seismic data. Basically, in a gas-liquid mixture, the average compressibility (the reciprocal of bulk modulus which is linearly related to the square of the acoustic velocity) is obtained by a weighted average of the compressibilities of the two fluids. The third effect that may be observed is the attenuation of the wave that actually propagates into the borehole and may be reflected by the borehole wall. However, by the time actual gas bubbles appear in the borehole at depth, it may be on the verge of a blowout. Accordingly, an objective of the disclosure is to determine the pressure kicks before gas comes out of solution in the borehole fluid.
Invasion of formation fluids into the borehole is usually the result of the formation pore pressure exceeding the fluid pressure in the borehole. This may be a harbinger of a blowout and remedial action is necessary. Due to the difference in the density and P-wave velocity of the borehole mud and the density and P-wave velocity of formation fluid, this influx is detectable. Specifically, the effect of invasion is to lower the bulk modulus and density of the fluid in the borehole. This translates into a change in the impedance of the mud.
Such a model may also be used for predicting the properties of a mixture of drilling mud and formation fluid. The net result of a fluid influx is to change the impedance of the borehole fluid.
Those versed in the art and having benefit of the present disclosure would recognize that if the impedance of the fluid is matched to that of the plate, then reverberations of the plate caused by excitation of the transducer will decay very rapidly. This is shown schematically in
Maximum sensitivity is obtained by using a plate whose acoustic impedance is as close as possible to the fluid impedance so as to minimize the impedance contrast with the fluid, which typically ranges from 1500 kRayls for a light drilling fluid to 2300 kRayls for a heavy drilling fluid. The plate must also be thermally stable, mechanically tough, and chemically resistant. Among polymers, a polyimide ranging from 2400 to 2920 kRayls or a poly(etherether-ketone) ranging from 3122 to 3514 kRayls are good candidates. Another polymer that is a good candidate is polymethlypentene (tradenamed TPX, which is made by Mitsui) that has an acoustic impedance of 1840 kRayls. Pyrolytic graphite (6 480 kRayls depending on orientation) from GE Advanced Ceramics is a good candidate. Among metals, titanium (about 24 000 kRayls) or aluminum (about 15 800 kRayls) are good candidates. The inside face of the plate is in contact with oil in a pressure-balanced enclosure, with known acoustic characteristics. Incoming water oil or gas is expected to lower the acoustic impedance markedly. The instrument takes a reading every second and stores it in memory for 2 hours. In one embodiment of the disclosure, if the instrument observes a change in acoustic impedance of 10% or more during a 2 minute interval from the extrapolated value of the preceding hour then it sends a high priority alarm and a series of informative values of the acoustic impedance from say intervals of 20 seconds preceding the alarm. The use of a 10% change in acoustic impedance is for exemplary purposes only and other criteria could be used for sending an alarm.
Another embodiment of the disclosure is illustrated in
The processing of the data may be accomplished by a downhole processor. Alternatively, measurements may be stored on a suitable memory device and processed upon retrieval of the memory device for detailed analysis. Implicit in the control and processing of the data is the use of a computer program on a suitable machine readable medium that enables the processor to perform the control and processing. The machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks. All of these media have the capability of storing the data acquired by the logging tool and of storing the instructions for processing the data. It would be apparent to those versed in the art that due to the amount of data being acquired and processed, it is impossible to do the processing and analysis without use of an electronic processor or computer.
While the foregoing disclosure is directed to the specific embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all such variations within the scope of the appended claims be embraced by the foregoing disclosure.
Number | Date | Country | |
---|---|---|---|
60839602 | Aug 2006 | US |