Earpiece with source selection within ambient environment

Information

  • Patent Grant
  • 10063957
  • Patent Number
    10,063,957
  • Date Filed
    Monday, November 6, 2017
    7 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
A wireless earpiece includes a wireless earpiece housing, at least one microphone for detecting ambient environment sound, and a processor disposed within the wireless earpiece housing, the processor configured to distinguish between two or more sources of sound within the ambient environment sound. The wireless earpiece further includes a user interface operatively connected to the processor. The processor is configured to receive user input through the user interface to select one of the sources of sound within the ambient environment sound and wherein the processor is configured to process the ambient environment sound to emphasize portions of the ambient environment sound generated by the one of the sources of the ambient environment sound selected by the user to produce a modified sound. The earpiece may further include a speaker operatively connected to the processor to reproduce the modified sound.
Description
FIELD OF THE INVENTION

The present invention relates to wearable devices. Particularly, the present invention relates to wireless earpieces. More particularly, but not exclusively, the present invention relates to wireless earpieces, which allow a user to selectively control the ambient sound level of the wireless earpieces.


BACKGROUND

A number a situations exist in which an individual is acoustically isolated from an external environment. One of the issues with earpieces is they may block the external auditory canal thereby preventing a user from hearing ambient sounds. Sometimes, this is desired and beneficial, but sometimes it is not. The isolation often results in inefficiency or inconvenience. One primary isolation situation arises from the use of earpieces. A wide variety of traditional earpieces exist for noise abatement or for listening to an audio source or communication. Earpieces can be utilized for maintaining communication in a high ambient sound environment, such as in an aircraft cockpit, stadium, and so forth.


Therefore, a need exists for the development of methods for controlling acoustic isolation, so important events are not missed and non-important noises can be properly identified and ignored. What is needed is a system and method of substantially preventing ambient sounds from reaching the user's tympanic membranes while providing the user with the option to permit the ambient sounds the user desires to listen to.


SUMMARY

Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to provide a wireless earpiece which identifies different sound sources and allows the user to select one or more of the sound sources to hear while filtering out or attenuating other sound sources.


One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.


According to one aspect, a wireless earpiece is provided. The wireless earpiece includes a wireless earpiece housing, at least one microphone for detecting ambient environment sound, and a processor disposed within the wireless earpiece housing, the processor configured to distinguish between two or more sources of sound within the ambient environment sound. The wireless earpiece further includes a user interface operatively connected to the processor. The processor is configured to receive user input through the user interface to select one of the sources of sound within the ambient environment sound and wherein the processor is configured to process the ambient environment sound to emphasize portions of the ambient environment sound generated by the one of the sources of the ambient environment sound selected by the user to produce a modified sound. The earpiece may further include a speaker operatively connected to the processor to reproduce the modified sound. The processor may be further configured to identify direction of the two or more sound sources within the ambient environment sound. The user interface may further include an inertial sensor and the user may then select the one of the sources of sound within the ambient environment sound by moving the user's head toward the direction of the one of the sources of sound. The user interface may provide for voice input from the user. The user interface may include a gestural interface. The processor may include one or more digital signal processors. A left wireless earpiece and a right wireless earpiece may in operative communication with one another.


According to another aspect, a method is provided for performing source selection within an ambient environment using a wireless earpiece comprising an earpiece housing, a processor disposed within the earpiece housing, at least one microphone operative connected to the processor, and at least one speaker operatively connected to the processor. The method may include steps of detecting ambient environment sound using the at least one microphone, processing the ambient environment sound at the processor to distinguish between two or more sources of sound within the ambient environment sound, receiving a selection of one of the sources of sound from a user of the earpiece, processing the ambient environment sound to emphasize portions of the ambient environment sound generated by the one of the sources of sound selected by the user to produce a modified sound, and producing the modified sound at the at least one speaker. The wireless earpiece may further include a gestural interface operatively connected to the processor and wherein the step of receiving the selection of one of the sources of sound from the user of the earpiece is performed using the gestural interface. The wireless earpiece may further include an inertial sensor operatively connected to the processor and wherein the step of receiving the selection of one of the sources of sound from the user of the earpiece is performed using the inertial sensor.





BRIEF DESCRIPTION OF THE DRAWINGS

Illustrated embodiments of the disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein.



FIG. 1 includes a block diagram in accordance with an embodiment of the present invention;



FIG. 2 illustrates a system including a left earpiece and a right earpiece in accordance with an embodiment of the present invention;



FIG. 3 illustrates a right earpiece and its relationship to a user's ear in accordance with an embodiment of the present invention;



FIG. 4 includes an expanded block diagram of the system in accordance with an embodiment of the present invention;



FIG. 5 includes a flowchart of one embodiment of the method in accordance with an embodiment of the present invention;





DETAILED DESCRIPTION

The following discussion is presented to enable a person skilled in the art to make and use the present teachings. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments and applications without departing from the present teachings. Thus, the present teachings are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the present teachings. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of the present teachings. While embodiments of the present invention are discussed in terms of source selection of ambient sound for wireless earpieces, it is fully contemplated embodiments of the present invention could be used in most any electronic communications device without departing from the spirit of the invention.


In one implementation, a system includes an earpiece having an earpiece housing. A microphone can be mounted onto the earpiece housing, and configured to receive ambient sound. A processor can be disposed within the earpiece housing and operatively connected to each microphone. The processor is configured to process one or more ambient sounds. A gesture control interface can be mounted onto the earpiece housing and operatively connected to the processor. The gesture control interface is configured to allow a user to control the processing of one or more ambient sounds received by the processor using a gesture. A speaker can be mounted onto the earpiece housing and operatively connected to the processor. The speaker is configured to communicate one or more ambient sounds received from the processor.


One or more of the following features may be included. The earpiece housing may be composed of soundproof materials. The earpiece may comprise a set of earpieces, which may further comprise a left earpiece and a right earpiece. Each earpiece may be configured to substantially encompass an external auditory canal of a user and may be further configured to substantially fit within the external auditory canal. The gesture control interface may be configured to prompt a user with a menu upon receiving a gesture. The gesture control interface may be further configured to prompt the user with a menu upon receiving a voice command from one or more microphones. Each menu may comprise at least one option selectable by the user using a gesture or a voice command. A mobile device may be operatively connected to the earpiece and may be configured to prompt the user with a menu upon receiving a user input. The gesture control interface may be configured to control one or more ambient sounds received by one or more microphones by instructing one or more microphones to filter out one or more ambient sounds. The gesture control interface may be configured to control one or more ambient sounds received by one or more microphones by instructing one or more processors to communicate one or more ambient sounds to the speaker. One or more gestures may include one or more taps on the gesture control interface, one or more swipes, or holds, or other gestures. The processor may be configured to communicate an audio signal to the speaker.


In another implementation, a method includes receiving, via one or more microphones, one or more ambient sounds, conveying, via one or more microphones, each ambient sound to a processor, processing the ambient sounds using the processor based on one or more sound sources selected by the user, and communicating the ambient sounds using a speaker.


One or more of the following features may be included. One or more non-ambient sounds may be provided, which may be stored within the earpiece or received from one or more transceivers. The reception of one or more ambient sounds may further include receiving one or more ambient sounds through a bone microphone positioned. Ambient sound processing may be controlled using one or more voice commands.



FIG. 1 illustrates a block diagram of the system 10 having at least one earpiece 12 having an earpiece housing 14. A microphone 16 is positioned to receive ambient sound. One or more processors 18 may be disposed within the earpiece housing 14 and operatively connected to microphone 16. A gesture control interface 20 is operatively connected to the processor 18. The gesture control interface 20 configured to allow a user to control the processing of the ambient sounds such as by selecting a source of ambient sounds which the user wishes to listen to. An inertial sensor 36 is also shown which is operatively connected to the one or more processors. One or more speakers 22 may be positioned within the earpiece housing 14 and configured to communicate the ambient sounds desired by the user. The earpiece housing 14 may be composed of soundproof materials to improve audio transparency or any material resistant to shear and strain and may also have a sheath attached in order to improve comfort, sound transmission or reduce the likelihood of skin or ear allergies. In addition, the earpiece housing 14 may also substantially encompass the external auditory canal of the user in order to substantially reduce or eliminate external sounds to further improve audio transparency. The housing 14 of each wearable earpiece 12 may be composed of any material or combination of materials, such as metals, metal alloys, plastics, or other polymers having substantial deformation resistance


One or more microphones 16 may be positioned to receive one or more ambient sounds. The ambient sounds may originate from the user, a third party, a machine, an animal, another earpiece, another electronic device or even nature itself. The types of ambient sounds received by the microphones 16 may include words, combination of words, sounds, combinations of sounds or any combination of the aforementioned. The ambient sounds may be of any frequency and need not necessarily be audible to the user.


The processor 18 is the logic controls for the operation and functionality of the earpiece(s) 12. The processor 18 may include circuitry, chips, and other digital logic. The processor 18 may also include programs, scripts and instructions, which may be implemented to operate the processor 18. The processor 18 may represent hardware, software, firmware or any combination thereof. In one embodiment, the processor 18 may include one or more processors. The processor 18 may also represent an application specific integrated circuit (ASIC), system-on-a-chip (SOC) or field programmable gate array (FPGA).


The processor 18 may also process gestures to determine commands or selections implemented by the earpiece 12. Gestures such as taps, double taps, triple taps, swipes, or holds may be received. The processor 18 may also process movements by the inertial sensor 36. The inertial sensor 36 may be a 9-axis inertial sensor which may include a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. The inertial sensor 36 may serve as a user interface. For example, a user may move their head and the inertial sensor may detect the head movements. In one embodiment, a user may select which sound source they wish to listen to by directing their head to point at the desired sound source.


In one embodiment, the processor 18 is circuitry or logic enabled to control execution of a set of instructions. The processor 18 may be one or more microprocessors, digital signal processors, application-specific integrated circuits (ASIC), central processing units or other devices suitable for controlling an electronic device including one or more hardware and software elements, executing software, instructions, programs, and applications, converting and processing signals and information and performing other related tasks. The processor may be a single chip or integrated with other computing or communications components.


A gesture control interface 20 is mounted onto the earpiece housing 14 and operatively connected to the processor 18 and configured to allow a user to select one or more sound sources using a gesture. The gesture control interface 20 may be located anywhere on the earpiece housing 14 conducive to receiving a gesture and may be configured to receive tapping gestures, swiping gestures, or gestures which do not make contact with either the gesture control interface 20 or another part of the earpiece 12. FIG. 2 illustrates a pair of earpieces which includes a left earpiece 12A and a right earpiece 12B. The left earpiece 12A has a left earpiece housing 14A. The right earpiece 12B has a right earpiece housing 14B. A microphone 16A is shown on the left earpiece 12A and a microphone 16B is shown on the right earpiece 12B. The microphones 16A and 16B may be positioned to receive ambient sounds. Additional microphones may also be present. Speakers 22A and 22B are configured to communicate modified sounds 46A and 46B after processing. The modified sounds 46A and 46B may be communicated to the user



FIG. 3 illustrates a side view of the right earpiece 12B and its relationship to a user's ear. The right earpiece 12B may be configured to isolate the user's ear canal 48 from the environment so that the user does not hear the environment directly, but may hear a reproduction of the environmental sounds as modified by the earpiece 12B which is directed towards the tympanic membrane 50 of the user. There is a gesture control interface 20 shown on the exterior of the earpiece. FIG. 4 is a block diagram of an earpiece 12 having an earpiece housing 14, and a plurality of sensors 24 operatively connected to one or more processors 18. The one or more sensors may include one or more bone microphones 32 which may be used for detecting speech of a user. The sensors 24 may further include one or more biometric sensors 34 which may be used for monitoring physiological conditions of a user. The sensors 24 may include one or more microphones 16 which may be used for detecting sound within the ambient environment of the user. The sensors 24 may include one or more inertial sensors 36 which may be used for determining movement of the user such as head motion of the user used to select one or more sound sources within the ambient environment. A gesture control interface 20 is also operatively connected to the one or more processors 18. The gesture control interface 20 may be implemented in various ways including through capacitive touch or through optical sensing. The gesture control interface 20 may include one or more emitters 42 and one or more detectors 44. Thus, for example, in one embodiment, light may be emitted at the one or more emitters 42 and detected at the one or more detectors 44 and interpreted to indicate one or more gestures being performed by a user. One or more speakers 22 are also operatively connected to the processor 18. A radio transceiver 26 may be operatively connected to the one or more processors 18. The radio transceiver may be a BLUETOOTH transceiver, a BLE transceiver, a Wi-Fi transceiver, or other type of radio transceiver. A transceiver 28 may also be present. The transceiver 28 may be a magnetic induction transceiver such as a near field magnetic induction (NFMI) transceiver. Where multiple earpieces are present, the transceiver 28 may be used to communicate between the left and the right earpieces. A memory 37 is operatively connected to the processor and may be used to store instructions regarding sound processing, user settings regarding selections, or other information. One or more LEDs 38 may also be operatively connected to the one or more processors 18 and may be used to provide visual feedback regarding operations of the wireless earpiece.



FIG. 5 illustrates one example of a method 100. In step 102, ambient environment sound is detected such as by using one or more microphones of a single earpiece or using one or more microphones of each earpiece within a set of earpieces which includes both a left earpiece and a right earpiece. In step 104, the ambient environment sound is processed to distinguish between two or more sources of sound. This processing may occur in various ways using any number of different types of algorithms. For example, a segmentation algorithm may be used in order to segment the ambient environment sound into different sources. Feature extraction algorithms may be applied in order to extract different features of the ambient environment sound associated with different sources. Where more than one earpiece is used or where more than one microphone is used on a single wireless earpiece, additional algorithms may be used to determine the direction that a sound source is coming from. The sound source may be one of any number of different types of sound source. The sound source may be another individual who is talking. The sound source may be a television, radio, or computer. The sound source may be any person, animal, or object that emits sounds.


In step 106, a selection of one of the sources of sound may be received. This process may occur in any number of different ways. For example, where the user interface of the wireless earpiece includes an inertial sensor, a user may turn their head to the source of sound the user wishes to listen to. The processor may then select one or more sounds emanating from the direction to which the user is facing by emphasizing the selected one or more sounds or deemphasizing one or more non-selected sounds. A sound source may be emphasized in various ways including increasing amplitude or volume of a particular sound source or decreasing the amplitude or volume of other sound sources, or otherwise attenuating or suppressing other sound sources. In some cases other sound sources may be filtered out in other ways such as based on frequency of the sounds. Indeed, any number of filters may be applied by the processor in order to emphasize one or more selected sounds. In another embodiment, a user may select one of the sound sources through use of the gestural interface. For example, after identifying different sources of sound, the processor may automatically select one of the sources of sound, modify the ambient sound to emphasize that selection and reproduce it and then the user may confirm the selection or deny the selection through use of the gestural interface. If the user denies the selection of the source of sound, the earpiece may select a different one of the sources of sound and generate that modified sound for the user for that source, and repeat the process until the user has agreed upon the selected sound source. Once a selection of one of the sources of sound has been made in step 106, in step 108 the ambient sound is processed based upon the selection in order to produce modified sound. The modified sound produced is a modified ambient environment sound that emphasizes a particular sound source selection made by the user such as by treating sounds from other sources as background sounds and filtering those sounds out, by increasing the amplitude of sound from the selected sound source or otherwise. In step 110, the modified sound may then be produced at the one or more speakers of the earpiece. Thus, in this manner the earpiece may be used to provide for a source selection within the ambient environment sound.


Therefore, various methods, systems, and apparatus have been shown and described. Although various embodiments or examples have been set forth herein, it is to be understood the present invention contemplates numerous options, variations, and alternatives as may be appropriate in a particular application or environment.

Claims
  • 1. A method for performing source selection within an ambient environment using a wireless earpiece comprising an earpiece housing, a processor disposed within the earpiece housing, at least one microphone operative connected to the processor, and at least one speaker operatively connected to the processor, the method comprising steps of: detecting ambient environment sound using the at least one microphone;processing the ambient environment sound at the processor to distinguish between two or more sources of sound within the ambient environment sound;receiving a selection of one of the sources of sound from a user of the earpiece via a user interface operatively connected to the processor;selecting a different source of sound from the two or more sources of sound within the ambient environment sound in response to a denial of the selection of one of the sources of sound by the user;processing the ambient environment sound to emphasize portions of the ambient environment sound generated by the one of the sources of sound selected by the user to produce a modified sound; andproducing the modified sound at the at least one speaker.
  • 2. The method of claim 1 wherein the processing of the ambient environment sound at the processor to distinguish between two or more sources of sound is performed using a feature extraction algorithm for extracting different features of the ambient environment sound.
  • 3. The method of claim 1 wherein the wireless earpiece further comprises an inertial sensor operatively connected to the processor and wherein the step of receiving the selection of one of the sources of sound from the user of the earpiece is performed using the inertial sensor.
  • 4. The method of claim 1 wherein the processing of the ambient environment sound at the processor to distinguish between two or more sources of sound within the ambient environment sound comprises segmenting the ambient environment sound into different sources using a segmentation algorithm.
  • 5. The method of claim 1 wherein the selection of one of the sources of sound from the user comprises a non-contact gesture.
PRIORITY STATEMENT

This application claims priority to U.S. Provisional Patent Application No. 62/417,373 filed on Nov. 4, 2016 titled Earpiece with Source Selection within Ambient Environment all of which is hereby incorporated by reference in its entirety.

US Referenced Citations (282)
Number Name Date Kind
2325590 Carlisle et al. Aug 1943 A
2430229 Kelsey Nov 1947 A
3047089 Zwislocki Jul 1962 A
D208784 Sanzone Oct 1967 S
3586794 Michaelis Jun 1971 A
3934100 Harada Jan 1976 A
3983336 Malek et al. Sep 1976 A
4069400 Johanson et al. Jan 1978 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
D266271 Johanson et al. Sep 1982 S
4375016 Harada Feb 1983 A
4588867 Konomi May 1986 A
4617429 Bellafiore Oct 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4852177 Ambrose Jul 1989 A
4865044 Wallace et al. Sep 1989 A
4984277 Bisgaard et al. Jan 1991 A
5008943 Arndt et al. Apr 1991 A
5185802 Stanton Feb 1993 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5201008 Arndt et al. Apr 1993 A
D340286 Seo Oct 1993 S
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5347584 Narisawa Sep 1994 A
5363444 Norris Nov 1994 A
D367113 Weeks Feb 1996 S
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5748743 Weeks May 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
D397796 Yabe et al. Sep 1998 S
5802167 Hong Sep 1998 A
D410008 Almqvist May 1999 S
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6084526 Blotky et al. Jul 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6208372 Barraclough Mar 2001 B1
6230029 Yegiazaryan et al. May 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
D455835 Anderson et al. Apr 2002 S
6408081 Boesen Jun 2002 B1
6424820 Burdick et al. Jul 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6690807 Meyer Feb 2004 B1
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7010137 Leedom et al. Mar 2006 B1
7113611 Leedom et al. Sep 2006 B2
D532520 Kampmeier et al. Nov 2006 S
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
D549222 Huang Aug 2007 S
D554756 Sjursen et al. Nov 2007 S
7403629 Aceti et al. Jul 2008 B1
D579006 Kim et al. Oct 2008 S
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
D601134 Elabidi et al. Sep 2009 S
7825626 Kozisek Nov 2010 B2
7965855 Ham Jun 2011 B1
7979035 Griffin et al. Jul 2011 B2
7983628 Boesen Jul 2011 B2
D647491 Chen et al. Oct 2011 S
8095188 Shi Jan 2012 B2
8108143 Tester Jan 2012 B1
8140357 Boesen Mar 2012 B1
D666581 Perez Sep 2012 S
8300864 Müllenborn et al. Oct 2012 B2
8406448 Lin Mar 2013 B2
8436780 Schantz et al. May 2013 B2
D687021 Yuen Jul 2013 S
8719877 VonDoenhoff et al. May 2014 B2
8774434 Zhao et al. Jul 2014 B2
8831266 Huang Sep 2014 B1
8891800 Shaffer Nov 2014 B1
8994498 Agrafioti et al. Mar 2015 B2
D728107 Martin et al. Apr 2015 S
9013145 Castillo et al. Apr 2015 B2
9037125 Kadous May 2015 B1
D733103 Jeong et al. Jun 2015 S
9081944 Camacho et al. Jul 2015 B2
9510159 Cuddihy et al. Nov 2016 B1
D773439 Walker Dec 2016 S
D775158 Dong et al. Dec 2016 S
D777710 Palmborg et al. Jan 2017 S
9544689 Fisher et al. Jan 2017 B2
D788079 Son et al. May 2017 S
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010043707 Leedom Nov 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030002705 Boesen Jan 2003 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040160511 Boesen Aug 2004 A1
20050017842 Dematteo Jan 2005 A1
20050043056 Boesen Feb 2005 A1
20050094839 Gwee May 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060073787 Lair et al. Apr 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20060166715 Engelen et al. Jul 2006 A1
20060166716 Seshadri et al. Jul 2006 A1
20060220915 Bauer Oct 2006 A1
20060258412 Liu Nov 2006 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090622 Kim et al. Apr 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080187163 Goldstein et al. Aug 2008 A1
20080253583 Goldstein et al. Oct 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20080255430 Alexandersson et al. Oct 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090008275 Ferrari et al. Jan 2009 A1
20090017881 Madrigal Jan 2009 A1
20090073070 Rofougaran Mar 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090154739 Zellner Jun 2009 A1
20090191920 Regen et al. Jul 2009 A1
20090245559 Boltyenkov et al. Oct 2009 A1
20090261114 McGuire et al. Oct 2009 A1
20090296968 Wu et al. Dec 2009 A1
20100033313 Keady et al. Feb 2010 A1
20100203831 Muth Aug 2010 A1
20100210212 Sato Aug 2010 A1
20100320961 Castillo et al. Dec 2010 A1
20110140844 McGuire et al. Jun 2011 A1
20110239497 McGuire et al. Oct 2011 A1
20110286615 Olodort et al. Nov 2011 A1
20120057740 Rosal Mar 2012 A1
20130316642 Newham Nov 2013 A1
20130346168 Zhou et al. Dec 2013 A1
20140079257 Ruwe et al. Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140122116 Smythe May 2014 A1
20140153768 Hagen et al. Jun 2014 A1
20140163771 Demeniuk Jun 2014 A1
20140185828 Helbling Jul 2014 A1
20140219467 Kurtz Aug 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140235169 Parkinson et al. Aug 2014 A1
20140270227 Swanson Sep 2014 A1
20140270271 Dehe et al. Sep 2014 A1
20140335908 Krisch et al. Nov 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20150028996 Agrafioti et al. Jan 2015 A1
20150035643 Kursun Feb 2015 A1
20150036835 Chen Feb 2015 A1
20150110587 Hori Apr 2015 A1
20150148989 Cooper et al. May 2015 A1
20150181356 Krystek Jun 2015 A1
20150245127 Shaffer Aug 2015 A1
20150373467 Gelter Dec 2015 A1
20150373474 Kraft et al. Dec 2015 A1
20160033280 Moore et al. Feb 2016 A1
20160034249 Lee Feb 2016 A1
20160071526 Wingate Mar 2016 A1
20160072558 Hirsch et al. Mar 2016 A1
20160073189 Lindén et al. Mar 2016 A1
20160125892 Bowen et al. May 2016 A1
20160162259 Zhao Jun 2016 A1
20160209691 Yang Jul 2016 A1
20160353196 Baker et al. Dec 2016 A1
20160360350 Watson et al. Dec 2016 A1
20170059152 Hirsch et al. Mar 2017 A1
20170060262 Hviid et al. Mar 2017 A1
20170060269 Förstner et al. Mar 2017 A1
20170061751 Loermann et al. Mar 2017 A1
20170062913 Hirsch et al. Mar 2017 A1
20170064426 Hviid Mar 2017 A1
20170064428 Hirsch Mar 2017 A1
20170064432 Hviid et al. Mar 2017 A1
20170064437 Hviid et al. Mar 2017 A1
20170078780 Qian et al. Mar 2017 A1
20170078785 Qian et al. Mar 2017 A1
20170108918 Boesen Apr 2017 A1
20170109131 Boesen Apr 2017 A1
20170110124 Boesen et al. Apr 2017 A1
20170110899 Boesen Apr 2017 A1
20170111723 Boesen Apr 2017 A1
20170111725 Boesen et al. Apr 2017 A1
20170111726 Martin et al. Apr 2017 A1
20170111740 Hviid et al. Apr 2017 A1
20170127168 Briggs et al. May 2017 A1
20170142511 Dennis May 2017 A1
20170151447 Boesen Jun 2017 A1
20170151668 Boesen Jun 2017 A1
20170151918 Boesen Jun 2017 A1
20170151930 Boesen Jun 2017 A1
20170151957 Boesen Jun 2017 A1
20170151959 Boesen Jun 2017 A1
20170153114 Boesen Jun 2017 A1
20170153636 Boesen Jun 2017 A1
20170154532 Boesen Jun 2017 A1
20170155985 Boesen Jun 2017 A1
20170155992 Perianu et al. Jun 2017 A1
20170155993 Boesen Jun 2017 A1
20170155997 Boesen Jun 2017 A1
20170155998 Boesen Jun 2017 A1
20170156000 Boesen Jun 2017 A1
20170178631 Boesen Jun 2017 A1
20170180842 Boesen Jun 2017 A1
20170180843 Perianu et al. Jun 2017 A1
20170180897 Perianu Jun 2017 A1
20170188127 Perianu et al. Jun 2017 A1
20170188132 Hirsch et al. Jun 2017 A1
20170193978 Goldman Jul 2017 A1
20170195829 Belverato et al. Jul 2017 A1
20170208393 Boesen Jul 2017 A1
20170214987 Boesen Jul 2017 A1
20170215016 Dohmen et al. Jul 2017 A1
20170230752 Dohmen et al. Aug 2017 A1
20170251933 Braun et al. Sep 2017 A1
20170257698 Boesen et al. Sep 2017 A1
20170263236 Boesen et al. Sep 2017 A1
20170273622 Boesen Sep 2017 A1
20170280257 Gordon Sep 2017 A1
Foreign Referenced Citations (19)
Number Date Country
204244472 Apr 2015 CN
104683519 Jun 2015 CN
104837094 Aug 2015 CN
1469659 Oct 2004 EP
1017252 May 2006 EP
2903186 Aug 2015 EP
2074817 Apr 1981 GB
2508226 May 2014 GB
2008103925 Aug 2008 WO
2007034371 Nov 2008 WO
2011001433 Jan 2011 WO
2012071127 May 2012 WO
2013134956 Sep 2013 WO
2014046602 Mar 2014 WO
2014043179 Jul 2014 WO
2015061633 Apr 2015 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
2016032990 Mar 2016 WO
Non-Patent Literature Citations (51)
Entry
Wikipedia, “Wii Balance Board”, “https://en.wikipedia.org/wiki/Wii_Balance_Board”, 3 pages, (Jul. 20, 2017).
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223.
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014).
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013).
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014).
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016).
BRAGI Is on Facebook (2014).
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014).
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015).
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014).
BRAGI Update—Let's Get Ready to Rumble, a Lot to Be Done Over Christmas (Dec. 22, 2014).
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014).
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014).
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014).
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014).
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014).
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014).
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014).
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015).
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015).
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014).
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015).
BRAGI Update—Alpha 5 and Back to China, Backer Day, on Track(May 16, 2015).
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015).
BRAGI Update—Certifications, Production, Ramping up.
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015).
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015).
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015).
BRAGI Update—Getting Close(Aug. 6, 2015).
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015).
BRAGI Update—On Track, on Track and Gems Overview.
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015).
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015).
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016).
Hoffman, “How to Use Android Beam to Wirelessly Transfer Content Between Devices”, (Feb. 22, 2013).
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017).
Hyundai Motor America, “Hyundai Motor Company Introduces a Health + Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017).
International Search Report & Written Opinion, PCT/EP2016/070231 (dated Nov. 18, 2016).
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014).
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014).
Nuance, “ING Netherlands Launches Voice Biometrics Payment System in the Mobile Banking App Powered by Nuance”, “https://www.nuance.com/about-us/newsroom/press-releases/ing-netherlands-launches-nuance-voice-biometrics.html”, 4 pages (Jul. 28, 2015).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—It's Your Dash (Feb. 14, 2014).
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014).
Stretchgoal—Windows Phone Support (Feb. 17, 2014).
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014).
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014).
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014).
Wertzner et al., “Analysis of fundamental frequency, jitter, shimmer and vocal intensity in children with phonological disorders”, V. 71, n.5, 582-588, Sep./Oct. 2005; Brazilian Journal of Othrhinolaryngology.
Wikipedia, “Gamebook”, https://en.wikipedia.org/wiki/Gamebook, Sep. 3, 2017, 5 pages.
Wikipedia, “Kinect”, “https://en.wikipedia.org/wiki/Kinect”, 18 pages, (Sep. 9, 2017).
Related Publications (1)
Number Date Country
20180132030 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62417373 Nov 2016 US