Earpiece with wirelessly recharging battery

Information

  • Patent Grant
  • 10587943
  • Patent Number
    10,587,943
  • Date Filed
    Friday, July 7, 2017
    8 years ago
  • Date Issued
    Tuesday, March 10, 2020
    5 years ago
Abstract
A wearable device includes a housing, a rechargeable battery disposed within the housing and a short range transceiver for near field communication disposed within the housing. The short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil. A charging circuit may electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil.
Description
FIELD OF THE INVENTION

The present invention relates to wireless earpieces. More particularly, but not exclusively, the present invention relates to wirelessly recharging earpieces.


BACKGROUND OF THE ART

The earpiece may one day become one of the most widely used and powerful wearable devices available. However, one of the problems with earpieces relates to battery consumption and use. Where the earpiece provides complicated processing or audio processing, has multiple sensors, and multiple transceivers, and produces audio output, battery consumption becomes an issue. Therefore, any onboard batteries would need to be either replaced or recharged, with recharging being preferred.


However, where batteries are to recharged, additional constraints on the design of the earpiece may be imposed such as the inclusion of a connector for recharging that is sufficiently durable and easy to use. Such a connector may take space that could otherwise be used to improve functionality of the earpiece. In addition, earpieces which are sized and shaped to fit within the external auditory canals of users may have relatively awkward and inconvenient shapes. Thus, not only does a connector on the earpiece take space, but the earpiece will also have to mate with another connector of a power source. It may be burdensome or inconvenient for a user to charge one or more earpieces in this manner.


Another issue is that if the earpiece is intended to be waterproof or water resistant, this may further constrain the design of the earpiece where connectors are used for recharging batteries.


What is needed are earpieces are related methods which allow for wireless recharging of the batteries contained therein.


SUMMARY OF THE INVENTION

Therefore it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to provide for an improved wearable device.


It is a still further object, feature, or advantage of the present invention to provide a wireless earpiece which is configured to permit wireless recharging.


Another object, feature, or advantage of the present invention is to provide a wireless earpiece which includes a coil which may be used for multiple purposes including both communications and re-charging.


Yet another object, feature, or advantage of the present invention is to provide a wireless earpiece which is easy and convenient for users to use and recharge.


One of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. It is to be understood that different embodiments are disclosed herein and that no embodiment need meet each and every object, feature, or advantage as set forth herein. Different embodiments may have different objects, features, or advantages.


According to one aspect a wearable device includes a housing, a rechargeable battery disposed within the housing, and a short range transceiver for near field communication disposed within the housing. The short range transceiver for near field communications may include a core and a plurality of coil turns wrapped around the core to thereby form a coil. The wearable device may also include a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil. The wearable device may be an earpiece. The wearable device may include a switch operatively connected to the charging circuit to selectively control operation of the charging circuit. The short range transceiver may be a near field magnetic induction (NFMI) transceiver. The wearable device may be configured to determine if the wearable device is positioned within an ear of a user and may be configured to determine if the wearable device is positioned on a charging surface.


According to another aspect, a system includes a first wearable device comprises a housing, a short range transceiver for near field communication disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil. The system also includes a charging surface comprising a plurality of source coils for operative communication with the coil of the first wearable device to transfer electromagnetic energy to the first wearable device to recharge the rechargeable battery of the first wearable device. The system may further include a second wearable device comprising a housing, a short range transceiver for near field communication disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil. The first and second wearable devices may be earpieces.


According to another aspect, a method of charging a wearable device may be provided. The method may include receiving communications using a coil when the wearable device is in a first mode of operation and charging a rechargeable battery of the wearable device when the wearable device is in a second mode of operation. The wearable device may include a housing, a rechargeable battery disposed within the housing, a short range transceiver for near field communication disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form the coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil. The method may include switching to the first mode of operation if the wearable device detects it is positioned within an ear of a user. The method may include switching to the second mode of operation if the wearable device detects it is not positioned within the ear of the user and is positioned at one or more charging coils. The one or more charging coils may be associated with a charging surface.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one example of a system including two wearable devices in the form of left and right ear pieces which bi-directionally communicate with each other.



FIG. 2 is an exploded view of a wearable device.



FIG. 3 illustrates a printed circuit board of the wearable device positioned relative to an induction circuit/antenna.



FIG. 4 illustrates a core.



FIG. 5 illustrates a core with coil turns thereon.



FIG. 6 illustrates a set of earpiece wearable devices at or on a charging surface.



FIG. 7 illustrates one example of a block diagram of an earpiece.





DETAILED DESCRIPTION

The present invention relates to a wearable device such as an earpiece which uses a coil for both communications and recharging of a battery. Although generally described herein with respect to a near field magnetic induction (NFMI) antenna for use in an ear piece within a set of ear pieces, it is to be understood that the present invention is not limited to that specific application and may be used as an antenna for induction in other types of devices including other types of wearable devices.



FIG. 1 illustrates one example of a system 10 which includes a first wearable device 10A in the form of an ear piece and a second wearable device 10B also in the form of an ear piece, each having an ear piece housing 12 with a central portion 13 with an upper portion 16 and a lower portion 18. A light guide assembly 20 is shown operatively connected to the housing to provide for selective illumination to provide feedback to a user. FIG. 2 provides an exploded view of the wearable device 10A. A waterproof pad 24 and protection mesh 26 are shown. In addition in the central or main portion 13 of the wearable device 10A a printed circuit board 40 is shown with a plurality of electronic components 42 mounted thereto. The plurality of electronic components 42 may include a short range transceiver configured for far field communications such as a wireless radio such as a Bluetooth transceiver, a Wi-Fi transceiver, an ultra-wideband (UWB), or other type of transceiver. A core 50 is mounted at an edge or perimeter of the printed circuit board 40. The core 50 is preferably mounted at a posterosuperior portion of the wearable device 10A.


The system 10 allows for near field communication of audio channels between the left and right-sided wearable devices 10A, 10B. Other types of data may also be communicated between the left and right-sided wearable devices 10A, 10B if desired including sensor information or other data.



FIG. 3 illustrates another view of the printed circuit board 40 with electronic components 42. A core 50 is shown mounted at an edge or perimeter of the printed circuit board 40. The printed circuit board is generally planar. Note that the core 50 is mounted perpendicularly or orthogonally to the top surface of the printed circuit board 40 and the plurality of components 42 mounted thereto. Positioning the core 50 in this relationship provides for reducing electromagnetic interference. The core 50 may be formed of a ferrite material. For example, the core 50 may be a ferrite sheet magnetic spacer. As shown in FIG. 4, where the core 50 is a ferrite sheet magnetic spacer 52, the core 50 may be positioned over or wrapped around a battery 54. As shown in FIG. 5, a plurality of coil turns 60 may be wrapped around the core 50.


In one embodiment NFMI may be used for the communication and audio channels between the left and right sided wearable devices. Placement of the coil at the perimeter of the wearable improves the electromagnetic field, avoiding degradation from adjacent onboard electronics. This allowed for optimal placement of the magnetic field for transmission and reception between the left and right wearable. The preferred embodiment allows for precise positioning within the device for optimal orientation for the electromagnetic field. Further, the preferred embodiment also allows for an NFMI antenna that is sufficiently powerful for the expected tasks, is straightforward in its manufacturing and assembly.



FIG. 6 illustrates a system which includes a left earpiece 10A and a right ear piece 10B. The earpieces are positioned on or at a charging surface 80. The charging surface 80 may include one or more source coils 82. The source coils 82 may be powered in any number of ways. The source coils 82 are in operative communication with the coils of the earpieces 10A, 10B in order to transfer electromagnetic energy from the source coils to the coils of the earpieces 10A, 10B in order to recharge batteries disposed within the earpieces. Instead of a flat charging surface, earpieces may be positioned within a case of any number of styles or shapes which allow for the source coils 82 to be sufficiently close to the coils of the earpieces 10A.



FIG. 7 is a block diagram illustrating one example of an earpiece 12. One or more sensors 116 are present within the earpiece 12. The one or more sensors may include an air microphone 132, a bone microphone 134, a biometric sensor 136 such as a pulse oximeter, temperature sensor or other type of sensor, an inertial sensor 138, and a contact sensor 166. Although representative examples of sensors are shown and described it is to be understood that there may be multiple sensors of the same type and any number of additional types of sensors may be present within the earpiece. One or more speakers 118 may also be present. One or more processors 120 are shown. The various sensors 116, speakers 118, radio transceiver 126, NFMI transceiver 124, LEDs 128, may be operatively connected to the one or more processors. A gesture control interface 140 may also be present which may include one or more emitters 152 and detectors 154 which are also operatively connected to one or more processors 120. A battery 130 may also be present. A charging circuit 160 may also be operatively connected to one or more processors 120 and the battery 130. The charging circuit 160 may be operatively connected to the same coil which forms a part of the NFMI transceiver 124.


The earpiece may be configured to determine if the earpiece is positioned within an ear of a user or otherwise in use by a user of if the earpiece is positioned on a recharging surface. These determinations may be made in various ways. For example, to determine if the earpiece includes a physiological sensor or biometric sensor 136 such as a pulse oximeter then if there is pulse reading the earpiece may be considered to be within the ear of the user. In addition, or alternatively, if the earpiece includes an accelerometer or other inertial sensor 138 the position of the earpiece may be used to determine if the ear piece is within the ear of the user. One or more contact sensors 166 may be used to determine if the earpiece is positioned within the earpiece. Sounds may be emitted from a speaker 118 within the external auditory canal of a user and sensed with a microphone 132 at the external auditory canal of a user, including sub-auditory sounds to determine if the earpiece is within the external auditory canal of the user. Any number of other sensors and methodologies may be used to determine if the earpiece is within the external auditory canal of a user. Any number of other methods may be used including asking the user.


The earpiece may also be configured to determine if it positioned on the recharging surface. For example, if it is determined that the earpiece is not within the ear and voltage levels associated with the coil correlate with known levels associated with the earpiece being positioned on the recharging surface then it may be determined that the earpiece is on the recharging surface. Once it is known that the earpiece is not within the ear and that the earpiece is positioned on the recharging surface then a switch may be activated to allow the charging circuit to harvest the electromagnetic energy from the coil in order to recharge the battery.


Therefore, a wearable device has been shown and described and a system including multiple ear pieces which communicate with one another and also allow for recharging of batteries using the same coils. It is to be understood that the present invention contemplates numerous variations, options, and alternatives. The present invention is not to be limited to the specific embodiments and examples set forth herein.

Claims
  • 1. A wearable device, comprising: a housing;a rechargeable battery disposed within the housing;a short-range transceiver for near field communication disposed within the housing and configured to send and receive audio;wherein the short-range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil;a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil.
  • 2. The wearable device of claim 1 wherein the wearable device is an earpiece.
  • 3. The wearable device of claim 2 wherein the core is mounted at a posterosuperior portion of the wearable device.
  • 4. The wearable device of claim 1 wherein the core comprises ferrite.
  • 5. The wearable device of claim 1 wherein the core comprises a ferrite sheet magnetic shield spacer wrapped around the rechargeable battery.
  • 6. The wearable device of claim 1 further comprising a switch operatively connected to the charging circuit to selectively control operation of the charging circuit.
  • 7. The wearable device of claim 1 wherein the short-range transceiver is a near field magnetic induction (NFMI) transceiver.
  • 8. The wearable device of claim 1 wherein the wearable device is configured to determine if the wearable device is positioned within an ear of a user.
  • 9. The wearable device of claim 1 wherein the wearable device is configured to determine if the wearable device is positioned on a charging surface.
  • 10. The wearable device of claim 9 further comprising a switch operatively connected to the charging circuit to selectively control operation of the charging circuit and wherein the wearable is configured to activate the charging circuit if the wearable device determines that the wearable device is not positioned within an ear of a user and further determines that the wearable device is positioned at a charging surface.
  • 11. A system comprising: a first wearable device comprises a housing, a short range transceiver for near field communication and configured to send and receive audio disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil;a charging surface comprising a plurality of source coils for operative communication with the coil of the first wearable device to transfer electromagnetic energy to the first wearable device to recharge the rechargeable battery of the first wearable device.
  • 12. The system of claim 11 further comprising a second wearable device comprising a housing, a short range transceiver for near field communication disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form a coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil.
  • 13. The system of claim 11 wherein the first wearable device is an earpiece.
  • 14. The system of claim 13 wherein the short-range transceiver is a near field magnetic induction transceiver.
  • 15. The system of claim 11 wherein the core is mounted at a posterosuperior portion of the wearable device.
  • 16. The system of claim 11 wherein the core comprises ferrite.
  • 17. The system of claim 11 wherein the core comprises a ferrite sheet magnetic shield spacer wrapped around the rechargeable battery.
  • 18. The system of claim 11 further comprising a switch operatively connected to the charging circuit to selectively control operation of the charging circuit.
  • 19. A method of charging a wearable device, the method comprising: receiving audio communications using a coil when the wearable device is in a first mode of operation; andcharging a rechargeable battery of the wearable device when the wearable device is in a second mode of operation;wherein the wearable device comprises a housing, a rechargeable battery disposed within the housing, a short range transceiver for near field communication disposed within the housing, wherein the short range transceiver for near field communications comprises a core and a plurality of coil turns wrapped around the core to thereby form the coil, and a charging circuit electrically connected between the coil and the rechargeable battery and configured to charge the rechargeable battery using electromagnetic waves received by the coil, and the method further comprising:switching to the first mode of operation if the wearable device detects it is positioned within an ear of a user;switching to the second mode of operation if the wearable device detects it is not positioned within the ear of the user and is positioned at one or more charging coils; and wherein the one or more charging coils are associated with a charging surface.
PRIORITY STATEMENT

The present application claims priority to U.S. Provisional Application No. 62/360,378, filed Jul. 9, 2016, hereby incorporated by reference in its entirety.

US Referenced Citations (218)
Number Name Date Kind
2325590 Carlisle et al. Aug 1943 A
2430229 Kelsey Nov 1947 A
3047089 Zwislocki Jul 1962 A
D208784 Sanzone Oct 1967 S
3586794 Michaelis Jun 1971 A
3934100 Harada Jan 1976 A
3983336 Malek et al. Sep 1976 A
4069400 Johanson et al. Jan 1978 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
D266271 Johanson et al. Sep 1982 S
4375016 Harada Feb 1983 A
4588867 Konomi May 1986 A
4617429 Bellafiore Oct 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4852177 Ambrose Jul 1989 A
4865044 Wallace et al. Sep 1989 A
4984277 Bisgaard et al. Jan 1991 A
5008943 Arndt et al. Apr 1991 A
5185802 Stanton Feb 1993 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5201008 Arndt et al. Apr 1993 A
D340286 Seo Oct 1993 S
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5347584 Narisawa Sep 1994 A
5363444 Norris Nov 1994 A
D367113 Weeks Feb 1996 S
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5748743 Weeks May 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
D397796 Yabe et al. Sep 1998 S
5802167 Hong Sep 1998 A
D410008 Almqvist May 1999 S
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6084526 Blotky et al. Jul 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6208372 Barraclough Mar 2001 B1
6230029 Yegiazaryan et al. May 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
D455835 Anderson et al. Apr 2002 S
6408081 Boesen Jun 2002 B1
6424820 Burdick et al. Jul 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6690807 Meyer Feb 2004 B1
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7010137 Leedom et al. Mar 2006 B1
7113611 Leedom et al. Sep 2006 B2
D532520 Kampmeier et al. Nov 2006 S
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
D549222 Huang Aug 2007 S
D554756 Sjursen et al. Nov 2007 S
7403629 Aceti et al. Jul 2008 B1
D579006 Kim et al. Oct 2008 S
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
D601134 Elabidi et al. Sep 2009 S
7825626 Kozisek Nov 2010 B2
7965855 Ham Jun 2011 B1
7979035 Griffin et al. Jul 2011 B2
7983628 Boesen Jul 2011 B2
D647491 Chen et al. Oct 2011 S
8095188 Shi Jan 2012 B2
8108143 Tester Jan 2012 B1
8140357 Boesen Mar 2012 B1
D666581 Perez Sep 2012 S
8300864 Müllenborn et al. Oct 2012 B2
8406448 Lin Mar 2013 B2
8436780 Schantz et al. May 2013 B2
D687021 Yuen Jul 2013 S
8719877 VonDoenhoff et al. May 2014 B2
8774434 Zhao et al. Jul 2014 B2
8831266 Huang Sep 2014 B1
8891800 Shaffer Nov 2014 B1
8994498 Agrafioti et al. Mar 2015 B2
D728107 Martin et al. Apr 2015 S
9013145 Castillo et al. Apr 2015 B2
9037125 Kadous May 2015 B1
D733103 Jeong et al. Jun 2015 S
9081944 Camacho et al. Jul 2015 B2
9510159 Cuddihy et al. Nov 2016 B1
D773439 Walker Dec 2016 S
D775158 Dong et al. Dec 2016 S
D777710 Palmborg et al. Jan 2017 S
D788079 Son et al. May 2017 S
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010043707 Leedom Nov 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030002705 Boesen Jan 2003 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040160511 Boesen Aug 2004 A1
20050017842 Dematteo Jan 2005 A1
20050043056 Boesen Feb 2005 A1
20050094839 Gwee May 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20060166715 Engelen et al. Jul 2006 A1
20060166716 Seshadri et al. Jul 2006 A1
20060220915 Bauer Oct 2006 A1
20060258412 Liu Nov 2006 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090622 Kim et al. Apr 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20080255430 Alexandersson et al. Oct 2008 A1
20080260169 Reuss Oct 2008 A1
20080297349 Leone Dec 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090008275 Ferrari et al. Jan 2009 A1
20090017881 Madrigal Jan 2009 A1
20090073070 Rofougaran Mar 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090191920 Regen et al. Jul 2009 A1
20090245559 Boltyenkov et al. Oct 2009 A1
20090261114 McGuire et al. Oct 2009 A1
20090296968 Wu et al. Dec 2009 A1
20100033313 Keady et al. Feb 2010 A1
20100203831 Muth Aug 2010 A1
20100210212 Sato Aug 2010 A1
20100320961 Castillo et al. Dec 2010 A1
20110115429 Toivola May 2011 A1
20110140844 McGuire et al. Jun 2011 A1
20110239497 McGuire et al. Oct 2011 A1
20110286615 Olodort et al. Nov 2011 A1
20120057740 Rosal Mar 2012 A1
20130316642 Newham Nov 2013 A1
20130346168 Zhou et al. Dec 2013 A1
20140079257 Ruwe et al. Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140122116 Smythe May 2014 A1
20140163771 Demeniuk Jun 2014 A1
20140185828 Helbling Jul 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140235169 Parkinson et al. Aug 2014 A1
20140270227 Swanson Sep 2014 A1
20140270271 Dehe et al. Sep 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20150028996 Agrafioti et al. Jan 2015 A1
20150110587 Hori Apr 2015 A1
20150148989 Cooper et al. May 2015 A1
20150245127 Shaffer Aug 2015 A1
20160033280 Moore et al. Feb 2016 A1
20160072558 Hirsch et al. Mar 2016 A1
20160073189 Lindén et al. Mar 2016 A1
20160125892 Bowen et al. May 2016 A1
20160360350 Watson et al. Dec 2016 A1
20170064437 Hviid et al. Mar 2017 A1
20170078780 Qian et al. Mar 2017 A1
20170111726 Martin et al. Apr 2017 A1
20170155992 Perianu et al. Jun 2017 A1
Foreign Referenced Citations (19)
Number Date Country
204244472 Apr 2015 CN
104683519 Jun 2015 CN
104837094 Aug 2015 CN
1469659 Oct 2004 EP
1017252 May 2006 EP
2903186 Aug 2015 EP
2074817 Apr 1981 GB
2508226 May 2014 GB
2008103925 Aug 2008 WO
2007034371 Nov 2008 WO
2011001433 Jan 2011 WO
2012071127 May 2012 WO
2013134956 Sep 2013 WO
2014046602 Mar 2014 WO
2014043179 Jul 2014 WO
2015061633 Apr 2015 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
2016032990 Mar 2016 WO
Non-Patent Literature Citations (48)
Entry
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223.
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014).
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013).
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014).
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016).
BRAGI is on Facebook (2014).
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014).
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015).
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014).
BRAGI Update—Let's Get Ready to Rumble, a Lot to Be Done Over Christmas (Dec. 22, 2014).
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014).
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014).
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014).
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014).
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014).
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014).
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014).
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015).
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015).
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014).
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015).
BRAGI Update—Alpha 5 and Back to China, Backer Day, on Track(May 16, 2015).
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015).
BRAGI Update—Certifications, Production, Ramping Up.
BRAGI Update—Developer Units Shipping and Status(Oct. 05, 2015).
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015).
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015).
BRAGI Update—Getting Close(Aug. 6, 2015).
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015).
BRAGI Update—On Track, on Track and Gems Overview.
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015).
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015).
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016).
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017).
Hyundai Motor America, “Hyundai Motor Company Introduces a Health + Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017).
International Search Report & Written Opinion, PCT/EP2016/070231 (dated Nov. 18, 2016).
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014).
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—Its Your Dash (Feb. 14, 2014).
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014).
Stretchgoal—Windows Phone Support (Feb. 17, 2014).
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014).
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014).
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014).
Wikipedia, “Gamebook”, https://en.wikipedia.org/wiki/Gamebook, Sep. 3, 2017, 5 pages.
Wikipedia, “Kinect”, “https://en.wikipedia.org/wiki/Kinect”, 18 pages, (Sep. 9, 2017).
Wikipedia, “Wii Balance Board”, “https://en.wikipedia.org/wiki/Wii_Balance_Board”, 3 pages, (Jul. 20, 2017).
Related Publications (1)
Number Date Country
20180014104 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
62360378 Jul 2016 US