1. Field of the Invention
This invention relates to an earphone, and in particular to an earphone of the intra-concha type.
2. Description of the Related Art
Intra-concha earphones are small earphones that are placed, in use, in the user's outer ear, adjacent to the entry to the user's ear canal.
It is known that, in order that the earphone should produce sound with a good low frequency response, the earphone casing should be provided with a port for venting pressure generated by the speaker. It is also known that this port may be provided in the inlet through which the cable enters the earphone casing.
However, it is often advantageous for this port to have a known cross-sectional area, and this cannot usually be achieved when the port is provided in the inlet through which the cable enters the earphone casing, because the movement of the cable can alter the effective cross-sectional area.
Noise cancelling systems are well known, in which a microphone is also included in the earphone casing, for detecting ambient noise. One type of noise cancelling system has an adaptive gain in the noise cancelling circuitry. That is, the earphone is provided with an error microphone, positioned so as to detect the level of ambient noise reaching the wearer's ear canal. The gain applied to the noise cancelling signal is then controlled, based on that level of ambient noise. One issue that arises with such earphones in particular is that, when the gain is set to a high level, and the venting port becomes coupled to the microphone for detecting ambient noise (for example by the wearer's finger approaching the earphone), this will be interpreted as a very high level of ambient noise, and the noise cancelling system will generate a very loud sound in an attempt to overcome that ambient noise.
It is therefore advantageous for the venting port to be located well away from the microphone for detecting ambient noise.
According to a first aspect of the present invention, there is provided an earphone, comprising:
The earphone may further comprise:
According to a second aspect of the present invention, there is provided a noise cancelling system, comprising:
According to a third aspect of the present invention, there is provided an earphone, comprising:
According to a fourth aspect of the present invention, there is provided a noise cancelling system, comprising:
For a better understanding of the present invention, and to show how it may be put into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
Alternatively, the noise cancellation circuitry 10 can be associated with the earphone 12, and the combined system can be plugged into a sound reproducing device, such as a communications device, portable music player, or portable game device as discussed above.
In either case, the noise cancellation circuitry 10 is connected to the earphone 12 by means of a cable 14, which contains one or more wires or pairs of wires.
In this embodiment, the noise cancellation circuitry 10 also includes an input 24 for receiving a wanted sound signal, although the invention is equally applicable to noise cancelling systems that simply reduce the ambient noise heard by a wearer with no provision for playing wanted sounds. In this embodiment, the wanted sound can for example be recorded music, or the sound of a telephone call.
The noise cancellation signal generated by the amplifier 20 and the wanted sound signal received on the input 24 are passed to an adder 26, to generate an output signal, which is in turn passed over the cable 14 to a speaker 22.
Thus, the fixed filter 18 and the fixed gain amplifier 20 are designed, based on knowledge of the relevant properties of the system, to generate a noise cancellation signal. The intention is that, when the noise cancellation signal is applied to the speaker 22 in the earphone 12, it generates a sound that is exactly equal in magnitude and opposite in phase to the ambient noise reaching the wearer's ear. When this is achieved, the ambient noise that is heard by the wearer is reduced.
In order to be able to achieve this, it is necessary for the frequency characteristic of the filter 18 to take account of the frequency characteristics of the microphone 16 and of the speaker 22, and to take account of the frequency characteristic of the audio path around the earphone from the ambient to the wearer's ear.
One of the factors that determines the required frequency characteristic of the filter 18 is the frequency response of the speaker 22. The frequency response of the speaker 22 depends on the ability of the speaker 22 to vent air from the rear side of the speaker. It is therefore advantageous for the housing of the earphone 12 to provide a relatively constant degree of sound leakage from the rear of the speaker 22.
The earphone 12 has a housing 30, with an inlet 32 for containing the cable 14. The inlet 32 is in the form of a tube, having a length in the region of 10-20 mm. Mounted in the housing 30 is the speaker 22, having a diaphragm 34. A cover 36, made of a rigid mesh or the like, is provided at the front of the housing to allow the sound generated by the speaker 22 to enter the ear of the wearer when the earphone is being worn, while also protecting the speaker.
The noise microphone 16 is located in a chamber 38, which has holes 40, 42 to allow ambient noise to enter the chamber, where it will be detected by the microphone 16.
A wire 44 leads from the speaker 22 to the noise cancellation unit 10, while a wire 46 leads from the noise microphone 16 to the noise cancellation unit 10. The wires 44, 46 are contained in the cable 14, which passes through the cable inlet 32.
The cable inlet 32 is sized and shaped such that air can pass along it from the rear of the speaker 22 to the outside, thereby providing venting from the rear of the speaker to the outside.
The housing 30 also contains a hole 48, covered on the inside by a dense mesh 50, which provides secondary venting from the rear volume 54 of the speaker to the outside. The secondary venting is used to tune the frequency response of the earphone as desired.
The wire 46 is glued into a hole 52 that leads from the chamber 38 to the rear volume 54 of the speaker 22, which has the effect of providing strain relief on the connection of the wire 46 to the noise microphone 16. Strain relief may be provided on the connection of the wire 44 to the speaker 22, for example by providing a knot in the wire 44.
Any ribs or trenches provided on the inner surface of the cable inlet can extend straight along the length of the cable inlet, or can for example be provided in a helical arrangement along the length of the cable inlet.
Any ribs or trenches provided on the inner surface of the cable inlet can extend along the whole length of the cable inlet, or can for example be provided along at least 50%, or along at least 70% or at least 80% of the length of the cable inlet, provided that this is sufficient to ensure that the cross-sectional area, through which the rear of the speaker is vented to the outside, does not become obstructed.
While the illustrated embodiment show the cable having a circular cross-section, and the inner surface of the cable inlet having a non-circular cross-section, it will be apparent that exactly the same effect can be achieved by providing the cable inlet with a circular cross-section and the cable with a non-circular cross-section.
In any event, this ensures that the area through which the rear of the speaker is vented to the outside remains relatively constant, and thus ensures that the low frequency characteristics of the earphone remains relatively constant. As a result, the fixed filter 18 and the fixed gain amplifier 20 can be designed with a high degree of confidence that the relevant properties of the system will be unchanged in use.
In all of these illustrated embodiments, the cable is in contact with the inner surface of the cable inlet at at least three points, but this is not necessary to ensure that the area through which the rear of the speaker is vented to the outside remains relatively constant. For example, in an embodiment in which the inner surface of the cable inlet is provided with two trenches, the cable will be in contact with the inner surface of the cable inlet at two regions between the trenches. Provided that the trenches are narrow enough, this will still ensure that the area through which the rear of the speaker is vented to the outside remains relatively constant, although it will of course be necessary to ensure that the trenches are wide enough to provide the required degree of venting.
It was mentioned above that one or more of the wires that form the cable 14 might include a knot for the purposes of strain relief where the wire is connected to the relevant component of the earphone. In such cases, the aperture 56 at which the cable inlet 32 joins the rear volume 54 can be designed such that the aperture 56 cannot be blocked by the knot. For example, when the inner surface of the cable inlet is provided with ribs as shown in
Alternatively, the noise cancellation circuitry 100 can be associated with the earphone 102, and the combined system can be plugged into a sound reproducing device, such as a communications device, portable music player, or portable game device as discussed above.
In either case, the noise cancellation circuitry 100 is connected to the earphone 102 by means of a cable 104, which contains one or more wires or pairs of wires.
In this embodiment, the noise cancellation circuitry 100 also includes an input 114 for receiving a wanted sound signal, although the invention is equally applicable to noise cancelling systems that simply reduce the ambient noise heard by a wearer with no provision for playing wanted sounds. In this embodiment, the wanted sound can for example be recorded music, or the sound of a telephone call.
The noise cancellation signal generated by the amplifier 110 and the wanted sound signal received on the input 114 are passed to an adder 116, to generate an output signal, which is in turn passed to a speaker 118.
An error microphone 120 is provided in the earphone 102, positioned so that it is able to detect the sounds at the entrance to the wearer's ear canal. The signal generated by the error microphone 120 therefore acts as a measure of the sound leakage between the earphone 102 and the wearer's ear.
The filter 108 and the range of gain values that can be produced by the amplifier 110 are designed, based on knowledge of the relevant properties of the system, to generate a noise cancellation signal. The intention is that, when the noise cancellation signal is applied to the speaker 118 in the earphone 102, it generates a sound that is exactly equal in magnitude and opposite in phase to the ambient noise reaching the wearer's ear. When this is achieved, the ambient noise that is heard by the wearer is reduced.
As discussed above, this is achieved when the frequency characteristic of the filter 108 matches the frequency characteristics of the microphone 106 and of the speaker 118, and matches the frequency characteristic of the audio path around the earphone from the ambient to the wearer's ear.
One of the factors that determines the required frequency characteristic of the filter 108 is the frequency response of the speaker 118. The frequency response of the speaker 118 depends on the ability of the speaker to vent air from the rear side of the speaker. It is therefore advantageous for the housing of the earphone 102 to provide a relatively constant degree of sound leakage from the rear of the speaker 118.
In addition, noise reduction is improved when the gain value applied by the amplifier 110 ensures that the amplitude of the sound that is generated by the speaker 118 in response to the noise cancellation signal matches the amplitude of the ambient noise reaching the wearer's ear. This amplitude is determined to some degree by the way in which the earphone 102 is located in the wearer's ear. When the earphone is worn loosely in the wearer's ear, the amount of ambient noise reaching the ear canal is relatively high, and so a relatively high level noise cancellation signal produces the best noise reduction effect. By contrast, when the earphone is worn pressed against the wearer's ear, the amount of ambient noise reaching the ear canal is relatively low, and so a relatively low level noise cancellation signal is required to produce the best noise reduction effect.
As mentioned above, the signal generated by the error microphone acts as a measure of this sound leakage between the earphone 102 and the wearer's ear. The signal is therefore passed to a processing unit 122 in the noise cancellation unit 100. Based on the signal received from the error microphone 120, the processing unit 122 controls the gain that is applied by the amplifier 110, so that the amplitude of the sound produced by the speaker 118 in response to the noise cancellation signal is substantially equal to the amplitude of the ambient noise reaching the wearer's ear.
In some situations, the way in which the earphone 102 is worn will also affect the frequency characteristic of the audio path around the earphone from the ambient to the wearer's ear. In that case, the processing unit 122 can also adapt the frequency response of the filter 108, based on the signal received from the error microphone 120, in order to compensate for this.
The earphone 102 has a housing 130, with an inlet 132 for containing the cable 104. The inlet 132 is in the form of a tube, having a length in the region of 10-20 mm. Mounted in the housing 130 is the speaker 118, having a diaphragm 134. A cover 136, made of a rigid mesh or the like, is provided at the front of the housing to allow the sound generated by the speaker 118 to enter the ear of the wearer when the earphone is being worn, while also protecting the speaker.
The noise microphone 106 is located in a chamber 138, which has holes 140, 142 to allow ambient noise to enter the chamber, where it will be detected by the microphone 106.
The error microphone 120 is located in a projection 144, which extends from the front surface of the earphone, so that it will be located in the entrance to the wearer's ear canal in use. As an alternative, the error microphone can be located inside the housing 130, with the projection 144 having a sound inlet that is connected to the error microphone through an acoustic channel, such that the error microphone is still able to detect sound in the entrance to the wearer's ear canal in use.
A wire 146 leads from the speaker 118 to the noise cancellation unit 10, while a wire 148 leads from the noise microphone 106 to the noise cancellation unit 10, and a wire 150 leads from the error microphone 120 to the noise cancellation unit 10. The wires 146, 148, 150 are contained in the cable 104, which passes through the cable inlet 132.
The housing 130 also contains a hole 152, covered on the inside by a dense mesh 154, which provides secondary venting from the rear of the speaker to the outside. The secondary venting is used to tune the frequency response of the earphone as desired.
The cable inlet 132 is sized and shaped such that air can pass along it from the rear of the speaker 118 to the outside, thereby providing venting from the rear of the speaker to the outside. More specifically, the cable inlet 132 is sized and shaped such that, regardless of any movement of the cable 104, it still provides a relatively constant cross-sectional area along which air can pass, thereby providing a predictable level of venting from the rear of the speaker to the outside. In addition, providing the venting through the cable inlet has the advantage that the venting is unlikely to become coupled by accident to the noise microphone.
As shown in
The earphone 212 has a housing 30, with an inlet 232 for containing the cable 14. The inlet 232 is in the form of a tube, having a length in the region of 10-20 mm. Mounted in the housing 30 is the speaker 22, having a diaphragm 34. A cover 36, made of a rigid mesh or the like, is provided at the front of the housing to allow the sound generated by the speaker 22 to enter the ear of the wearer when the earphone is being worn, while also protecting the speaker.
The noise microphone 16 is located in a chamber 38, which has holes 40, 42 to allow ambient noise to enter the chamber, where it will be detected by the microphone 16.
A wire 44 leads from the speaker 22 to the noise cancellation unit 10, while a wire 46 leads from the noise microphone 16 to the noise cancellation unit 10. The wires 44, 46 are contained in the cable 14, which passes through the cable inlet 232.
The cable inlet 232 is sized and shaped such that air can pass along it from the rear of the speaker 22 to the outside, thereby providing venting from the rear of the speaker to the outside.
The housing 30 also contains a hole 48, covered on the inside by a dense mesh 50, which provides secondary venting from the rear volume 54 of the speaker to the outside. The secondary venting is used to tune the frequency response of the earphone as desired.
The wire 46 is glued into a hole 52 that leads from the chamber 38 to the rear volume 54 of the speaker 22, which has the effect of providing strain relief on the connection of the wire 46 to the noise microphone 16. Strain relief may be provided on the connection of the wire 44 to the speaker 22, for example by providing a knot in the wire 44.
Thus, the inner surface of the cable inlet 232 is provided with multiple projections 240, 242, 244, 246, 248, 250, which together act to keep the cable 14 in its intended position, while allowing air to pass along the cable inlet to provide venting from the rear of the speaker to the outside.
In this illustrated embodiment, each of the projections 240, 242, 244, 246, 248, 250 is approximately 1.5-3 mm long (that is, in the longitudinal direction of the cable inlet), and there is a very small gap between the longitudinal positions of the projections 240, 242, 244, 246, 248, 250. However, they could be positioned so that there is no gap.
Although
As shown in
As shown in
As another example,
In these examples, the projections are in three lines along the inner surface of the cable inlet 232, at positions that are spaced apart by 120° in the circumferential direction. However, the same effect could be achieved by providing projections in two lines, or in four or more lines, up to a likely maximum of about eight lines.
Thus, in
In
In
Thus, in these embodiments, the cable 14 is in contact with the inner surface of the cable inlet 232 at substantially every position along the cable inlet, with the result that movement of the cable 14 within the cable inlet 232 is substantially prevented, but there still remains a significant area of free space around the cable, meaning that the area through which the rear of the speaker is vented to the outside remains relatively constant, and sufficient to ensure good venting. This ensures that the low frequency characteristics of the earphone remains relatively constant, and ensures that the fixed filter 18 and the fixed gain amplifier 20 can be designed with a high degree of confidence that the relevant properties of the system will be unchanged in use.
Although
There are described above earphones in which the cable inlet 232 has projections on the inner surface thereof, with each projection extending along only a part of the length of the cable inlet. This has been described with reference to an earphone that is generally as shown in
There is thus disclosed an earphone that can be used, for example with a noise cancellation system, to provide good audio performance.
Number | Date | Country | Kind |
---|---|---|---|
1216453.9 | Sep 2012 | GB | national |
1306448.0 | Apr 2013 | GB | national |
This application claims the benefit of U.S. Provisional Application No. 61/701,043, filed on Sep. 14, 2012, the disclosure of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61701043 | Sep 2012 | US |