Earth boring systems and methods with integral debris removal

Information

  • Patent Grant
  • 10392871
  • Patent Number
    10,392,871
  • Date Filed
    Tuesday, November 15, 2016
    8 years ago
  • Date Issued
    Tuesday, August 27, 2019
    5 years ago
Abstract
A drill string comprising a bit portion, a distal extension portion, a proximal extension portion, and a connecting portion. The bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define supply path and a return path. The supply path extends through the distal proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion. The return path extends from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion.
Description
TECHNICAL FIELD

The present invention relates to earth boring systems and methods and, in particular, to earth boring systems and methods configured remove debris as the hole is being bored.


BACKGROUND

The present invention relates to system and methods for forming a hole in the earth and, in particular, to systems and methods that use drill fluid to remove drill cuttings as the hole is formed in the earth.


SUMMARY

The present invention may be embodied as a drill string comprising a bit portion, a distal extension portion, a proximal extension portion, and a connecting portion. The bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path and a return path. The supply path extends through the distal proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion. The return path extends from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion.


The present invention may also be embodied as a method of forming a hole in the earth comprising the following steps. A bit portion is operatively connected to a distal extension portion. The distal extension portion is operatively connected to a proximal extension portion to define a supply path and a return path. The supply path extends through the distal proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion. The return path extends from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion. The bit portion is engaged with the earth. The proximal portion is rotated to cause rotation of the bit portion through the distal extension portion. Drill fluid is forced through the supply path and to the cutter region. The drill fluid in the cutter region is collected through the return path.


The present invention may also be embodied as an earth boring system for forming a hole in the earth comprising a drill string, a drive system, a drill fluid supply, and a drill debris collector. The drill string comprises a bit portion, a distal extension portion, a proximal extension portion, and a connecting portion. The bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path and a return path. The supply path extends through the distal proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion. The return path extends from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion. The drill fluid supply forces drill fluid through the supply path such that the drill fluid mixes with the cuttings in the cutter region to form drill debris and the drill debris flows back up through the return path. The drill debris collector collects the drill debris.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a somewhat schematic, side elevation view of a first example earth boring system of the present invention depicting a drill string comprising a bit portion, a distal extension portion, a proximal extension portion, and a connector portion;



FIG. 2 is a perspective view of the drill string of the first example earth boring system of the present invention;



FIG. 3 is an exploded, perspective view of the drill string of the first example earth boring system;



FIG. 4 is a side elevation view of a first example bit portion of the first example earth boring system;



FIG. 5 is a bottom plan view of the first example bit portion;



FIG. 6 is a side elevation, cutaway view taken along lines 6-6 in FIG. 3 depicting details of the process of connecting distal extension portion with the first example bit portion;



FIG. 7 is a side elevation, cutaway view taken along lines 6-6 in FIG. 3 depicting the distal extension portion connected with the first example bit portion;



FIG. 8 is a perspective view of a distal end of the distal extension portion;



FIG. 9 is a perspective view illustrating details of the connector portion in an unconnected configuration;



FIG. 10 is a perspective view illustrating details of the connector portion in a connected configuration;



FIG. 11 is a side elevation, cutaway view depicting details of the process of connecting distal extension portion with the proximal extension portion;



FIG. 12 is a side elevation, cutaway view taken along lines 12-12 in FIG. 2 depicting the distal extension portion connected with the proximal extension portion;



FIG. 13 is a section view taken along lines 13-13 in FIG. 12 depicting details of the process of connecting distal extension portion with the proximal extension portion;



FIG. 14 is a perspective view of a second example bit portion that may be used to form a second example earth boring system of the present invention;



FIG. 15 is a bottom plan view of the second example bit portion;



FIG. 16 is a perspective view of a third example bit portion that may be used to form a third example earth boring system of the present invention; and



FIG. 17 is a bottom plan view of the third example bit portion.





DETAILED DESCRIPTION

Referring initially to FIGS. 1-3 of the drawing, depicted therein is a first example earth boring system 20 of the present invention. The first example earth boring system 20 comprises a bit portion 22, a distal extension portion 24, a proximal extension portion 26, and a connector portion 28.


The distal extension portion 24 is connected to the bit portion 22 and the connector portion 28 connects the distal extension portion 24 to the proximal extension portion 26 to form a drill string 30 defining a string axis A. FIG. 1 further illustrates that earth boring system 20 comprises, in addition to the drill string 30, a drive system 32, a drill fluid supply 34, and a drill debris collector 36. In this discussion, the terms “distal” and “proximal” are used with respect to the drive system 32.


The drive system 32 is configured to rotate the drill string 30 axially about the string axis A, to transfer drill fluid from the drill fluid supply 34 to the drill string 30, and to transfer drill debris from the drill string 30 to the drill debris collector 36. In particular, FIG. 1 further illustrates that the earth boring system 20 is adapted to form a hole 40 in the earth 42. Only two extension portions are employed in the first example earth boring system 20, but only one connector portion or more than two connector portions may be used as necessary to create a drill string that allows the earth boring system 20 to bore the hole 40 in the earth 42 to a desired depth.


During use, the drill string 30 is supported a desired angle at a desired point on the earth, and the drive system 32 is operatively connected to the drill string 30. Operation of the drill system 32 to cause axial rotation of the drill string 30 causes the bit portion 22 to bore the hole 40. At the same time, the drill fluid supply 34 forces drill fluid along a supply path 44 (FIG. 2) formed by the drill string 30 to the bit portion 22. Cuttings formed as the bit portion 22 engages the earth 42 are carried by the drill fluid back up the drill string 30 along a return path 46 (FIG. 2) and are deposited in the drill debris collector 36.


With the foregoing general understanding of the construction and operation of the first example earth boring system 20 in mind, the details of the example drill string 30 will now be described in detail. In the following example, letter appendices to reference characters are employed to indicate a specific example a part or feature but are not intended to be separate or distinguishable from the generic form of that part or feature.


Referring now to FIGS. 4-7, the first example bit portion 22 will now be described in further detail. As perhaps best shown in FIG. 6, the example bit portion 22 comprises a cutter assembly 50, a bit housing 52, a bit coupler 54, at least one coupler pin 56, and at least one seal member 58.


The cutter assembly 50 comprises a cutter plate 60 and a plurality of cutter heads 62. The cutter plate 60 defines at least one cutter plate slot 64 and at least one cutter plate notch 66. FIG. 5 illustrates that the example cutter heads 62 are arranged in at least one cutter head group 68 and that one cutter plate slot 64 and one cutter plate notch 66 are associated with each cutter head group 68. In the example bit portion 22, first and second cutter head groups 68a and 68b are employed, and first and second cutter plate slots 64a and 64b and first and second cutter plate notches 66a and 66b are associated with the first and second cutter head groups 68a and 68b, respectively.



FIGS. 6 and 7 illustrate that the example bit housing 52 comprises a bit housing member 70 defining a bit housing chamber 72 and at least one bit housing groove 74. One bit housing groove 74 is associated with each of the cutter plate notches 66, so first and second housing grooves 74a and 74b are associated with the first and second cutter plate notches 66a and 66b, respectively.



FIGS. 6 and 7 further illustrate that the example bit coupler 54 comprises a coupler plate 80 and a coupler member 82. The example coupler plate 80 defines a first coupler plate opening 84 and at least one coupler plate notch 86. The example coupler member 82 defines a coupler member passageway 88. The coupler member 82 is secured to the coupler plate 80 such that the coupler member passageway 88 is aligned with the coupler plate opening 84. In the example bit portion 22 comprising first and second housing grooves 74a and 74b, first and second coupler plate notches 86a and 86b are provided.


At least one pin groove 90 is formed in the coupler member 82. In the example drill string 30, first and second coupler pins 56a and 56b and first and second pin grooves 90a and 90b are provided. In addition, a seal groove 92 (FIG. 6) is formed on the coupler member 82 such that the coupler pin grooves 90 are arranged between the seal groove 92 and the coupler plate 80.


The example bit portion 22 is formed by securing the cutter heads 62 to the cutter head plate 60 in the first and second cutter head groups 68a and 68b. The cutter head plate 60 is secured to the bit housing member 70 to define one end of the bit housing chamber 72 with first and second coupler plate slots 64a and 64b in communication with the bit housing chamber 72 and the first and second coupler plate notches 86a and 86b in communication with the first and second bit housing grooves 74a and 74b. The coupler plate 80 is secured to the bit housing member 70 to define another end of the bit housing chamber 72 and such that the first coupler plate opening 84 is in communication with the bit housing chamber 72 and the first and second coupler plate notches 86a and 86b are aligned with the first and second bit housing grooves 74a and 74b.


Turning now to FIGS. 6-12, the example proximal and distal extension portions 24 and 26 will now be described in detail. The example distal extension portion 24 comprises an extension housing assembly 120 comprising first and second extension housing members 122 and 124, a distal end plate 126 (FIGS. 6-8), and a proximal end plate 128 (FIGS. 11 and 12). The distal end plate 126 defines at least one supply distal end plate opening 130 and at least one removal distal end plate opening 132, while the proximal end plate 128 defines at least one supply proximal end plate opening 134 and at least one removal proximal end plate opening 136. The example end distal plate 126 define first and second removal end plate openings 132a and 132b; the example proximal end plate 128 defines first and second removal end plate openings 136a and 136b.


As shown in FIGS. 6-8, 11 and 12, the distal and proximal end plates 126 and 128 are rigidly connected to the first and second extension housing members 122 and 124 such that the supply end plate openings 130 and 134 are in fluid communication with a supply extension chamber 140 defined by the first extension housing member 122 and the removal end plate openings 132 and 136 are in fluid communication with a removal extension chamber 142 defined by the second extension housing member 124.


At least one first coupler pin opening 150 is further formed in the first extension housing member 122, and at least one second coupler pin opening 152 is formed in the second extension housing member 124. In the example drill string 30, at least one pair of the first coupler pin openings 150 and at least one pair of second coupler pin openings 152 are provided. Further, each coupler pin opening 150 and 152 may further comprise a complementary coupler pin opening (not visible in the drawing) formed in the housing members 122 and 124. The coupler pin openings 150 and 152 are sized, dimensioned, and located adjacent to the distal end plate 126 as will be described in further detail below.



FIGS. 11 and 12 illustrate that, like the distal extension portion 24, the example proximal extension portion 26 comprises an extension housing assembly 220 comprising first and second extension housing members 222 and 224, a distal end plate 226, and a proximal end plate 228 (not visible). The distal end plate 226 defines at least one supply distal end plate opening 230 and at least one removal distal end plate opening 232, while the proximal end plate 228 defines at least one supply proximal end plate opening (not visible) and at least one removal proximal end plate opening (not visible). The example end distal plate 226 defines first and second removal end plate openings 232a and 232b; the example proximal end plate 228 similarly defines first and second removal end plate openings (not visible).


As shown in FIGS. 11 and 12, the distal and proximal end plates 226 and 228 are rigidly connected to the first and second extension housing members 222 and 224 such that the supply end plate openings 230 and 234 are in fluid communication with a supply extension chamber 240 defined by the first extension housing member 222 and the removal end plate openings 232 and 236 are in fluid communication with a removal extension chamber 242 defined by the second extension housing member 224.


Desirably, but not necessarily, the distal and proximal extension portions 24 and 26 are, for the most part, the same. If additional extension portions are used to form a longer drill string than the example drill string 30, these additional extension portions will desirably, but again not necessarily, the same as the proximal end portion 26. The example proximal end portion 26 and any additional end portions need not employ pin openings such as the pin openings 150 and 152 formed in the distal end portion 24 for reasons that will become apparent below. If pin openings are formed in the proximal end portion 24 and any additional extension portions, such pin openings will not be used and may be plugged. The standardization of distal, proximal, and any additional extension portions can simplify the logistics of designing and fabricating a drill string as desired for a particular set of operating conditions at the desired location of the hole 40 to be bored into the earth 42.



FIGS. 9-13 illustrate that the example connector portion 28 comprises a first connector housing 320 and a second connector housing 322. The first and second connector housings 320 and 322 are connected to form a connector assembly 324 by connector screws 326.


The first connector housing 320 defines a first plate edge 330, a key edge 332, first screw openings 334, key slots 336, and a first connector housing passageway 338. The second connector housing 322 defines a leading edge 340, a second plate edge 342, second screw openings 344, key projections 338, and a second connector housing passageway 348.


The example connector portion 28 further comprises a connector member 350 and a plurality of seal members 352. The example connector member 350 defines first and second connector end portions 360 and 362 and an intermediate portion 364 and defines a connector passageway 366. The intermediate portion 364 defines first and second shoulder portions 370 and 372, and at least one seal groove 374 is formed on each of the first and second connector end portions 360 and 362.


The first plate edge 330 is secured to the distal end plate 226 of the proximal extension housing assembly 220, and the second plate edge 342 is secured to the proximal end plate 128 of the distal end plate housing assembly 120.


The example drill string 30 is fabricated as follows. Initially, the bit portion 22 is secured to the distal extension portion 24 as follows. The seal member 58 is arranged in the seal groove 92 on the coupler member 82, and the coupler member 82 is inserted into the supply extension chamber 140 such that the seal 58 engages an inner wall of the first extension housing member 122. The coupler pins 56a and 56b are inserted through the coupler pin openings 150a and 152b such that the coupler pins 56a and 56b are at least partly arranged within the coupler pin grooves 90a and 90b. So arranged, the coupler pins 56 prevent relative movement of the bit portion 22 and the distal end portion 24 along the string axis A. The coupler pins 56 also translate axial rotation of the extension housing assembly 120 to the bit housing 52 such that axial rotation of the drill string 30 rotates the cutter heads 62 such that the cutter heads 62 engage the earth 42 to form the hole 40 in a conventional manner.


The example connector portion 28 is then used to connect the distal and extension portion 24 to the proximal end portion 26 as follows. The seal members 352 are arranged in the seal grooves 374. The connector member 350 is arranged such that the first shoulder portion 370 engages the first extension housing member 122 of the distal extension housing assembly 120 with the seal members 352 against an inner surface of the first extension housing member 122. The leading edge 340 of the second connector housing 322 is inserted into the first connector housing passageway 338 such that: the second shoulder portion 372 of the connector portion 28 engages the first extension housing member 222 of the proximal extension housing assembly 220 with the seal members 352 against an inner surface of the first extension housing member 222; the key slots 336 receive the key projections 346; and the first and second screw openings 334 and 344 are aligned. The connector screws 326 are then inserted through the aligned screw openings 334 and 344. At least one of the screw openings 334 and 344 may be threaded to engage threads on the connector screws 326 to secure the connector screws 326 in place as shown in FIG. 13. At this point, a supply connector chamber 380 is formed within the connector bore 366, and a removal connector chamber 382 is formed within the first connector housing bore 338 and outside of the connector member 350.


The key projections 346 engage the key slots 336 to transfer axial rotation of the proximal extension housing assembly 220 to the distal extension housing assembly 120. The connector screws 326 prevent relative movement of the distal and proximal extension housing assemblies 120 and 220 relative to each other during normal operation of the drill string 30. The connector screws 326 will also transfer axial rotation of the proximal extension housing assembly 220 to the distal extension housing assembly 120.


In addition, the arrangement described above and depicted, for example, in FIGS. 7 and 12 creates the supply path 44 and return path 46 described above. In particular, the supply path 44 extends through the supply extension chamber 240 of the proximal extension housing assembly 220, through the connector member bore 366, through the supply extension chamber 140 of the distal extension housing assembly 120, through the supply connector chamber 380, through the bit housing chamber 72, out of the cutter plate slots 64, and into an active cutting region surrounding the cutter assembly 50. The return path 46 extends from the active cutting region surrounding the cutter assembly 50 up along the bit housing grooves 74 (contained by the inner wall of the hole 40), through the second coupler plate opening(s) 86, through the removal extension chamber 142 defined by the distal extension housing assembly 120, through the removal connector chamber 382 defined by the connector portion 28, and through the removal extension chamber 242 formed by the proximal extension housing assembly 220.


In use, the drill fluid supply 34 forces the drill fluid through the drive system 32 and along the supply path 44 such that the drill fluid mixes with cuttings or tailings generated by the cutter assembly 50 in the active cutting region surrounding the cutter assembly 50. Pressure on the drill fluid forces the mixture of drill fluid and cuttings or tailings out of the active cutting region and back up along the return path 46 and out of the drive system 32, where the mixture of drill fluid and cuttings or tailings is collected in the drill debris collector 36.


Although the various components of a drill string forming a part of an earth boring system of the present invention may be fabricated in many shapes, the use of parts that are generally symmetrical about a plane extending through the string axis A is desirable for a number of reasons. The bit housing 52, coupler member 82, extension housing members 122, 124, 222, and 224, first and second connector housings 320 and 322, and connector member 350 are all substantially cylindrical or have at least a portion that is cylindrical. The example supply path 44 is thus generally cylindrical. The example return path 46 is generally annular and surrounds the supply path 44.


Depicted in FIGS. 14 and 15 is a second example bit portion 420 with different dimensions and a different cutter assembly 422 than the example bit portion 22 and cutter assembly 50 described above. The second example bit portion 420 may be used as part of a drill string like the example drill string 30 with appropriate sizing of the other parts of the drill string.



FIGS. 16 and 17 depict a third example bit portion 430 with different dimensions and a different cutter assembly 432 than the example bit portions 22 and 420 and cutter assemblies 50 and 422 described above. The cutter assembly 432 comprises four groups of cutter heads radially extending from a center group of cutter heads and defines four cutter plate slots, with one cutter plate slot arranged between each pair of cutter head groups. The third example bit portion 430 may be used as part of a drill string like the example drill string 30 with appropriate sizing of the other parts of the drill string.

Claims
  • 1. A drill string comprising: a bit portion;a distal extension portion;a proximal extension portion; anda connecting portion; wherebythe bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion; anda return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion;a portion of the return path defined by the distal extension portion surrounds the supply path; andthe bit portion defines at least one housing groove, where the return path extends at least partly through the at least one housing groove.
  • 2. A drill string as recited in claim 1, in which the connecting portion comprises: a first connector housing secured to the proximal extension portion;a second connector housing secured to the distal extension portion; anda connector member defining a connector passageway; whereinthe first and second housings are secured to each other to transfer rotational forces from the proximal extension portion to the distal extension portion; andthe connector member engages the proximal extension portion and the distal extension portion such that a portion of the supply path extends through the connector passageway, anda portion of the return path extends between the connector member and at least one of the first and second connector housings.
  • 3. A drill string as recited in claim 2, in which the connecting portion further comprises at least one seal member arranged between the connector member and at least one of the first and second connector housings to inhibit the flow of material between the supply path and the return path.
  • 4. A drill string as recited in claim 1, in which: the distal extension portion defines first and second distal extension housing members arranged to define distal supply and removal extension chambers;the proximal extension portion defines first and second proximal housing members arranged to define proximal supply and removal extension chambers; andthe connecting portion comprises a first connector housing secured to the proximal extension portion;a second connector housing secured to the distal extension portion; anda connector member defining a connector passageway; whereinthe first and second housings are secured to each other to transfer rotational forces from the proximal extension portion to the distal extension portion; andthe connector member engages the first distal extension housing member and the first proximal extension housing member such that a portion of the supply path extends through the proximal supply extension chamber, the connector passageway, and the distal supply extension chamber, anda portion of the return path extends through the distal removal extension chamber, between the connector member and at least one of the first and second connector housings, and through the proximal removal extension chamber.
  • 5. A drill string as recited in claim 4, in which the connecting portion further comprises: at least one key projection; andat least one key slot; whereinthe at least one key projection engages the at least one key slot to transfer rotational forces from the proximal extension portion to the distal extension portion.
  • 6. A drill string as recited in claim 1, in which the connecting portion comprises: a first connector housing secured to the proximal extension portion;a second connector housing secured to the distal extension portion;at least one key projection; andat least one key slot; whereinthe at least one key projection engages the at least one key slot to transfer rotational forces from the proximal extension portion to the distal extension portion.
  • 7. A drill string as recited in claim 6, in which the connecting portion further comprises: at least one first opening formed in the first connector housing;at least one second opening formed in the second connector housing; andat least one connector screw adapted to engage the at least one first opening and the at least one second opening to secure the proximal extension portion to the distal extension portion.
  • 8. A drill string as recited in claim 1, in which the connecting portion further comprises at least one seal member arranged to inhibit the flow of material between the supply path and the return path.
  • 9. A drill string as recited in claim 1, in which the bit portion comprises: a bit;a bit coupler;a bit housing for supporting the bit and the bit coupler; andat least one coupler pin; whereinthe at least one coupler pin engages the bit housing and the distal extension portion to secure the bit portion to the distal extension portion to transfer rotation of the distal extension portion to the bit.
  • 10. A drill string as recited in claim 9, further comprising at least one seal member arranged between the bit coupler and the distal extension portion to inhibit the flow of material between the supply path and the return path.
  • 11. A drill string as recited in claim 1, in which: the distal extension portion defines first and second distal extension housing members arranged to define distal supply and removal extension chambers, where the first distal extension housing member defines at least one first coupler pin opening;the proximal extension portion defines first and second proximal housing members arranged to define proximal supply and removal extension chambers, where the second distal extension housing member defines at least one second coupler pin opening; andthe bit portion comprises: a bit;a bit coupler defining at least one coupler pin groove;a bit housing for supporting the bit and the bit coupler; andat least one coupler pin; whereinthe at least one coupler pin extends through the at least one second coupler pin opening and the at least one first coupler pin opening and is arranged at least partly within the at least one coupler pin groove to secure the bit portion to the distal extension portion to transfer rotation of the distal extension portion to the bit.
  • 12. A method of forming a hole in the earth comprising the steps of: providing a bit portion defining at least one housing groove;the bit portion is operatively connected to a distal extension portion;operatively connecting the distal extension portion to a proximal extension portion to define a supply path extending through the proximal extension portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion;a return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion, where the return path extends at least partly through the at least one housing groove; anda portion of the return path defined by the distal extension portion surrounds the supply path;engaging the bit portion with the earth;rotating the proximal portion to cause rotation of the bit portion through the distal extension portion;forcing drill fluid through the supply path and to the cutter region; andcollecting drill fluid in the cutter region through the return path.
  • 13. A method as recited in claim 12, in which the step of operatively connecting the distal extension portion to the proximal extension portion comprises the steps of: securing a first connector housing to the proximal extension portion;securing a second connector housing to the distal extension portion; andsecuring the first and second housings to each other to transfer rotational forces from the proximal extension portion to the distal extension portion; andarranging a connector member to engage the proximal extension portion and the distal extension portion such that a portion of the supply path extends through the connector passageway,a portion of the return path extends between the connector member and at least one of the first and second connector housings.
  • 14. An earth boring system for forming a hole in the earth, comprising: a drill string comprising a bit portion defining at least one housing groove;a distal extension portion;a proximal extension portion; anda connecting portion;a drive system;a drill fluid supply; anda drill debris collector; wherebythe bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion;a return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion; anda portion of the return path defined by the distal extension portion surrounds the supply path;the drill fluid supply forces drill fluid through the supply path such that the drill fluid mixes with cuttings in the cutter region to form drill debris,the drill debris flows back up through the return path; andthe drill debris collector collects the drill debris; andthe return path extends at least partly through the at least one housing groove.
  • 15. An earth boring system as recited in claim 14, in which the connecting portion comprises: a first connector housing secured to the proximal extension portion;a second connector housing secured to the distal extension portion; anda connector member defining a connector passageway; whereinthe first and second housings are secured to each other to transfer rotational forces from the proximal extension portion to the distal extension portion; andthe connector member engages the proximal extension portion and the distal extension portion such that a portion of the supply path extends through the connector passageway, anda portion of the return path extends between the connector member and at least one of the first and second connector housings.
  • 16. An earth boring system as recited in claim 14, in which: the distal extension portion defines first and second distal extension housing members arranged to define distal supply and removal extension chambers;the proximal extension portion defines first and second proximal housing members arranged to define proximal supply and removal extension chambers; andthe connecting portion comprises a first connector housing secured to the proximal extension portion;a second connector housing secured to the distal extension portion; anda connector member defining a connector passageway; whereinthe first and second housings are secured to each other to transfer rotational forces from the proximal extension portion to the distal extension portion; andthe connector member engages the first distal extension housing member and the first proximal extension housing member such that a portion of the supply path extends through proximal supply extension chamber, the connector passageway, and the distal supply extension chamber, anda portion of the return path extends through the distal removal extension chamber, between the connector member and at least one of the first and second connector housings, and through the proximal removal extension chamber.
  • 17. A drill string comprising: a bit portion;a distal extension portion;a proximal extension portion; anda connecting portion; wherebythe bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion; anda return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion; andthe bit portion defines at least one housing groove, where the return path extends at least partly through the at least one housing groove.
  • 18. A drill string comprising: a bit portion comprising a bit,a bit coupler,a bit housing for supporting the bit and the bit coupler, where the bit housing defines at least one housing groove, andat least one coupler pin;a distal extension portion;a proximal extension portion; anda connecting portion; wherebythe at least one coupler pin engages the bit housing and the distal extension portion to secure the bit portion to the distal extension portion to transfer rotation of the distal extension portion to the bit;the bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion; anda return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion; andthe return path extends at least partly through the at least one housing groove.
  • 19. A method of forming a hole in the earth comprising the steps of: providing a bit portion defining at least one housing groove;the bit portion is operatively connected to a distal extension portion;operatively connecting the distal extension portion to a proximal extension portion to define a supply path extending through the proximal extension portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion,a return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion, andthe return path extends at least partly through the at least one housing groove; andengaging the bit portion with the earth;rotating the proximal portion to cause rotation of the bit portion through the distal extension portion;forcing drill fluid through the supply path and to the cutter region; andcollecting drill fluid in the cutter region through the return path.
  • 20. An earth boring system for forming a hole in the earth, comprising: a drill string comprising a bit portion, where the bit portion defines at least one housing groove,a distal extension portion,a proximal extension portion, anda connecting portion;a drive system;a drill fluid supply; anda drill debris collector; wherebythe bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion,a return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion, andthe return path extends at least partly through the at least one housing groove;the drill fluid supply forces drill fluid through the supply path such that the drill fluid mixes with cuttings in the cutter region to form drill debris, andthe drill debris flows back up through the return path; andthe drill debris collector collects the drill debris.
  • 21. A drill string comprising: a bit portion comprising a bit;a bit coupler;a bit housing for supporting the bit and the bit coupler; andat least one coupler pin;a distal extension portion;a proximal extension portion; anda connecting portion; wherebythe bit portion is operatively connected to the distal extension portion and the connecting portion operatively connects the distal extension portion to the proximal extension portion to define a supply path extending through the proximal extension portion, the connecting portion, the distal extension portion, and the bit portion to a cutter region associated with the bit portion; anda return path extending from the cutter region through the bit portion, the distal extension portion, the connector portion, and the proximal extension portion;the at least one coupler pin engages the bit housing and the distal extension portion to secure the bit portion to the distal extension portion to transfer rotation of the distal extension portion to the bit;a portion of the return path defined by the distal extension portion surrounds the supply path; andthe bit housing defines at least one housing groove, where the return path extends at least partly through the at least one housing groove.
RELATED APPLICATIONS

This application, U.S. patent application Ser. No. 15/352,064 filed Nov. 15, 2016 claims benefit of U.S. Provisional Application Ser. No. 62/256,996 filed Nov. 18, 2015, the contents of which are incorporated herein by reference.

US Referenced Citations (188)
Number Name Date Kind
48515 Campbell et al. Jul 1865 A
500780 Simon Jul 1893 A
628962 Speer Jul 1899 A
910421 Schlueter Jan 1909 A
999334 Pearson Aug 1911 A
1288989 Rees Dec 1918 A
1294154 Payne Feb 1919 A
1322470 Schenk Nov 1919 A
1464231 Yezek Aug 1923 A
1654093 Reid Dec 1927 A
1684816 Arden Sep 1928 A
1787000 Hunt Dec 1930 A
1903555 Robertson Apr 1933 A
2101285 Stevens Dec 1937 A
2128428 Murray, Jr. Aug 1938 A
2232845 Fieroh Feb 1941 A
2239024 Vance Apr 1941 A
2350921 Pinazza Jun 1944 A
2436251 Dobie et al. Feb 1948 A
2439219 O'Connor Apr 1948 A
2577252 Kjellman Dec 1951 A
2760747 Mordarski Aug 1956 A
2952132 Urban Sep 1960 A
2975846 Bodine Mar 1961 A
3004389 Muller Oct 1961 A
3059436 Hermann, Jr. Oct 1962 A
3106258 Muller Oct 1963 A
3115198 Kuss Dec 1963 A
3172485 Spannhake et al. Mar 1965 A
3175630 Hein et al. Mar 1965 A
3278235 Bergstrom Oct 1966 A
3280924 Tatamikov Oct 1966 A
3287983 Austin et al. Nov 1966 A
3300987 Maeda Jan 1967 A
3313376 Holland Apr 1967 A
3371727 Belousov et al. Mar 1968 A
3381422 Olson May 1968 A
3391435 Lebelle Jul 1968 A
3394766 Lebelle Jul 1968 A
3396805 Muller Aug 1968 A
3411305 Cella Nov 1968 A
3412813 Johnson Nov 1968 A
3460637 Schulin Aug 1969 A
3513587 Artur May 1970 A
3528302 Kinnan Sep 1970 A
3530947 Gendron Sep 1970 A
3577645 Zurawski May 1971 A
3583497 Kossowski et al. Jun 1971 A
3684037 Bodine Aug 1972 A
3686877 Bodin Aug 1972 A
3711161 Proctor et al. Jan 1973 A
3786874 Demichelis et al. Jan 1974 A
3786878 Chapman Jan 1974 A
3808820 Bodine May 1974 A
3828864 Haverkamp et al. Aug 1974 A
3865501 Kniep Feb 1975 A
3871617 Majima Mar 1975 A
3874244 Rasmussen et al. Apr 1975 A
3891186 Thorsell Jun 1975 A
3907042 Halwas et al. Sep 1975 A
3909149 Century Sep 1975 A
3952796 Larson Apr 1976 A
3999392 Fukushima et al. Dec 1976 A
4033419 Pennington Jul 1977 A
4067369 Harmon Jan 1978 A
4082361 Lanfermann Apr 1978 A
4100974 Pepe Jul 1978 A
4113034 Carlson Sep 1978 A
4143985 Axelsson et al. Mar 1979 A
4144939 Knothe Mar 1979 A
4155600 Lanfermann et al. May 1979 A
4166508 van den Berg Sep 1979 A
4195698 Nakagawasai Apr 1980 A
4274761 Boguth Jun 1981 A
4285405 Weir Aug 1981 A
4297056 Nottingham Oct 1981 A
4312413 Loftis Jan 1982 A
4351624 Barber Sep 1982 A
4375927 Kniep Mar 1983 A
4397199 Jahn Aug 1983 A
4428699 Juhola Jan 1984 A
4455105 Juhola Jun 1984 A
4519729 Clarke et al. May 1985 A
4522304 Walter Jun 1985 A
4537527 Juhola et al. Aug 1985 A
4547110 Davidson Oct 1985 A
4553443 Rossfelder et al. Nov 1985 A
4601615 Cavalli Jul 1986 A
4603748 Rossfelder et al. Aug 1986 A
4606427 Beer Aug 1986 A
4616716 Bouplon Oct 1986 A
4625811 Tuenkers Dec 1986 A
4627768 Thomas et al. Dec 1986 A
4632602 Hovnanian Dec 1986 A
4637475 England et al. Jan 1987 A
4645017 Bodine Feb 1987 A
4650008 Simson Mar 1987 A
4735270 Fenyvesi Apr 1988 A
4755080 Cortlever et al. Jul 1988 A
4768900 Burland Sep 1988 A
4813814 Shibuta et al. Mar 1989 A
4819740 Warrington Apr 1989 A
4863312 Cavalli Sep 1989 A
4915180 Schisler Apr 1990 A
5004055 Porritt et al. Apr 1991 A
5088565 Evarts Feb 1992 A
5106233 Breaux Apr 1992 A
5117925 White Jun 1992 A
5213449 Morris May 1993 A
5240348 Breaux Aug 1993 A
5244316 Wright et al. Sep 1993 A
5253542 Houze Oct 1993 A
RE34460 Ishiguro et al. Nov 1993 E
5263544 White Nov 1993 A
5281775 Gremillion Jan 1994 A
5343002 Gremillion Aug 1994 A
5355964 White Oct 1994 A
5388931 Carlson Feb 1995 A
5410879 Houze May 1995 A
5439326 Goughnour et al. Aug 1995 A
5529132 Evarts Jun 1996 A
5540295 Serrette Jul 1996 A
5544979 White Aug 1996 A
5549168 Sadler et al. Aug 1996 A
5549170 Barrow Aug 1996 A
5562169 Barrow Oct 1996 A
5609380 White Mar 1997 A
5653556 White Aug 1997 A
5658091 Goughnour et al. Aug 1997 A
5794716 White Aug 1998 A
5800096 Barrow Sep 1998 A
5811741 Coast et al. Sep 1998 A
5860482 Gremillion et al. Jan 1999 A
6039508 White Mar 2000 A
6129159 Scott et al. Oct 2000 A
6179527 Goughnour Jan 2001 B1
6234260 Coast et al. May 2001 B1
6250426 Lombard Jun 2001 B1
6360829 Naber et al. Mar 2002 B1
6386295 Suver May 2002 B1
6394704 Saeki et al. May 2002 B1
6427402 White Aug 2002 B1
6431795 White Aug 2002 B2
6447036 White Sep 2002 B1
6543966 White Apr 2003 B2
6557647 White May 2003 B2
6582158 Van Stein Jun 2003 B1
6648556 White Nov 2003 B1
6672805 White Jan 2004 B1
6732483 White May 2004 B1
6736218 White May 2004 B1
6896448 White May 2005 B1
6908262 White Jun 2005 B1
6942430 Suver Sep 2005 B1
6988564 White Jan 2006 B2
7080958 Morris Jul 2006 B1
7168890 Evarts Jan 2007 B1
7392855 White Jul 2008 B1
7694747 White Apr 2010 B1
7708499 Evarts May 2010 B1
7824132 White Nov 2010 B1
7854571 Evarts Dec 2010 B1
7914236 Neville Mar 2011 B2
7950877 Evarts May 2011 B2
8070391 White Dec 2011 B2
8181713 White May 2012 B2
8186452 White et al. May 2012 B1
8434969 White May 2013 B2
8496072 White Jul 2013 B2
8763719 White Jul 2014 B2
9249551 White Feb 2016 B1
9255375 Yingling et al. Feb 2016 B2
9957684 Suver et al. May 2018 B2
20010002230 White May 2001 A1
20050039952 Hill et al. Feb 2005 A1
20060198706 Neville Sep 2006 A1
20100266344 Plotkin et al. Oct 2010 A1
20100303552 Yingling et al. Dec 2010 A1
20110162859 White Jul 2011 A1
20120292062 White Nov 2012 A1
20130149040 Evarts Jun 2013 A1
20140056652 Suver Feb 2014 A1
20140377011 Yingling et al. Dec 2014 A1
20150016893 Suver et al. Jan 2015 A1
20160356294 Fenwick et al. Dec 2016 A1
20170101759 Suver Apr 2017 A1
20170138133 Fenwick May 2017 A1
20170167102 Suver et al. Jun 2017 A1
Foreign Referenced Citations (42)
Number Date Country
2394894 Aug 2003 CA
2942801 Oct 2015 CA
102296608 Jul 2015 CN
4010357 Oct 1990 DE
0172960 Mar 1986 EP
362158 Apr 1990 EP
526743 Oct 1993 EP
838717 Mar 1939 FR
2560247 Aug 1985 FR
2003769 Mar 1979 GB
2023496 Jan 1980 GB
2028902 Mar 1980 GB
2043755 Oct 1980 GB
2060742 May 1981 GB
2069659 Aug 1981 GB
5494703 Jul 1979 JP
355098526 Jul 1980 JP
356034828 Apr 1981 JP
57169130 Oct 1982 JP
59228529 Dec 1984 JP
61221416 Oct 1986 JP
0258627 Feb 1990 JP
497015 Mar 1992 JP
473035 Jun 1992 JP
6136751 May 1994 JP
2005256500 Sep 2005 JP
2005315050 Nov 2005 JP
2006089933 Apr 2006 JP
2006177125 Jul 2006 JP
2006312825 Nov 2006 JP
2009138487 Jun 2009 JP
42349 Jan 1938 NL
65252 Feb 1950 NL
7710385 Mar 1978 NL
7707303 Jan 1979 NL
7805153 Nov 1979 NL
46428 Apr 1929 NO
2109881 Apr 1998 RU
1027357 Jul 1983 SU
WO8707673 Dec 1987 WO
WO8805843 Aug 1988 WO
2012031108 Mar 2012 WO
Non-Patent Literature Citations (13)
Entry
USPTO, “Final Office Action, U.S. Appl. No. 15/285,326,”, dated Aug. 14, 2017, 10 pages.
USPTO, “Non-Final Office Action, U.S. Appl. No. 15/372,196,” dated Oct. 4, 2017, 23 pages.
USPTO, “Final Office Action, U.S. Appl. No. 15/285,326,”, dated Apr. 25, 2018, 9 pages.
“Castle Board Drain Method”, Japanese brochure, Reference Nos. APE00857 through APE00863, Aug. 1976.
“Kony Drain Board,” undated, 1 page.
“The 1.sup.st Report on the Treatment of Soft Foundation of Juck Hyun Industrial Site”, Ref. Nos. APE00854 through APE00856, Mar. 1976.
A report identifying systems for driving mandrels carrying wick drain material into the earth, identified by Ref. Nos. APE0510 through APE0536, (undated).
A series of photographs identified by reference Nos. APE01147 through APE01159. 1990-1993.
International Construction Equipment, Inc “Hydraulic Vibratory Driver/Extractors for Piling and Caisson Work,” 10 pages.
International Construction Equipment, Inc “Hydraulic Vibratory Driver/Extractors for Piling and Caisson Work,” Ref. No. V7-0890-51, 1974, 3 pages.
Korean document, Ref. Nos. APE00864 through APE00891, 1982-1997.
Schematic drawings identified by Ref. Nos. APE01038, APE01039, and APE0339, (undated).
USPTO, “Non-Final Office Action, U.S. Appl. No. 15/285,326,”, dated Apr. 25, 2017, 10 pages.
Related Publications (1)
Number Date Country
20170138133 A1 May 2017 US
Provisional Applications (1)
Number Date Country
62256996 Nov 2015 US