Earpiece with audio 3D menu

Information

  • Patent Grant
  • 10771881
  • Patent Number
    10,771,881
  • Date Filed
    Friday, February 23, 2018
    7 years ago
  • Date Issued
    Tuesday, September 8, 2020
    4 years ago
Abstract
An earpiece includes an earpiece housing, an intelligent control system disposed within the earpiece housing, a speaker operatively connected to the intelligent control system, a microphone operatively connected to the intelligent control system, and at least one sensor operatively connected to the intelligent control system for providing sensor data. The intelligent control system of the earpiece is configured to interface with a user of the earpiece by determining at least one of attention or intention of the user using the sensor data without receiving manual input at the earpiece and without receiving voice input from the user. The earpiece may be further configured to present an audio menu and use the attention or intention of the user to select one or more items from the audio menu.
Description
FIELD OF THE INVENTION

The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to earpieces.


BACKGROUND

Wearable technology is a fast-developing field, and thus significant developments are needed in how users interact and interface with these technologies. Various alternatives exist for determining user intent in wearable technology exist. One such alternative is to use touch-based interfaces. Examples of touch-based interfaces may include capacitive touch screen, buttons, switches, pressure sensors, and finger print sensor. Another alternative is to use audio interfaces such as through use of key-word vocal commands or natural language spoken commands. Another alternative is to use a gesture based interface such that hand motions may be measured by some sensor and then classified as certain gestures. Yet another alternative is to use a computer-vision based interface such as by g. recognition of a specific individual, of a user's presence in general, or of two or more people.


Wearable technology presents particular challenges in that user-interfaces successful for established technologies are in some cases no longer the most natural, convenient, appropriate or simple interface for users. For example, large capacitive touchscreens are widely used in mobile devices but the inclusion of such a user interface may not be appropriate for discrete ear-worn devices.


Therefore, what is needed are improved user interfaces for wearable devices.


SUMMARY

Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to provide for triggering an event after determining a user's attention or intention.


Another object, feature, or advantage is to provide an improved user interface for a wearable such as an earpiece wearable.


It is a still further object, feature, or advantage of the present invention to provide for an interface which uses audio menus.


Another object, feature, or advantage of the present invention is to use sensor data such as inertial sensor data, biometric sensor data, and environmental sensor data to determine a user's attention or intention.


Yet another object, feature, or advantage of the present invention is to interact with a user without requiring manual input on a device and without requiring voice input to the device.


One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.


According to one aspect an earpiece includes an earpiece housing, an intelligent control system disposed within the earpiece housing, a speaker operatively connected to the intelligent control system, a microphone operatively connected to the intelligent control system, and at least one sensor operatively connected to the intelligent control system for providing sensor data. The intelligent control system of the earpiece is configured to interface with a user of the earpiece by determining at least one of attention or intention of the user using the sensor data without receiving manual input at the earpiece and without receiving voice input from the user. The earpiece may be further configured to present an audio menu and use the attention or intention of the user to select one or more items from the audio menu. The at least one sensor may include an inertial sensor and the step of determining the attention or intention of the user may be based at least in part on head orientation and/or head movement. The at least one sensor may further include at least one biometric sensor and the step of determining the attention or intention of the user may be based at least in part on biometric data from the at least one biometric sensor. The at least one sensor may further include at least one environmental sensor and the step of determining the attention or intention of the user may be based at least in part on environmental data from the at least one environmental sensor.


According to another aspect, an earpiece includes an earpiece housing, an intelligent control system disposed within the earpiece housing, a speaker operatively connected to the intelligent control system, a microphone operatively connected to the intelligent control system, and at least one inertial sensor operatively connected to the intelligent control system for providing inertial sensor data. The intelligent control system of the earpiece may be configured to interface with a user of the earpiece by providing audio cues associated with a menu containing a plurality of selections and receiving a selection of one of the plurality of the selections within the menu at least partially based on the inertial sensor data. The menu may have a plurality of levels. Each of the selections within a given level of the menu may be associated with different head positions although a user may otherwise communicate their attention or intention. The earpiece may be further configured to interface with the user of the earpiece by receiving a confirmation of the selection of one of the plurality of the selections within the menu based on the inertial sensor data or other sensor data.


According to yet another aspect, a system includes a first earpiece and a second earpiece wherein each of the first earpiece comprises an earpiece housing, a speaker, a microphone, and a transceiver. At least one of the first earpiece and the second earpiece further includes at least one sensor for providing sensor data. At least one of the first earpiece and the second earpiece may further include an intelligent control system to interface with a user of the earpiece by determining at least one of attention or intention of the user using the sensor data without receiving manual input at the earpiece and without receiving voice input from the user. The system may be configured to present an audio menu and use the attention or intention of the user to select one or more items from the audio menu. The audio menu may include a plurality of audio cues and wherein the audio cues are processed with a psychoacoustic model to virtually place or move sounds in 3D space relative to the user. The at least one sensor may include an inertial sensor and the step of determining the attention or intention of the user may be based at least in part on head orientation and/or head movement. The at least one sensor may further include one or more biometric sensors and/or one or more environmental sensors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one example of a set of earpieces with an interface to determine user intention and/or intention as indicated by movement, determine user attention and/or intention as indicated by a triggering movement, and/or determine user attention and/or intention as indicated by sound source(s).



FIG. 2 is a block diagram of one example of an earpiece.



FIG. 3 illustrates one example of making a selection from a menu of audio cues.



FIG. 4 illustrates an example of an audio menu.





DETAILED DESCRIPTION

The present invention provides for methods, apparatus, and systems to allow for triggering of an event through determining the attention and/or intention of a user. In other words, instead of conventional user interfaces triggering of events may be performed by determining the attention and/or intention of a user. Although, specific embodiments are shown and described with respect to earpieces or ear worn computers and sensor packages, it is to be understood that methodologies shown and described may be applied to other type of wearable devices.



FIG. 1 illustrates one such example of a set of earpieces 10 which includes a first earpiece 10A and a second earpiece 10B which may be in the form of a left earpiece and a right earpiece. The first earpiece 10A has an earpiece housing 12A and the second earpiece 10B has a second earpiece housing 10B. One or more of the earpieces 10A, 10B may be in wireless communication with another device such as a mobile device 4. The earpieces 10 provide a user interface which allows a user to interact through attention and/or intention. Here, the term “attention” is used to describe the act of a user consciously or subconsciously focusing on a specific entity. Here, the term “intention” is used to describe the act of a user consciously or subconsciously wanting to trigger an event. The earpieces 10 (or one or more individual earpieces 10A, 10B) may include a user interface which uses one or more sensors to detect user attention and/or intention as indicated by movement, user attention and/or intention as indicated by triggering movements, and/or user attention and/or intention as indicated by sound sources. It is to be understood that other inputs may also be present.


Focusing on a specific entity may be performed in various ways. For example, focusing may be performed through particular motions. Thus, for example, a user may turn to face something, gesture toward something, or move toward something in order to place a positive focus on an entity. Alternatively, a user may turn away from something, move away from something, gesture to reject something, gesture to shield oneself from something, invoke an involuntary (e.g. fight/flight response) reaction to something, which are all examples of placing a negative focus on an entity. Focus may also be determined based on subconscious emotional responses. For examples, changes in facial expression may be used as input. Thus, for example a smile may be used as one form of attention while a scowl may be used as another form of attention. Focus may also be determined based on subconscious physiological information. This may include, for example, changes in heart rate, changes in heart rate variability, changes in perspiration levels, changes in skin conductance, and changes in evoked potentials in brain waves. Focus may also be determined by listening to a particular sound source. For example, a user may consciously listen to a particular source of sound in an environment where there is more than one sound source present. Alternatively, a user may subconsciously listen to a particular source of sound in an environment where there is more than one sound source present.


The interface may use one or more different sensors to determine metrics of the user's state from which the user's attention and/or intention may be derived. Any number of different sensors may be used including microphones, image sensors, time of flight sensors, inertial sensors, physiological sensors, or other types of sensors.



FIG. 2 is a block diagram illustrating a device which may be housed within the earpiece housing. The device may include one or more LEDs 20 electrically connected to an intelligent control system 30. The intelligent control 15 system 30 may include one or more processors, digital signal processors, microcontrollers, application specific integrated circuits, or other types of integrated circuits. The intelligent control system 30 may also be electrically connected to one or more sensors 32. Where the device is an earpiece, the sensor(s) may include an inertial sensor 74, another inertial sensor 76. Each inertial sensor 74, 76 may include an accelerometer, a gyro sensor or gyrometer, a magnetometer or other type of inertial sensor. The sensor(s) 32 may also include one or more contact sensors 72, one or more bone conduction microphones 71, one or more air conduction microphones 70, one or more chemical sensors 79, a pulse oximeter 76, a temperature sensor 80, or other physiological or biological sensor(s). Further examples of physiological or biological sensors include an alcohol sensor 83, glucose sensor 85, or bilirubin sensor 87. Other examples of physiological or biological sensors may also be included in the device. These may include a blood pressure sensor 82, an electroencephalogram (EEG) 84, an Adenosine Triphosphate (ATP) sensor, a lactic acid sensor 88, a hemoglobin sensor 90, a hematocrit sensor 92 or other biological or chemical sensor. Other types of sensors may be present


A spectrometer 16 is also shown. The spectrometer 16 may be an infrared (IR) through ultraviolet (UV) spectrometer although it is contemplated that any number of wavelengths in the infrared, visible, or ultraviolet spectrums may be detected. The spectrometer 16 is preferably adapted to measure environmental wavelengths for analysis and recommendations and thus preferably is located on or at the external facing side of the device. An image sensor 88 may be present and a depth or time of flight camera 89 may also be present. A gesture control interface 36 may also be operatively connected to or integrated into the intelligent control system 30. The gesture control interface 36 may include one or more emitters 82 and one or more detectors 84 for sensing user gestures. The gestures performed may be performed such as through contact with a surface of the earpiece or may be performed near the earpiece. The emitters may be of any number of types including infrared LEDs. The device may include a transceiver 35 which may allow for induction transmissions such as through near field magnetic induction. A short range transceiver 34 using Bluetooth, BLE, UWB, or other means of radio communication may also be present. The short range transceiver 34 may be used to communicate with other devices including mobile devices. The various sensors 32, the intelligent control system 30, and other electronic components may be located on one or more printed circuit boards of the device. One or more speakers 73 may also be operatively connected to the intelligent control system 30. A magnetic induction electric conduction electromagnetic (E/M) field transceiver 37 or other type of electromagnetic field receiver may also operatively connected to the intelligent control system 30 to link it to the electromagnetic field of the user. The use of the E/M transceiver 37 allows the device to link electromagnetically into a personal area network or body area network or other device. It is contemplated that sensors associated with other devices including other wearable devices or interne of things (IoT) devices may be used to provide or add to sensor data which may be used in determining user attention or intention in any number of different ways and in any number of different contexts or situations.


It is contemplated that the interface may have different modes of operations which may include a sleep mode to conserve battery life and/or reduce power usage. The interface may be awakened in any number of ways such as through a deliberate interaction between the user and the interface or through a behavior recognized by the interfaces. For example, movement of the head may serve to awaken the interface.


When the interface is awake and/or active, the user may be presented with different audio prompts or feedback based on the orientation of their head, thereby allowing them to trigger an event in the interface. Thus, all possible orientations of the head (or any subset thereof) may be used as input channels to the interface. In this example, audio prompts or audio feedback may be presented to the user and the intention of the user may be determined by the interface via a confirmation gesture or otherwise. For example, in one alternative a user may simply continue to attend a presented audio cue.


In one alternative, sounds may be played to user according to their (the user's) orientation. FIG. 3 illustrates such an example. The sounds may be in the form of language or may be other types of audio icons or audio cues where particular sounds or combinations of sounds associated with a selection may have different meanings, preferably intuitive meanings to better convey different selections including different selections within a menu of selections. The audio cues may convey position information as well as a description for the selection. Thus, for example, one selection may be associated with a user facing directly ahead (or a 12 o'clock position), another selection may be associated with a slight turn to the right or clockwise (1 o'clock), another selection may be associated with a larger turn to the right or clockwise (2 o'clock), another selection may be associated with being turned even further to the right or clockwise (3 o'clock). Similarly, additional selections may be associated with a slight turn to the left or counter-clockwise (11 o'clock), a greater turn to the left or counter-clockwise (10 o'clock), or an even greater turn to the left (9 o'clock). Thus, an audio prompt may include “9” or “9 o'clock” and be accompanies by words or sounds associated with a particular selection. Other selections may be provided in the same way. Thus, in this simple arrangement, up to seven different selections may be given to a user. Although it is contemplated that more or fewer selections may be present and they may be more than one level of selections present. For example, a menu may be present with multiple levels and by selecting one selection within a level of the menu, the user may be presented with additional selections. FIG. 4 illustrates that a single menu item or selection 100 of an audio menu 98 may have a plurality of additional plurality of items 102A, 102B, 102C, 102D, 102E, 102F associated with it. There may be any numbers of different levels of items present in an audio menu. An audio menu is an audio presentation of a plurality of items from which a user may select.


It also to be understood that the menus provided may be built dynamically to present the items in an order generated to present the most likely selections first. A determination of the most likely selections may be performed in various ways including based on user history, user preferences, and/or through using other contextual information including sensor data.


According, to another example with a more natural attention-detection mechanism, the user may be presented various audio cues or selections at particular locations. Audio feedback or cues may be processed with a psychoacoustic model to virtually place or move sounds in 3D space relative to the user. Thus, for example, different audio cues or selections may be placed in different locations, such as up, down, right, left, up and to the right, down and to the right, down and to the left. Of course, any number of other locations may be used. It should be understood that in this example, the audio cues need not include position information. Instead, the position is associated with the perceived location or direction of the sound source. In addition to placing audio cues or audio feedback or selections at different locations, these sounds may also be moved in 3D space relative to a user. Thus, for example, a sound may be introduced at one location and may be perceived as moving from that location to another location. This is another tool by which a user may convey their interest in a particular selection, as their head movement may track movement of a sound. In addition, after a user has selected a sound, one manner in which confirmation of the selection may be made is to move the sound to another location and confirm that the user is focused on that sound and thus intends to make that selection. This may be accomplished by having the user select the same sound again (but in a different location) or to confirm that the user has begun to track the sound after selection. If the user does not intend to make a particular selection, then the user would not select the same sound again or would not track that sound, such as either by exhibiting no head movement or by movement in a different direction. These are examples of inferring intention if the user continues to maintain attention on a presented audio cue.


In addition to or instead of inertial sensors, other types of sensors may also be used including biometric sensors. Biometric sensors may be used to ascertain subconscious and/or unintentional information about the state of the user. Biometric data may be used to complement logic behind determining the user's intent to a greater extent and provide a greater depth of contextual information to the interface, such that the information presented is more relevant to the user. Examples of biometric data may include pulse oximetry data, heart rate, heart variability, perspiration level, skin conductance, evoked potentials in brain waves, and other types of biometric data.


In addition to inertial sensors and biometric sensors other types of sensors may also be used to sense environmental conditions or information. Such environmental data may be used to enable the information presented to be more relevant and may include, without limitation, data such as geographic location such as may be determined using a GPS sensor, location in a localized sensed such as indoors or outdoors. Other types of sensors may include depth or time of flight cameras, air pressure sensors, barometric sensors, volatile organic compound sensors, small-particle sensors, temperature sensors, photometers, image sensors or cameras, or other types of sensors.


It is to be further understood that context may be based in part on the relative location to other objects. Other objects may be identified in any number of ways. For example, where the sensors include imaging sensors, imagery may be acquired and image processing algorithms may be performed to detect and classify objects upon which a user's attention may be focused such as may be determined based on the direction their head is pointed. Similarly, audio sources may be identified and classified based on data sensed with external microphones and the user's attention on a particular audio source may be determined in part based on the orientation of the user's head or other information such as if the user has made adjustment to audio settings to focus on that individual. Wireless transceivers of various types associated with the earpiece may also be used to identify objects where the object is in wireless communication with the user.


Although various examples have been shown and described throughout, it is to be understood that numerous variations, options, and alternatives and contemplated. This includes variations in the sensors used, the placement of sensors, the manner in which audio menus are constructed, and other variations, options, and alternatives.

Claims
  • 1. An earpiece comprising: an earpiece housing;an intelligent control system disposed within the earpiece housing;a speaker operatively connected to the intelligent control system;a microphone operatively connected to the intelligent control system;at least one sensor operatively connected to the intelligent control system for providing sensor data, wherein the at least one sensor includes an inertial sensor and wherein the sensor data includes inertial sensor data;wherein the intelligent control system is configured to determine, using the inertial sensor data, if the user movement detected with the at least one sensor is indicative that the user intends to awaken an audio menu interface comprising an audio menu, the audio menu interface providing a hierarchy of menu selections having a plurality of levels with a plurality of menu selections present at each of the plurality of levels;wherein the intelligent control system of the earpiece is configured to interface with a user of the earpiece by determining at least one of attention or intention of the user using the sensor data without receiving manual input at the earpiece and without receiving voice input from the user;wherein the earpiece is configured to present the audio menu when the audio menu interface is awakened and use the attention or intention of the user to select a first item from the audio menu by sensing a first head movement of the user and confirm selection of the first item by sensing a second head movement of the user;wherein the earpiece is further configured to present a second plurality of menu selections in response to a confirmation of the selection of the first item;wherein each of the plurality of menu selections is positioned in a different location in 3D space relative to the user using a psychoacoustic model.
  • 2. The earpiece of claim 1 wherein the determining the attention or intention of the user is based at least in part on head orientation and/or head movement.
  • 3. The earpiece of claim 2 wherein the at least one sensor further includes at least one biometric sensor and wherein the determining the attention or intention of the user is based at least in part on biometric data from the at least one biometric sensor.
  • 4. The earpiece of claim 3 wherein the at least one sensor further includes at least one environmental sensor and wherein the determining the attention or intention of the user is based at least in part on environmental data from the at least one environmental sensor.
  • 5. The earpiece of claim 1 further comprising at least one wireless transceiver disposed within the earpiece housing and operatively connected to the intelligent control system.
  • 6. The earpiece of claim 1 wherein the audio menu comprises a plurality of item selections and wherein the item selections are arranged in part based on the sensor data.
  • 7. The earpiece of claim 1 wherein the audio menu comprises a plurality of levels.
  • 8. An earpiece comprising: an earpiece housing;an intelligent control system disposed within the earpiece housing;a speaker operatively connected to the intelligent control system;a microphone operatively connected to the intelligent control system;at least one inertial sensor operatively connected to the intelligent control system for providing inertial sensor data;wherein the intelligent control system is configured to determine, using the inertial sensor data, if the user movement detected with the at least one sensor is indicative that the user intends to awaken an audio menu interface comprising an audio menu;wherein the intelligent control system of the earpiece is configured to interface with a user of the earpiece by:providing audio cues associated with the audio menu containing a plurality of selections;receiving a selection of one of the plurality of the selections within the audio menu at least partially based on the inertial sensor data without receiving manual input at the earpiece and without receiving voice input from the user;receiving a confirmation of the selection of one of the plurality of the selections from the user, wherein the confirmation is based on head movement of the user;providing audio cues associated with a plurality of sub menu items in response to the confirmation of the selection of one of the plurality of selections.
  • 9. The earpiece of claim 8 wherein the menu comprises a plurality of levels.
  • 10. The earpiece of claim 9 wherein each of the selections within a first level of the menu is associated with a different head position.
  • 11. The earpiece of claim 10 wherein each of the selections within a second level of the menu is associated with a different head position.
  • 12. The earpiece of claim 8 wherein the intelligent control of the earpiece is further configured to interface with the user of the earpiece by receiving a confirmation of the selection of one of the plurality of the selections within the menu based on the inertial sensor data.
  • 13. A system comprising: a first earpiece and a second earpiece wherein each of the first earpiece and the second earpiece comprises an earpiece housing sized and shaped for fitting into an ear of the user, a speaker, a microphone, and a transceiver;wherein the first earpiece further comprises at least an accelerometer, a gyrometer, and a magnetometer for providing first sensor data;wherein the second earpiece further comprises at least an accelerometer, a gyrometer, and a magnetometer for providing second sensor data;wherein at least one of the first earpiece and the second earpiece further comprises an intelligent control system to interface with a user of the earpiece by determining at least one of attention or intention of the user using the first sensor data and the second sensor data without receiving manual input at the earpiece and without receiving voice input from the user;wherein the system is configured to present an audio menu and use the attention or intention of the user to select at least one item from the audio menu, the system providing a hierarchy of menu selections having a plurality of levels with a plurality of the menu selections present at each of the plurality of levels;wherein the system is configured to confirm the selection of the at least one item from the audio selections, wherein the confirmation is based at least in part on head movement of the user;wherein the system is further configured to present a second plurality of menu selections in response to the confirmation of the at least one item from the audio menu.
  • 14. The system of claim 13 wherein the audio menu comprises a plurality of audio cues and wherein the audio cues are processed with a psychoacoustic model to virtually place or move sounds in 3D space relative to the user.
  • 15. The system of claim 13 wherein the determining the attention or intention of the user is based at least in part on head orientation and/or head movement.
  • 16. The system of claim 15 wherein the first earpiece further comprises at least one biometric sensor and wherein the determining the attention or intention of the user is based at least in part on biometric data from the at least one biometric sensor of the first earpiece.
  • 17. The system of claim 16 wherein the first earpiece further includes at least one environmental sensor and wherein the determining the attention or intention of the user is based at least in part on environmental data from the at least one environmental sensor.
  • 18. The system of claim 13 wherein the audio menu is configured to include seven different items.
PRIORITY STATEMENT

This application claims priority to U.S. Provisional Patent Application No. 62/464,337, filed Feb. 27, 2017, hereby incorporated by reference in its entirety.

US Referenced Citations (394)
Number Name Date Kind
2325590 Carlisle et al. Aug 1943 A
2430229 Kelsey Nov 1947 A
3047089 Zwislocki Jul 1962 A
D208784 Sanzone Oct 1967 S
3586794 Michaelis Jun 1971 A
3696377 Wall Oct 1972 A
3934100 Harada Jan 1976 A
3983336 Malek et al. Sep 1976 A
4069400 Johanson et al. Jan 1978 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
D266271 Johanson et al. Sep 1982 S
4375016 Harada Feb 1983 A
4588867 Konomi May 1986 A
4617429 Bellafiore Oct 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4852177 Ambrose Jul 1989 A
4865044 Wallace et al. Sep 1989 A
4984277 Bisgaard et al. Jan 1991 A
5008943 Arndt et al. Apr 1991 A
5185802 Stanton Feb 1993 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5201008 Arndt et al. Apr 1993 A
D340286 Seo Oct 1993 S
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5347584 Narisawa Sep 1994 A
5363444 Norris Nov 1994 A
5444786 Raviv Aug 1995 A
D367113 Weeks Feb 1996 S
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5748743 Weeks May 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
D397796 Yabe et al. Sep 1998 S
5802167 Hong Sep 1998 A
5844996 Enzmann et al. Dec 1998 A
D410008 Almqvist May 1999 S
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6084526 Blotky et al. Jul 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6185152 Shen Feb 2001 B1
6208372 Barraclough Mar 2001 B1
6230029 Hahn et al. May 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
D455835 Anderson et al. Apr 2002 S
6408081 Boesen Jun 2002 B1
6424820 Burdick et al. Jul 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6563301 Gventer May 2003 B2
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6690807 Meyer Feb 2004 B1
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7010137 Leedom et al. Mar 2006 B1
7113611 Leedom et al. Sep 2006 B2
D532520 Kampmeier et al. Nov 2006 S
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
D549222 Huang Aug 2007 S
D554756 Sjursen et al. Nov 2007 S
7403629 Aceti et al. Jul 2008 B1
D579006 Kim et al. Oct 2008 S
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
7532901 LaFranchise et al. May 2009 B1
D601134 Elabidi et al. Sep 2009 S
7825626 Kozisek Nov 2010 B2
7859469 Rosener et al. Dec 2010 B1
7965855 Ham Jun 2011 B1
7979035 Griffin et al. Jul 2011 B2
7983628 Boesen Jul 2011 B2
D647491 Chen et al. Oct 2011 S
8095188 Shi Jan 2012 B2
8108143 Tester Jan 2012 B1
8140357 Boesen Mar 2012 B1
D666581 Perez Sep 2012 S
8300864 Müllenborn et al. Oct 2012 B2
8406448 Lin Mar 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8436780 Schantz et al. May 2013 B2
D687021 Yuen Jul 2013 S
8679012 Kayyali Mar 2014 B1
8719877 VonDoenhoff et al. May 2014 B2
8774434 Zhao et al. Jul 2014 B2
8831266 Huang Sep 2014 B1
8891800 Shaffer Nov 2014 B1
8994498 Agrafioti et al. Mar 2015 B2
D728107 Martin et al. Apr 2015 S
9013145 Castillo et al. Apr 2015 B2
9026914 Kauffmann May 2015 B1
9037125 Kadous May 2015 B1
D733103 Jeong et al. Jun 2015 S
9081944 Camacho et al. Jul 2015 B2
9461403 Gao et al. Oct 2016 B2
9510159 Cuddihy et al. Nov 2016 B1
D773439 Walker Dec 2016 S
D775158 Dong et al. Dec 2016 S
D777710 Palmborg et al. Jan 2017 S
9544689 Fisher et al. Jan 2017 B2
D788079 Son et al. May 2017 S
9711062 Ellis et al. Jul 2017 B2
9729979 Özden Aug 2017 B2
9767709 Ellis Sep 2017 B2
9769585 Hills Sep 2017 B1
9848257 Ambrose et al. Dec 2017 B2
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010043707 Leedom Nov 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030002705 Boesen Jan 2003 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040102931 Ellis et al. May 2004 A1
20040160511 Boesen Aug 2004 A1
20050017842 Dematteo Jan 2005 A1
20050043056 Boesen Feb 2005 A1
20050094839 Gwee May 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050197063 White Sep 2005 A1
20050212911 Marvit et al. Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060073787 Lair et al. Apr 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20060166715 Engelen et al. Jul 2006 A1
20060166716 Seshadri et al. Jul 2006 A1
20060220915 Bauer Oct 2006 A1
20060258412 Liu Nov 2006 A1
20070102009 Wong et al. May 2007 A1
20070239225 Saringer Oct 2007 A1
20070269785 Yamanoi Nov 2007 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090622 Kim et al. Apr 2008 A1
20080102424 Holljes May 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080187163 Goldstein et al. Aug 2008 A1
20080215239 Lee Sep 2008 A1
20080253583 Goldstein et al. Oct 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20080255430 Alexandersson et al. Oct 2008 A1
20080298606 Johnson et al. Dec 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090008275 Ferrari et al. Jan 2009 A1
20090017881 Madrigal Jan 2009 A1
20090073070 Rofougaran Mar 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090154739 Zellner Jun 2009 A1
20090191920 Regen et al. Jul 2009 A1
20090226017 Abolfathi et al. Sep 2009 A1
20090245559 Boltyenkov et al. Oct 2009 A1
20090261114 McGuire et al. Oct 2009 A1
20090296968 Wu et al. Dec 2009 A1
20090303073 Gilling et al. Dec 2009 A1
20090304210 Weisman Dec 2009 A1
20100033313 Keady et al. Feb 2010 A1
20100100004 van Someren Apr 2010 A1
20100166206 Macours Jul 2010 A1
20100203831 Muth Aug 2010 A1
20100210212 Sato Aug 2010 A1
20100246847 Johnson, Jr. Sep 2010 A1
20100290636 Mao et al. Nov 2010 A1
20100320961 Castillo et al. Dec 2010 A1
20110018731 Linsky et al. Jan 2011 A1
20110103609 Pelland et al. May 2011 A1
20110137141 Razoumov et al. Jun 2011 A1
20110140844 McGuire et al. Jun 2011 A1
20110200213 Knox Aug 2011 A1
20110239497 McGuire et al. Oct 2011 A1
20110286615 Olodort et al. Nov 2011 A1
20110293105 Arie et al. Dec 2011 A1
20120057740 Rosal Mar 2012 A1
20120155670 Rutschman Jun 2012 A1
20120163626 Booij et al. Jun 2012 A1
20120197737 LeBoeuf et al. Aug 2012 A1
20120235883 Border et al. Sep 2012 A1
20120309453 Maguire Dec 2012 A1
20130106454 Liu et al. May 2013 A1
20130154826 Ratajczyk Jun 2013 A1
20130178967 Mentz Jul 2013 A1
20130204617 Kuo et al. Aug 2013 A1
20130293494 Reshef Nov 2013 A1
20130316642 Newham Nov 2013 A1
20130346168 Zhou et al. Dec 2013 A1
20140004912 Rajakarunanayake Jan 2014 A1
20140014697 Schmierer et al. Jan 2014 A1
20140020089 Perini, II Jan 2014 A1
20140072136 Tenenbaum et al. Mar 2014 A1
20140072146 Itkin et al. Mar 2014 A1
20140073429 Meneses et al. Mar 2014 A1
20140079257 Ruwe et al. Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140122116 Smythe May 2014 A1
20140146973 Liu et al. May 2014 A1
20140153768 Hagen et al. Jun 2014 A1
20140163771 Demeniuk Jun 2014 A1
20140185828 Helbling Jul 2014 A1
20140219467 Kurtz Aug 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140235169 Parkinson et al. Aug 2014 A1
20140270227 Swanson Sep 2014 A1
20140270271 Dehe et al. Sep 2014 A1
20140276227 Pérez Sep 2014 A1
20140310595 Acharya et al. Oct 2014 A1
20140321682 Kofod-Hansen et al. Oct 2014 A1
20140335908 Krisch et al. Nov 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20140359450 Lehtiniemi Dec 2014 A1
20150028996 Agrafioti et al. Jan 2015 A1
20150035643 Kursun Feb 2015 A1
20150036835 Chen Feb 2015 A1
20150056584 Boulware et al. Feb 2015 A1
20150110587 Hori Apr 2015 A1
20150148989 Cooper et al. May 2015 A1
20150181356 Krystek et al. Jun 2015 A1
20150230022 Sakai et al. Aug 2015 A1
20150245127 Shaffer Aug 2015 A1
20150256949 Vanpoucke et al. Sep 2015 A1
20150264472 Aase Sep 2015 A1
20150264501 Hu et al. Sep 2015 A1
20150317565 Li et al. Nov 2015 A1
20150358751 Deng et al. Dec 2015 A1
20150359436 Shim et al. Dec 2015 A1
20150364058 Lagree et al. Dec 2015 A1
20150373467 Gelter Dec 2015 A1
20150373474 Kraft et al. Dec 2015 A1
20160033280 Moore et al. Feb 2016 A1
20160034249 Lee et al. Feb 2016 A1
20160071526 Wingate et al. Mar 2016 A1
20160072558 Hirsch et al. Mar 2016 A1
20160073189 Lindén et al. Mar 2016 A1
20160100262 Inagaki Apr 2016 A1
20160119737 Mehnert et al. Apr 2016 A1
20160124707 Ermilov et al. May 2016 A1
20160125892 Bowen et al. May 2016 A1
20160140870 Connor May 2016 A1
20160142818 Park May 2016 A1
20160150339 Choueiri May 2016 A1
20160162259 Zhao et al. Jun 2016 A1
20160209691 Yang et al. Jul 2016 A1
20160253994 Panchapagesan et al. Sep 2016 A1
20160324478 Goldstein Nov 2016 A1
20160353196 Baker et al. Dec 2016 A1
20160360350 Watson et al. Dec 2016 A1
20170021257 Gilbert et al. Jan 2017 A1
20170046503 Cho et al. Feb 2017 A1
20170059152 Hirsch et al. Mar 2017 A1
20170060262 Hviid et al. Mar 2017 A1
20170060269 Förstner et al. Mar 2017 A1
20170061751 Loermann et al. Mar 2017 A1
20170061817 Mettler May Mar 2017 A1
20170062913 Hirsch et al. Mar 2017 A1
20170064426 Hviid Mar 2017 A1
20170064428 Hirsch Mar 2017 A1
20170064432 Hviid et al. Mar 2017 A1
20170064437 Hviid et al. Mar 2017 A1
20170078780 Qian et al. Mar 2017 A1
20170078785 Qian et al. Mar 2017 A1
20170100277 Ke Apr 2017 A1
20170108918 Boesen Apr 2017 A1
20170109131 Boesen Apr 2017 A1
20170110124 Boesen et al. Apr 2017 A1
20170110899 Boesen Apr 2017 A1
20170111723 Boesen Apr 2017 A1
20170111725 Boesen et al. Apr 2017 A1
20170111726 Martin et al. Apr 2017 A1
20170111740 Hviid et al. Apr 2017 A1
20170127168 Briggs et al. May 2017 A1
20170131094 Kulik May 2017 A1
20170142511 Dennis May 2017 A1
20170146801 Stempora May 2017 A1
20170150920 Chang et al. Jun 2017 A1
20170151085 Chang et al. Jun 2017 A1
20170151447 Boesen Jun 2017 A1
20170151668 Boesen Jun 2017 A1
20170151918 Boesen Jun 2017 A1
20170151930 Boesen Jun 2017 A1
20170151957 Boesen Jun 2017 A1
20170151959 Boesen Jun 2017 A1
20170153114 Boesen Jun 2017 A1
20170153636 Boesen Jun 2017 A1
20170154532 Boesen Jun 2017 A1
20170155985 Boesen Jun 2017 A1
20170155992 Perianu et al. Jun 2017 A1
20170155993 Boesen Jun 2017 A1
20170155997 Boesen Jun 2017 A1
20170155998 Boesen Jun 2017 A1
20170156000 Boesen Jun 2017 A1
20170164890 Leip et al. Jun 2017 A1
20170178631 Boesen Jun 2017 A1
20170180842 Boesen Jun 2017 A1
20170180843 Perianu et al. Jun 2017 A1
20170180897 Perianu Jun 2017 A1
20170188127 Perianu et al. Jun 2017 A1
20170188132 Hirsch et al. Jun 2017 A1
20170193978 Goldman Jul 2017 A1
20170195829 Belverato et al. Jul 2017 A1
20170208393 Boesen Jul 2017 A1
20170214987 Boesen Jul 2017 A1
20170215016 Dohmen et al. Jul 2017 A1
20170230752 Dohmen et al. Aug 2017 A1
20170251933 Braun et al. Sep 2017 A1
20170257698 Boesen et al. Sep 2017 A1
20170258329 Marsh Sep 2017 A1
20170263236 Boesen et al. Sep 2017 A1
20170263376 Verschueren et al. Sep 2017 A1
20170266494 Crankson et al. Sep 2017 A1
20170273622 Boesen Sep 2017 A1
20170280257 Gordon et al. Sep 2017 A1
20170301337 Golani et al. Oct 2017 A1
20170347177 Masaki Nov 2017 A1
20170361213 Goslin et al. Dec 2017 A1
20170366233 Hviid et al. Dec 2017 A1
20180007994 Boesen et al. Jan 2018 A1
20180008194 Boesen Jan 2018 A1
20180008198 Kingscott Jan 2018 A1
20180009447 Boesen et al. Jan 2018 A1
20180011006 Kingscott Jan 2018 A1
20180011682 Milevski et al. Jan 2018 A1
20180011994 Boesen Jan 2018 A1
20180012228 Milevski et al. Jan 2018 A1
20180013195 Hviid et al. Jan 2018 A1
20180014102 Hirsch et al. Jan 2018 A1
20180014103 Martin et al. Jan 2018 A1
20180014104 Boesen et al. Jan 2018 A1
20180014107 Razouane et al. Jan 2018 A1
20180014108 Dragicevic et al. Jan 2018 A1
20180014109 Boesen Jan 2018 A1
20180014113 Boesen Jan 2018 A1
20180014140 Milevski et al. Jan 2018 A1
20180014436 Milevski Jan 2018 A1
20180034951 Boesen Feb 2018 A1
20180040093 Boesen Feb 2018 A1
20180042501 Adi et al. Feb 2018 A1
Foreign Referenced Citations (22)
Number Date Country
204244472 Apr 2015 CN
104683519 Jun 2015 CN
104837094 Aug 2015 CN
1469659 Oct 2004 EP
1017252 May 2006 EP
2903186 Aug 2015 EP
2074817 Apr 1981 GB
2508226 May 2014 GB
06292195 Oct 1994 JP
2008103925 Aug 2008 WO
2008113053 Sep 2008 WO
2007034371 Nov 2008 WO
2011001433 Jan 2011 WO
2012071127 May 2012 WO
2013134956 Sep 2013 WO
2014046602 Mar 2014 WO
2014043179 Jul 2014 WO
2015061633 Apr 2015 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
2016032990 Mar 2016 WO
2016187869 Dec 2016 WO
Non-Patent Literature Citations (59)
Entry
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223.
Alzahrani et al: “A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise”, Sensors, vol. 15, No. 10, Oct. 12, 2015, pp. 25681-25702, XPO55334602, DOI: 10.3390/s151025681 the whole document.
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014).
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013).
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014).
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016).
BRAGI is on Facebook (2014).
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014).
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015).
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014).
BRAGI Update—Lets Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014).
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014).
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014).
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014).
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014).
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014).
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014).
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014).
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015).
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015).
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014).
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015).
BRAGI Update—Alpha 5 and Back to China, Backer Day, On Track(May 16, 2015).
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015).
BRAGI Update—Certifications, Production, Ramping Up.
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015).
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015).
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015).
BRAGI Update—Getting Close(Aug. 6, 2015).
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015).
BRAGI Update—On Track, On Track and Gems Overview.
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015).
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015).
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016).
Hoffman, “How to Use Android Beam to Wirelessly Transfer Content Between Devices”, (Feb. 22, 2013).
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017).
Hyundai Motor America, “Hyundai Motor Company Introduces a Health + Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017).
International Search Report & Written Opinion, PCT/EP16/70245 (dated Nov. 16, 2016).
International Search Report & Written Opinion, PCT/EP2016/070231 (dated Nov. 18, 2016).
International Search Report & Written Opinion, PCT/EP2016/070247 (dated Nov. 18, 2016).
International Search Report & Written Opinion, PCT/EP2016/07216 (dated Oct. 18, 2016).
International Search Report and Written Opinion, PCT/EP2016/070228 (dated Jan. 9, 2017).
Jain A et al: “Score normalization in multimodal biometric systems”, Pattern Recognition, Elsevier, GB, vol. 38, No. 12, Dec. 31, 2005, pp. 2270-2285, XP027610849, ISSN: 0031-3203.
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014).
Nemanja Paunovic et al, “A methodology for testing complex professional electronic systems”, Serbian Journal of Electrical Engineering, vol. 9, No. 1, Feb. 1, 2012, pp. 71-80, XP055317584, YU.
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014).
Nuance, “ING Netherlands Launches Voice Biometrics Payment System in the Mobile Banking App Powered by Nuance”, “https://www.nuance.com/about-us/newsroom/press-releases/ing-netherlands-launches-nuance-voice-biometirics.html”, 4 pages (Jul. 28, 2015).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—Its Your Dash (Feb. 14, 2014).
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014).
Stretchgoal—Windows Phone Support (Feb. 17, 2014).
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014).
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014).
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014).
Weisiger; “Conjugated Hyperbilirubinemia”, Jan. 5, 2016.
Wertzner et al., “Analysis of fundamental frequency, jitter, shimmer and vocal intensity in children with phonological disorders”, V. 71, n5, 582-588, Sep./Oct. 2005; Brazilian Journal of Othrhinolaryngology.
Wikipedia, “Gamebook”, https://en.wikipedia.org/wiki/Gamebook, Sep. 3, 2017, 5 pages.
Wikipedia, “Kinect”, “https://en.wikipedia.org/wiki/Kinect”, 18 pages, (Sep. 9, 2017).
Wikipedia, “Wii Balance Board”, “https://en.wikipedia.org/wiki/Wii_Balance_Board”, 3 pages, (Jul. 20, 2017).
Related Publications (1)
Number Date Country
20180249239 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62464337 Feb 2017 US