The present invention relates to a microphone. More particularly, the present invention relates to an earset microphone.
Microphones are used in many applications where a speaker's voice or a performer's voice requires amplification. In many theatric performances or concerts, the performer requires that his/her voice be amplified while the performer moves or performs on stage.
A hand held microphone that is hard wired to an amplifier with a cord limits the distance that the performer can move about the stage because the cord has a fixed length. The cord may also be a tripping hazard for the performer. Even when the performer uses a wireless hand held microphone that transmits signals to an amplifier, the performer must grip the microphone with at least one hand which may limit her/her ability to perform.
Performing artists are beginning to use small, lightweight microphones that include an internal power source such as a dry cell battery. As the microphones become smaller, a beneficial effect is that the audience may not be able to see the microphone, such that the microphone does not detract from the performer's appearance. Additionally, a lightweight, smaller microphone enables the performer to utilize all of his/her ability to entertain because the performer's focus is not distracted by the microphone.
Some of the first lightweight microphones that were used by performers were clipped to the performer's clothing, such as a Lavalier microphone. However, at times the clothing would rub against the microphone resulting in the performer's voice being distorted. Additionally, the microphone could unknowingly become unfastened from the clothing resulting in the performer's voice being unamplified due to the increased distance between the microphone and the performer's mouth.
To overcome the problems associated with Lavalier style clip-on wireless microphones, earset style microphones were developed. The microphone was positioned near the performer's mouth with a boom that was supported by an earpiece that was positioned behind the performer's ear.
The earset style wireless microphone minimized the difficulties associated with the Lavalier style microphones. Unlike a Lavalier style microphone, the performer can feel when the microphone was detaching from behind the performer's ear. Also, because the microphone is positioned near the mouth from the earpiece positioned behind the ear, the performer's clothing does not rub against the microphone.
However, because the earpiece has been reduced in size to minimize the appearance on the performer, the cable that transmits a signal from the microphone to a transmitter tends to detach due to strain placed upon a connection between the earpiece and the cord. When the cord detaches from the earpiece, the microphone does not transmit a signal to the amplification system and consequently fails to amplify the speaker's voice.
The present invention includes an earset microphone having an earpiece with a wedge portion wherein the wedge portion is positioned between a backside of the ear and a scalp to secure the earpiece in a selected position. A mounting bracket is positioned within the wedge portion. A boom is secured to the mounting bracket and extends from the earpiece such that the boom positions from below an ear lobe towards a mouth of the speaker. A microphone is positioned at the distal end of the boom proximate the speaker's mouth such that the microphone converts the speaker's voice into an electronic signal. An end of a cable is secured to the mounting bracket such that the cable remains secured to the mounting bracket during use and wherein the cable transfers the signal from the microphone to an external component.
An earset microphone of the present invention is generally illustrated in
Referring to
Referring to
The cable 20 is secured to the V-shaped mounting bracket 48 by positioning an end 19 of the cable 20 within a channel 59 of a side clamp 58 defined by a generally “U”-shaped body 57. The generally “U”-shaped body 57 has one end attached to the V-shaped bracket 48 and a distal end 61 spaced apart from an upper surface 47 of the v-shaped bracket 48. The end 19 of the cable 20 is frictionally secured within the side clamp 58 by constricting the channel 59 by forcing the distal end 61 toward the upper surfaces 47 of the V-shaped bracket 48.
The frictional engagement of the side clamp 58 and the end 19 of the cable 20 crimps the cable 20 within the side clamp 58 such the cable 20 will not detach from the side clamp 58 during typical usage or more rigorous usage when the stresses and strains on the attachment between the cable 20 and the earpiece 30 are increased. While the clamp 58 is the preferred mechanism for retaining the cable 20 within the earpiece 30, other fastening mechanisms are within the scope of the present invention.
The cable 20 is preferably a 1.5mm diameter cable. However, other types of signal transmitting materials, including other types and sizes cables, are also within the scope of the present invention.
Referring to
Referring to
A proximal end 45 of a support wire 46 is positioned within the channel 56 of the lower clamp 54 along with the proximal end 16 of the boom 12. The support wire 46 extends from the lower clamp 54 and through a channel 52 in an upper clamp 50 on the V-shaped bracket 48.
The proximal ends 16, 45 of the boom 12 and the support wire 46, respectively, are secured within the lower clamp 54 by applying force to the lower clamp 54 such that the distal ends 55, 57 of the “L” shaped portions 59, 53, respectively, are forced toward each other such that the channel 56 constricts to frictionally secure the proximal ends 16, 45 of the boom 12 and the support wire 46, respectively, therein. The proximal end 45 of the support wire 46 is optionally coupled to the boom 12 in the lower clamp 54 with a bead of solder 43 that further secures the boom 12 within the earpiece 30. Typically, the bead of solder 43 is silver.
The boom 12 is preferably a 1 mm steel tube having a through bore through which wires 17 are positioned to transmit the signal from the microphone 18. Manual force is typically applied to the boom 12 to conform the boom 12 to the speaker's face. However, other materials of construction including a rigid boom 12 are within the scope of the present invention.
The support wire 46 is positioned within the lower clamp 54 and the upper clamp 50. The upper clamp 50 includes a generally “U” shaped body 49 having a proximal end attached to the V-shaped bracket 48 a distal end 51 spaced apart from the upper surface 47 of the bracket 48. A force is applied to the generally “U” shaped body 49 which causes the distal end 51 to move toward the upper surface 47 and constricts the channel 52. As the channel 52 is constricted the support wire 46 is frictionally secured therein. The support wire 46 is optionally retained to the upper clamp 50 with a bead of solder 43, preferably a silver solder.
Referring to
Referring to
Preferably, the V-shaped bracket 48, the upper clamp 50, the lower clamp 54 and the side clamp 58 are of a unitary construction. However, the clamps 50, 54, 58 can be attached to the bracket 48 in any suitable manner, including a weld.
Preferably the earpiece 30 is molded about the substantially V-shaped bracket 48 that secures the boom 12, the cable 20 and the support wire 46 in selected positions. During the molding process, the generally V-shaped bracket 48, the boom 12 the cable 20 and the support wire 46 are secured in selected positions within the earpiece 30.
The V-shaped bracket 48 is secured within a wedge portion 36 of the earpiece 30. By the term “wedge” is meant a configuration that is thickest at the juncture of the boom 12, the cable 20 and the support wire 46 by the bracket 48 and tapering to the outer surface proximate the boom 12 in a conoidal shape while also being conformed to fit behind the outer ear behind and slightly above the earlobe. The wedge thus not only provide a strong and durable connection but aids in retaining the earpiece microphone 10 in place.
Referring to
An arcuate portion 34 extends from the wedge portion 36 and transitions to an end cap 32. The end cap 32 of the earpiece 30 has a substantially cylindrical configuration. The end cap 32 grips a top end 68 of the ear 62 by having a length greater than a distance between the top end 68 of the ear 62 and the scalp 72 such that the end cap 32 retains the end cap 32 to the ear 62. While the end cap 32 preferably has a cylindrical configuration, other configurations of the end cap 32 are within the scope of the present invention.
Referring to
Referring to
Referring to
The earpiece 30 is preferably constructed from a non-conductive plastic material that is molded into the selected shape. The non-conductive plastic preferably includes flexible characteristics such that the earpiece 30 conforms to the shape of the ear 62 to aid in retaining the earpiece 30 to the ear 62.
Other materials of construction are within the scope of the present invention including, but not limited to, natural and synthetic rubber, polymer materials and plastic materials. Non-flexible or rigid materials of construction are also within the scope of the present invention.
When the earpiece 30 is positioned in a selected position about the back side 64 of the ear 62, the boom 12 is at an angle θ from a plane defined by a side wall 33 of the earpieces as best illustrated in
When forming a left ear earset microphone, the V-shaped bracket 48 and the boom 12 are preferably molded into a selected position that is a substantially a mirror image of the earset microphone 10 designed for engaging the right ear. Preferably, the boom is about 10° left of a vertical plane defined by the side wall 33 of the earpiece 30 on an earset microphone 10 designed to engage the left ear.
Referring to
Utilizing a substantially straight boom 12 in the earpiece microphone 10 of the present invention minimizes the visual impact of the boom 12 on the performer's face because the boom 12 is located on the lower portion of the performer's face away from the front of the face which is the primary focus of the audience. The substantially straight boom 12 also provides cost savings and reduces the number of manufacturing steps required to produce the earset microphone 10. The earset microphone 10 of the present invention does not require a specially formed boom thereby reducing manufacturing costs for either the earset microphone manufacturer or the boom manufacturer.
An advantage of the earset microphone 10 of the present invention is the ability to utilize a substantially straight boom 12 extending from the earlobe 68 at an angle across the lower cheek to proximate a corner of the performer's mouth 60. Because a distance from the earlobe 68 to the mouth 60 is relatively consistent from one adult person to another, the earset microphone 10 of the present invention can be utilized by a significant portion of the populous without having to make adjustments to the length of the boom 12. The earset microphone 10 of the present invention substantially conforms to any adult human face.
In an alternative embodiment illustrated in
The earpiece 130 and the V-shaped bracket have a substantially similar construction as the embodiment 10. However, within the earpiece 130, the boom 112 has an arcuate configuration extending within the arcuate portion 134 and into the upper clamp (not shown). The wires (not shown) extend though the bore in the boom 112 and connect to the printed circuit board (not shown) where the printed circuit board (not shown) transmits the signal to the cable 120 that connects to the transmitter (not shown).
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.