The described embodiments relate generally to packaging and specifically to earphone packaging.
Earphone packaging may be used, for example, to store, transport, protect and/or present earphones to consumers.
The present disclosure details systems, apparatuses, and methods related to a package for an electronic device, such as earphone packaging. A package for an electronic device may include a first layer of compressed natural fibers defining an aperture and a second layer of compressed natural fibers disposed adjacent to the first layer of compressed natural fibers. In some embodiments, the aperture receives a portion of the electronic device. In some embodiments, the second layer of compressed natural fibers has a flap partially covering the aperture of the first layer of compressed natural fibers. The first and second layers of compressed natural fibers may be bonded to each other by high-frequency welding. For example, the first and second layers of compressed natural fibers may include a coating or film, such as a polypropylene laminate. The polypropylene laminate of the first and second layers may be high-frequency welded together, thus bonding the first and second layers of compressed natural fibers to each other.
In some embodiments, the first layer is paper. In some embodiments, the second layer is paper. In some embodiments, the second layer includes two flaps partially covering the aperture defined by the first layer of compressed natural fibers. In some embodiments, the package also includes a third layer of compressed natural fibers disposed adjacent to the first layer on an opposite side from the second layer. In some embodiments, the first layer defines a second aperture. In some embodiments, the third layer includes a flap partially covering the second aperture defined by the first layer. In some embodiments, the third layer completely covers the aperture defined by the first layer. In some embodiments, the third layer is bonded to the second layer by high-frequency welding. In some embodiments, the first, second, and third layers constrain the electronic device in three dimensions.
In some embodiments, each layer of compressed natural fibers includes a coating of polypropylene laminate. The first layer may form an exterior of the package.
In some embodiments, a packaged product includes the packaging described above and a product. The product may include a product body and a cable connected to the product body. In some embodiments, a portion of the product body is above the first layer. In some embodiments, a portion of the product body is below the first layer. The cable may not be visible from above the first layer.
In some embodiments, a perimeter of the aperture of the first layer is smaller than a perimeter of the product body. The flap may be biased to press the product body against the perimeter of the aperture.
In some embodiments, a package includes a compressed natural fiber earphone support, a compressed natural fiber cable support, and a compressed natural fiber cable guide. The compressed natural fiber earphone support may include a first compressed natural fiber layer and a second compressed natural fiber layer. In some embodiments, the first and second compressed natural fiber layers define two holes configured to secure the earphones. In some embodiments, the compressed natural fiber cable support is attached to the compressed natural fiber earphone support. In some embodiments, the cable support and the second compressed natural fiber layer are monolithic. In some embodiments, the compressed natural fiber cable guide is attached to the cable support and includes projections. Each projection may have tabs on each end arranged at an angle to form an annular guide for a coiled cable of the earphones.
In some embodiments, the package includes a connector support attached to the cable support. The connector support may include an aperture to receive a connector of the earphones. In some embodiments, the package includes an accessory support attached to the connector support. The accessory support may include an additional aperture to receive an accessory.
In some embodiments, the cable guide includes a passageway that surrounds the cable of the earphones. The passageway may break away when a user opens the package, allowing the cable to be removed from the package.
In some embodiments, the package includes a side portion that is monolithic with the compressed natural fiber cable support and the second compressed natural fiber layer, and the side portion may form a side of the package. In some embodiments, the package includes two tabs that extend from the cable support, and each may form a side of the package. In some embodiments, the two tabs and the side portion are not visible from above the first compressed natural fiber layer when the package is closed.
In some embodiments, the second compressed natural fiber layer includes flaps partially covering the two holes to secure the earphones. In some embodiments, a grammage of the first compressed natural fiber layer is greater than a grammage of the second compressed natural fiber layer.
In some embodiments, packaged earphones include the package described above and the earphones. In some embodiments, the earphones are secured within the two holes. In some embodiments, the cable of the earphones extends from the earphones in a direction parallel to the first and second compressed natural fiber layers. In some embodiments, the cable is not visible from above the first and second compressed natural fiber layers. In some embodiments, the compressed natural fiber earphone support is disposed over the compressed natural fiber cable support with a majority of the cable disposed between the compressed natural fiber earphone support and the cable support.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the claims.
This disclosure relates generally to packaging, and more specifically, to earphone packaging. While earphone packaging is specifically discussed, the principles discussed herein are also applicable to packaging for other products. In some embodiments of the present invention, the packaging may be used for any product, particularly for small, lightweight products.
Packaging may be used, for example, to store, transport, protect and/or present products, such as earphones or other electronic devices, to consumers. In some embodiments, earphone packaging may be designed to accomplish several goals. For example, the packaging may protect the earphones (e.g., by securing the earphones in place) while presenting the earphones to consumers, including making the earphones easily accessible for consumers to remove the earphones from the packaging. The use of adhesives may, for example, secure earphones in place, but adhesives may make it more difficult for consumers to remove the earphones from the packaging. Thus, in some embodiments the packaging described herein secures earphones in place while also making earphones easily accessible by using mechanisms and techniques that minimize the use of adhesive. At the same time, because the packaging may be discarded, in some embodiments the packaging is made with a minimal amount of material, and the material is environmentally friendly (e.g., recyclable, for example in a conventional paper recycling stream without requiring deconstruction of the packaging and separation of its component parts).
In some embodiments, packaging may be formed of layers of compressed natural fibers (e.g., paper or cardboard, formed of, for example, cellulose, bagasse, or bamboo fibers). The layers of compressed natural fibers may be attached to one another to form the packaging. In some embodiments, the layers of compressed natural fibers are attached by high-frequency welding. In some embodiments, the layers of compressed natural fibers may be attached to one another by adhesive.
In some embodiments, an upper surface layer of the packaging defines one or more apertures that receive part of a product. For example, the upper surface layer may include two apertures, one for each earphone in a pair. The apertures may conform to the outline of the earphones, but be slightly smaller than the earphones, so that the earphones can rest against the perimeter of the aperture from underneath without going through the apertures. This can help present the earphones as “floating” within the packaging on the upper surface, especially without any other anchoring or affixing mechanism viewable from above the upper surface. Additional apertures, either in the same layer or a different layer, may be included to receive, for example, a headphone jack, adapter, or other type of electrical connector (e.g., a USB device, an adapter, a power plug, etc.).
In some embodiments, a layer of compressed natural fibers adjacent to an aperture includes one or more flaps partially covering the apertures in the adjacent layer. The flap may be biased towards the aperture so that when a product is placed between the flap and the aperture the product is secured in place between the flap and the perimeter of the aperture. In some embodiments, two flaps together secure the product in place. In this way, the flaps can secure the product in place from below the upper visible surface, allowing the product to be showcased from the opposite side of the aperture without the flaps themselves being visible. Furthermore, the flaps may allow easy access to the product for removal from the packaging. For example, the product may be removed by pulling the product between the flaps.
In some embodiments, because the particular part of the product is larger than the aperture, the flaps and a perimeter of the aperture form a space for storing the particular part of the product. In some embodiments, a portion of the product extends beyond this space (i.e., above the layer that has the aperture). This portion of the product may be displayed to consumers, thus showcasing the product.
In some embodiments, the packaging stores the remainder of the product, such as the cables of the earphones, below the upper layer to be primarily out of sight from the consumer's view. For example, one or more layers of compressed natural fibers may provide a guide to wrap the cables in an annular (e.g., circular) pattern within the packaging. In some embodiments, one or more layers of compressed natural fibers may have tabs to close the packaging.
These and other embodiments are discussed below with reference to the figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes only and should not be construed as limiting.
Packaging 100, as shown, for example, in
For example, as shown in
In some embodiments, packaging 100 is configured to support product 10 in the manner described above (i.e., presenting product body 12 while hiding cable 14) so that product 10 stays in place in the absence of applied force, but is also easily and quickly removable from packaging 100. In some embodiments, packaging 100 comprises a plurality of layers of compressed natural fibers, such as paper, to accomplish this.
In some embodiments, various layers of packaging 100 include apertures (e.g., apertures 220, 320, 420, 520, 525, 530, 620, and 630) to receive portions of product 10 (see, e.g.,
In some embodiments, apertures (e.g., apertures 320 and 420) and flaps (e.g., flaps 322) create a space to contain product body 12, as shown, for example, in
In some embodiments, the perimeter of aperture 420 is smaller than a perimeter of product body 12, or the distance between opposing sides of the aperture is smaller than the width of a corresponding portion of product body 12 (as shown, for example, in
In some embodiments, product body section 310 and product body section 410 together secure product body 12 in packaging 100. In some embodiments, apertures 320 and 420 may imitate the shape of product body 12. For example, while both apertures 320 and apertures 420 may follow the same contour of the shape of product body 12, they may overlap portions of product body 12 to different degrees such that the shape of aperture 320 may slightly differ from the shape of aperture 420. In some embodiments, as shown, for example, in
In some embodiments, aperture 320 and/or aperture 420 may constrain product body 12 in an X and Y direction while flaps 322 may constrain product body 12 in a Z direction (e.g., by being biased to press product body 12 against the perimeter of aperture 320 and/or aperture 420. In some embodiments, cable 14 extends from product body 12 in a direction parallel to product body section 310 and product body section 410. In some embodiments, cable 14 abuts the bottom of product body section 310 where cable 14 extends from product body 12.
In some embodiments, additional apertures and flaps may be used in other layers to house other portions of product 10, such as connector 18, as shown, for example, in
In some embodiments, layer 200, as shown, for example, in
For example, tabs 230 may include sections 232, 234, 236, and 238. In some embodiments, sections 232, 234, and 236 may be folded (e.g., at right angles to each other) to form a passageway 239 for retaining cable 14 coiled within packaging 100 (see
In some embodiments, sections 238 are folded towards the center of layer 200 to act as tabs against which cable 14 coils within packaging 100 (see
In some embodiments, the angle between sections 232 and sections 238 is between 10 and 60 degrees. In some embodiments, the angle between sections 232 and sections 238 is between 30 and 50 degrees. In some embodiments, the angle between sections 232 and sections 238 is about 45 degrees. In some embodiments, the diameter at which cable 14 coils within packaging 100 may be between 30 and 50 millimeters. In some embodiments, the diameter at which cable 14 coils within packaging 100 may be about 40 millimeters. Other angles and diameters may be utilized depending on the characteristics of product 10. For example, the length of cable 14 or the distance between components thereof may affect the desired angle between sections 232 and sections 238 and the desired diameter at which cable 14 coils within packaging 100.
In some embodiments layer 300, as shown, for example, in
In some embodiments, product body section 310 defines an aperture 320. In some embodiments, product body section 310 defines two apertures 320. In some embodiments, apertures 320 are configured to receive product body 12. In some embodiments, the shape of apertures 320 imitate the shape of product body 12 (i.e., are shaped to follow a contour of a perimeter of product body 12). In some embodiments, one or more flaps 322 extend from product body section 310 over each aperture 320. For example, two flaps 322 may extend over each aperture 320. In some embodiments, a tab 330 extends from product body section 310 on a side opposite from sidewall 305. In some embodiments, tab 330 forms a portion of a sidewall 306 opposite sidewall 305. For example, as shown cross-hatched in
In some embodiments, cable section 340 defines aperture 350, which may provide a space to accommodate parts of product 10 (e.g., parts that are disposed within other apertures secured by flaps as described above). In some embodiments, aperture 350 is similar in shape to center section 210 of layer 200. In some embodiments, cable 14 coils within packaging 100 and rests on cable section 340. In some embodiments, cable section 340 forms a bottom portion of passageway 239. In some embodiments, tabs 360 extend from opposite ends of cable section 340. Tabs 360 may be folded to create sidewalls 306 of packaging 100.
For example, tabs 360 may include sections 362 and 364. In some embodiments, section 362 is folded at a 90 degree angle to cable section 340 to form a sidewall 306 of packaging 100. In some embodiments, section 364 may fold over the top of section 234. In some embodiments, section 364 may be disposed between section 234 and product body section 310.
In some embodiments, an adhesive 370 may be disposed on section 362, as shown cross-hatched in
In some embodiments, cable section 340 comprises an indent 342 on a side of cable section 340. For example, indent 342 may be disposed on the side of cable section 340 opposite from sidewall 305. In some embodiments, indent 342 provides a space for an additional side wall formed by another layer (such as layer 500). In some embodiments, indent 342 allows a side wall to close packaging 100 without protruding beyond the perimeter of product body section 410 (see
In some embodiments layer 400, as shown, for example, in
In some embodiments layer 500, as shown, for example, in
In some embodiments, a tab 540 extends from connector section 510. Tab 540 may comprise section 542 and section 544. In some embodiments, section 542 may form a sidewall 306 of packaging 100 (e.g., by attaching to tab 330 via adhesive 370). In some embodiments, section 544 may fold over the top of product body section 410, as shown, for example, in
In some embodiments, connector section 510 only defines one aperture (e.g., aperture 520). In some embodiments, connector section 510 defines one or more additional apertures, such as aperture 525 and aperture 530. In some embodiments, aperture 525 and aperture 530 are configured to receive a portion of an accessory for product 10, such as an adaptor. In some embodiments, aperture 525 and aperture 530 are configured to receive different portions of the same accessory. In some embodiments, aperture 525 may receive a portion of a different accessory than an accessory received by aperture 530.
In some embodiments, layer 600, as shown, for example, in
In some embodiments, accessory section 610 may define one or more apertures, such as apertures 620 and 630. In some embodiments, one or more flaps 622 (e.g., two flaps 622) extend from accessory section 610 over aperture 620. In some embodiments, aperture 525 and flaps 622 operate in a similar manner as aperture 420 and flaps 322 to secure a portion of an accessory. For example, aperture 525 may constrain a portion of the accessory in an X and Y direction while flaps 622 may constrain the portion of the accessory in a Z direction (e.g., by being biased to press the portion of the accessory against the perimeter of aperture 525).
In some embodiments, one or more flaps 632 (e.g., two flaps 632) extend from accessory section 610 over aperture 630. In some embodiments, aperture 530 and flaps 632 operate in a similar manner as aperture 420 and flaps 322 to secure a portion of an accessory. For example, aperture 530 may constrain a portion of the accessory in an X and Y direction while flaps 632 may constrain the portion of the accessory in a Z direction (e.g., by being biased to press the portion of the accessory against the perimeter of aperture 530).
In some embodiments, center section 210 of layer 200 completely covers apertures 620 and 630, and thus, may help constrain portions of the accessory in a Z direction. In some embodiments, layer 600 may not be included in packaging 100, with layer 500 being the bottom layer. In some embodiments, this may leave a portion of connector 18 exposed.
As discussed above, packaging 100 is formed from a plurality of layers of compressed natural fibers, such as paper. In some embodiments, each layer comprises paper of the same grammage (grammage being a measure of mass per unit of area). In some embodiments, some layers may comprise different grammages. For example, in some embodiments, all layers have the same grammage (e.g., a grammage of 300) except for layer 400. In some embodiments, layer 400 comprises paper having a greater grammage than layers 200, 300, 500, and 600 (e.g., layer 400 may have a grammage greater than 120% of the grammage of layers 200, 300, 500, and 600, such as, for example, a grammage of 380). In some embodiments, the greater grammage of layer 400 may contribute to securing product body 12 in place and may provide reinforcing structure for packaging 100 so that packaging 100 can maintain its shape through the packaging, shipping, and handling processes while using lower grammage material for the other layers, thereby reducing waste and weight of packaging 100 overall. For example, the greater grammage of layer 400 may provide greater stiffness, thus contributing to the prevention of rotation of product body 12 and the prevention of flexing of packaging 100.
In some embodiments, each layer of packaging 100 may be formed from a sheet of compressed natural fibers. In some embodiments, each layer of packaging is formed only of compressed natural fibers. In some embodiments the entirety of packaging 100 is formed of compressed natural fiber layers and adhesives. In some embodiments the entirety of packaging 100 is formed of compressed natural fiber layers, adhesives, and polypropylene laminate.
In some embodiments, each layer is die-cut from a sheet of compressed natural fibers. In some embodiments, layers that have similar outer perimeters (e.g., a portion of layer 300 and layer 400) may be die-cut together. In some embodiments, portions of the layers that will be folded are scored (e.g., compressed to provide a crease or cut less-than-completely through the layer, with or without removing material with the cut such as with a v-shaped miter cut) to help each fold be accurate. For example, in some embodiments, flaps 222, 322, 622, and 632 are scored at a location to contribute to biasing flaps 222, 322, 622, and 632 to press against the portion of product 10 that is being held in place, while also allowing insertion of product 10 during assembly of packaging 100 without damaging flaps 222, 322, 622, and 632.
In some embodiments, the process of die-cutting and the process of scoring are done simultaneously. In some embodiments, the layers of packaging 100 are die-cut in a downward direction. In some embodiments, the layers of packaging 100 are die-cut in an upward direction. In some embodiments, different layers are die-cut in different directions. For example, in some embodiments, layer 200 may be die-cut in a downward direction and layers 300, 500, and 600 are die-cut in an upward direction.
In some embodiments, the process of die-cutting may contribute to allowing the majority of packaging 100 to be hidden from a consumer's view from above the top layer (e.g., layer 400). For example, the die-cut pattern of tab 540, tab 330, tabs 360, and sidewall 305 may cut into a portion of cable section 340 and connector section 510. Thus, when tab 540, tab 330, tabs 360, and sidewall 305 are formed into the sidewalls 305 and 306 of packaging 100, they may be disposed at least slightly underneath product body section 310 and hidden from view, rather than bulging out from underneath product body section 310.
In some embodiments, one or more layers (e.g., layers 200, 300, 400, 500, and 600) may be attached to one another to form packaging 100, as shown, for example, in
In some embodiments, as shown, for example, in
The foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. These exemplary embodiments are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. All specific details described are not required in order to practice the described embodiments.
It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings, and that by applying knowledge within the skill of the art, one may readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. For example, apertures and flaps may be of different shapes and sizes, or in different locations than shown in the figures. In addition, while earphones have been primarily shown in the figures, in some embodiments, other products may be packaged according to the principles disclosed herein.
The detailed description section is intended to be used to interpret the claims. The summary and abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the claims.
The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The phraseology or terminology used herein is for the purpose of description and not limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined in accordance with the claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5887720 | Lin | Mar 1999 | A |
6966791 | Farr | Nov 2005 | B1 |
D600673 | Kim | Sep 2009 | S |
D620781 | Weckworth | Aug 2010 | S |
D685771 | Bertenthal | Jul 2013 | S |
8787610 | Stevinson | Jul 2014 | B2 |
D712748 | Akana et al. | Sep 2014 | S |
D713674 | Rae | Sep 2014 | S |
D713738 | Akana et al. | Sep 2014 | S |
D713739 | Akana et al. | Sep 2014 | S |
8842872 | Stevinson | Sep 2014 | B2 |
20030106823 | Liao | Jun 2003 | A1 |
20070154048 | Chang | Jul 2007 | A1 |
20110317865 | Stevinson | Dec 2011 | A1 |
20120128193 | Stevinson | May 2012 | A1 |
20130105342 | Yamamoto | May 2013 | A1 |
Entry |
---|
U.S. Appl. No. 29/432,147, filed Sep. 13, 2012, inventors Akana et al. |
Number | Date | Country | |
---|---|---|---|
20180044102 A1 | Feb 2018 | US |