Not Applicable.
Embodiments of the present invention relate to methods, systems, tools, and tool bodies for forming wellbores in subterranean earth formations and, more specifically, to methods, systems, tools, and tool bodies for preventing erosion of tool bodies including nozzle recesses.
Wellbores are formed in subterranean formations for various purposes including, for example, extraction of oil and gas from the subterranean formation and extraction of geothermal heat from the subterranean formation. A wellbore may be formed in a subterranean formation using a drill bit such as, for example, an earth-boring rotary drill bit. Different types of earth-boring rotary drill bits are known in the art including, for example, fixed-cutter bits (which are often referred to in the art as “drag” bits), rolling-cutter bits (which are often referred to in the art as “rock” bits), diamond-impregnated bits, and hybrid bits (which may include, for example, both fixed cutters and rolling cutters). The drill bit is rotated and advanced into the subterranean formation. As the drill bit rotates, the cutters or abrasive structures thereof cut, crush, shear, and/or abrade away the formation material to form the wellbore.
Bodies of earth-boring tools, such as rotary drill bits, often include fluid passageways that extend through the bodies to face of the tools. Drilling fluid may be pumped through the tool bodies to the face of the tools through these fluid passageways. Nozzle recesses are often formed in the bodies of such tools at the end of the fluid passageways proximate the face of the bodies. Fluid nozzles may be inserted into and retained within the nozzle recesses. The nozzles retained within the nozzle recesses may be configured with suitably sized and shaped orifices to impart desirable characteristics (e.g., fluid velocity, spray direction, and spray pattern) to the drilling fluid flowing through the fluid passageways to the face of the tool. The drilling fluid is employed to cool and clean cutting structures on the earth-boring tool and to flush and clear formation material as the wellbore is drilled, such formation material being carried up the wellbore annulus between the drill string to which the earth-boring tool is secured and the wellbore wall.
During use, the flow of the high velocity, high pressure, solids-laden drilling fluid through the nozzle assembly 12 and splash-back of the drilling fluid from the formation face upon which drilling fluid impinges may erode the generally circular edges 34 defined by the intersections between the face 31 of the body 30 of the tool 10 and the surfaces of the tool body within the nozzle recesses 16 (or fluid passageways 26). If these edges 34 erode to a significant extent, the drilling hydraulics of the tool 10 may be detrimentally affected, and the tool 10 may be incapable of performing efficiently.
In some embodiments, the present invention includes earth-boring tools that include a body having an outer face and an inner surface defining at least one of a fluid passageway and a nozzle recess in the body. An annular-shaped structure is disposed proximate an area of intersection between the outer face of the body and the inner surface of the body. The annular-shaped structure comprises a material that exhibits an erosion resistance greater than an erosion resistance exhibited by a material of the body.
In additional embodiments, the present invention includes methods of forming earth-boring tools in which an annular-shaped structure is provided proximate an area of intersection between an outer face of a body of the earth-boring tool and an inner surface of the body of the earth-boring tool. A material of the annular-shaped structure is selected to comprise a material exhibiting an erosion resistance greater than an erosion resistance exhibited by a material of the body.
In additional embodiments, the present invention includes earth-boring rotary drill bits having a bit body comprising an outer face, an inner surface defining a nozzle recess in the bit body. A surface extends between the outer face of the bit body and the inner surface of the bit body, and the surface defines a recess in the bit body proximate an area of intersection between the outer face and the inner surface. Hardfacing material is disposed within the recess. The hardfacing material exhibits an erosion resistance greater than an erosion resistance exhibited by a material of the bit body.
In yet further embodiments, the present invention includes methods of repairing earth-boring tools in which an annular-shaped structure is provided over an eroded surface of a body of a previously used earth-boring tool between an outer face of the body and an inner surface of the body, and a material of the annular-shaped structure is selected to comprise a material exhibiting an erosion resistance greater than an erosion resistance exhibited by a material of the body.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, various features and advantages of this invention may be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not actual views of any particular drilling system, earth-boring tool, or body of an earth-boring tool, but are merely idealized representations that are employed to describe the present invention.
Embodiments of the present invention may be used to hinder or prevent erosion of the surfaces of a body of an earth-boring tool located in the area of intersection between a face or exterior surface of the body and an inner surface of the body within a fluid passageway such as, without limitation, a nozzle recess extending into the body from the face or other exterior surface of the body. The term “erosion” refers to a two body wear mechanism that occurs when solid particulate material, a fluid, or a fluid carrying solid particulate material impinges on a solid surface, such as may occur when drilling fluid is pumped through and around a drill bit or other drilling tool during a drilling operation.
The drill bit 110 includes a bit crown or body 111 coupled to a shank 113. The bit body 111 may comprise steel or another metal alloy. In other embodiments, however, the bit body 111 may comprise a particle-matrix composite material comprising hard particles (e.g., particles of tungsten carbide) dispersed throughout a metal matrix material (e.g., an iron-based, nickel-based, cobalt-based, or copper-based metal alloy). The shank 113 also may comprise a steel or another metal alloy.
The bit body 111 may be coupled-to the shank 113 by, for example, welding the shank 113 to the bit body 111 circumferentially around the drill bit 110 along an interface between the shank 113 and the bit body 111. The shank 113 of the drill bit 110 includes a threaded pin 112, which may be adapted for connection to a component of a drill string. The threaded pin 112 may conform to industry standards such as those promulgated by the American Petroleum Institute (API).
The face 114 of the bit body 111 has mounted thereon a plurality of cutting elements 116, each of which may comprise a polycrystalline diamond compact (PDC) cutting element. Such PDC cutting elements may include a table 118 of polycrystalline diamond material formed on or attached to a cemented tungsten carbide substrate. The cutting elements 116 may be mounted on wings or blades 119 of the bit body 111, between which are defined fluid passages 115 and junk slots 117. The cutting elements 116 may be secured in respective cutter pockets 121 formed in the blades by, for example, brazing the cutting elements 116 in the pockets 121 using a metal brazing alloy material. The cutting elements 116 are configured, sized, and positioned to cut a subterranean formation being drilled when the drill bit 110 is rotated under weight on bit (WOB) in a wellbore. The bit body 111 may include gage trimmers 123. The gage trimmers 123 may comprise PDC cutting elements having diamond tables 118 configured with a flat edge aligned parallel to the rotational axis 120 of the bit (not shown) to trim and hold the gage diameter of the wellbore. The drill bit 110 also may include gage pads 122, which contact the walls of the wellbore during drilling to maintain the diameter of the wellbore and stabilize the drill bit 110 within the wellbore.
The drill bit 110 also includes a plurality of nozzle assemblies 130, only two of which are visible in
During drilling, drilling fluid may be pumped from the surface of the formation being drilled, down through the drill string, into and through fluid passageways 126 within the drill bit 110, and out from the nozzle assemblies 130 to the face 114 of the drill bit 110. The drilling fluid may be used to cool the cutting elements 116 and to flush formation cuttings from the face 114 of the drill bit 110, into the fluid passages 115 and junk slots 117 between the blades 119, and up through the annular space between the drill string and the surfaces of the formation within the wellbore to the surface of the formation. The nozzle assemblies 130 of the drill bit 130 may comprise any type of nozzle known in the art. The nozzle assemblies 130 may be sized and configured for providing different fluid flow volumes, velocities, directions and flow patterns, depending upon the desired drilling hydraulics required at each group of cutting elements 116 to which a particular nozzle assembly 130 directs drilling fluid.
As shown in
By way of example and not limitation, hardfacing material 150 may be provided between the face 114 of the drill bit 110 and the surface 140. As shown in
The bevel surface 152 may have a generally frustoconical shape in three-dimensional space, and may extend between the face 114 and the surface 140. In embodiments in which the bit body 111 comprises steel or another machinable metal alloy, such a bevel surface 152 may be formed by machining (e.g., milling or grinding) of the bit body between the face 114 and the surface 140 (e.g., the edge 34 in
The hardfacing material 150 may be deposited on the bevel surface 152 using, for example, a manual hardfacing method in which a welding torch (e.g., a flame torch or an arc torch) is used to heat an end of a rod or tube comprising the hardfacing material. As material at the end of the rod or tube melts, the molten material (and solid hard particulate material entrained therein) may be manually deposited on the bevel surface 152. Beads of the hardfacing material 150 may be sequentially deposited on the bevel surface 152 to build up an annular-shaped erosion-resistant mass of the hardfacing material 150 on the bevel surface 152. In additional embodiments, an automated process using a robotic welding device may be used to deposit the hardfacing material 150 on the bevel surface 150. A system that may be used to substantially automatically deposit the hardfacing material 150 on the bevel surface 150 is disclosed in Provisional U.S. Patent Application Ser. No. 61/109,427, which was filed Oct. 29, 2008 and entitled “Method and Apparatus For Robotic Welding of Drill Bits,” the disclosure of which is incorporated herein in its entirety by this reference.
As shown in
The hardfacing material 150 may have a material composition that differs from a material composition of the bit body 111 and is more resistant to erosion relative to the material composition of the bit body 111. Various hardfacing compositions are known in the art and may be used in the present invention. As non-limiting examples, the hardfacing material 150 may comprise a hardfacing composition as disclosed in, for example, U.S. Pat. No. RE37,127 to Schader et al, which reissued Apr. 10, 2001, U.S. Patent Application Publication No. 2007/0056776 A1 (application Ser. No. 11/223,215), which published Mar. 15, 2007, U.S. Patent Application Publication No. 2007/0056777 A1 (application Ser. No. 11/513,677), which published Mar. 15, 2007, and U.S. Patent Application Publication No. 2008/0083568 A1 (application Ser. No. 11/864/482), which published Apr. 10, 2008, the disclosure of each of which is incorporated herein in its entirety by this reference for all purposes. The hardfacing material 150 may be selected to exhibit relatively high resistance to erosion.
Generally, the hardfacing material 150 may include, for example, a particle-matrix composite material comprising a plurality of hard phase regions or particles dispersed throughout a matrix material. The hard ceramic phase regions or particles may comprise, for example, diamond or carbides, nitrides, oxides, and borides (including boron carbide (B4C)). As more particular examples, the hard ceramic phase regions or particles may comprise, for example, carbides and borides made from elements such as W, Ti, Mo, Nb, V, Hf, Ta, Cr, Zr, Al, and Si. By way of example and not limitation, materials that may be used to form hard phase regions or particles include tungsten carbide (WC), titanium carbide (TiC), tantalum carbide (TaC), titanium diboride (TiB2), chromium carbides, titanium nitride (TiN), aluminum oxide (Al2O3), aluminum nitride (AlN), and silicon carbide (SiC). The metal matrix material of the ceramic-metal composite material may include, for example, cobalt-based, iron-based, nickel-based, iron and nickel-based, cobalt and nickel-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, and titanium-based alloys. The matrix material may also be selected from commercially pure elements such as, for example, cobalt, aluminum, copper, magnesium, titanium, iron, and nickel.
The hardfacing material 150 may be deposited on the bevel surface 152 before or after inserting the nozzle assembly 130 into the nozzle recess 128.
Depositing the hardfacing material 150 on the bevel surface 152 before inserting the nozzle assembly 130 may avoid any damage to the bit body 111 and/or nozzle assembly 130 that might arise due to incidental heating of the bit body 111 and the nozzle assembly 130 by the welding torch used to deposit the hardfacing material 150. Such methods, however, must be carried out in such a manner as to ensure that the deposited hardfacing material 150 does not impede subsequent insertion of the nozzle assembly 130 into the nozzle recess 128. Depositing the hardfacing material 150 on the bevel surface 152 after inserting the nozzle assembly 130 may avoid such interference problems, but it may be desirable to limit the heat applied to the bit body 111 and the nozzle assembly 130 when the nozzle assembly 130 is disposed in the nozzle recess 128 to avoid damaging the bit body 111 and/or nozzle assembly 130. If the bit body 111 and the nozzle assembly 130 comprise different materials that exhibit different thermal expansion coefficients, the bit body 111 and/or nozzle assembly 130 may be damaged (e.g., cracked) due to thermal expansion mismatch as the bit body 111 and/or nozzle assembly 130 are heated as the hardfacing material 150 is deposited on the bevel surface 152.
In additional embodiments, the annular-shaped erosion-resistant structure 148 may comprise a separately formed (from the bit body 111) insert that is attached to the bit body 111, similar to the insert 250 shown in
The drill bit 210 of
For example, the erosion-resistant insert 250 may comprise a particle-matrix composite material such as, for example, a cemented tungsten carbide material (e.g., grains of tungsten carbide dispersed throughout a metal matrix material such as cobalt or a cobalt-based alloy). Such an insert may be formed by pressing and sintering a powder mixture comprising hard particles and particles of metal matrix material. Such an insert may be attached to the body 211 (on the radiused surface 252) by, for example, brazing the insert 250 to the body 211 using a metal brazing alloy. In farther embodiments, such an insert 250 may be press-fit or shrink-fit into the nozzle recess 228, although, in such embodiments, it may be desirable to form the insert 250 to comprise a different geometry including a generally cylindrical portion configured to extend at least partially into a complementary generally cylindrical recess formed in the body 211 to ensure that the insert 250 may be securely retained in the body 211. In other embodiments, such as when a bit body is formed using an infiltration process, the erosion-resistant insert 250 may be placed in the mold cavity and secured to the bit body during the infiltration process.
In additional embodiments, a hardfacing material 150 as previously described in relation to
It is contemplated that surfaces having shapes other than those of the beveled surface 152 and the curved or radiused surface 252 may be provided proximate the area of intersection between the face of a bit body and the surface of the bit body within a nozzle recess or fluid passageway. For example, stepped surfaces may be formed so as to define a generally cylindrical recess in which hardfacing material may be deposited, such that the resulting erosion-resistant structure formed by the hardfacing material has a generally cylindrical shape having exterior surfaces at least substantially flush with the face of the bit body and the surface of the bit body within the nozzle recess or fluid passageway. Further, an annular undercut may be formed in the surface of the bit body within a nozzle recess to provide mechanical as well as metallurgical securement of the hardfacing material.
As shown in
The displacement 270 may comprise, for example, a ceramic material such as aluminum oxide (Al2O3), magnesium oxide (Al2O3), silicon oxide (SiO2) or another material that will not degrade or decompose at the temperatures experienced by the displacement 270 when the hardfacing material 250 is deposited, that will not chemically react with the bit body 211 or nozzle assembly 230 in any detrimental way at the temperatures experienced by the displacement 270 when the hardfacing material 250 is deposited, and that will not damage the bit body 211 or the nozzle assembly 230 due to thermal expansion mismatch when the hardfacing material 250 is deposited.
After depositing the hardfacing material 250 in the recess in the bit body 211 defined by the radiused surface 252, the displacement 270 may be removed from the nozzle recess 228. If the displacement 270 is not easily removable from the nozzle recess 228 after depositing hardfacing material 250, the displacement 270 may be fractured into pieces, which then may be removed from the nozzle recess 228, or they may be ground out from the nozzle recess 228 using an abrasive grinding tool.
Although
Additional embodiments of the present invention include methods of repairing an earth-boring tool.
To repair the tool 10, hardfacing material 150 may be deposited on the eroded surfaces 60 of the body 30 (i.e., the surfaces formed by the erosion has occurred) to build the body 30 back up to a shape or configuration substantially similar to its initial shape or configuration (that shown in
Optionally, the eroded surfaces 60 may be machined (e.g., using a milling process, a grinding process, etc.) to a desirable geometry prior to depositing the hardfacing material 150 on body 30. For example, the eroded surfaces 60 may be machined to form a bevel surface 152 (
In yet further embodiments, the eroded surfaces 60 may be machined to a desirable geometry that is complementary to a separately formed erosion-resistant insert 250 (
Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present invention, but merely as providing certain example embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims, are encompassed by the present invention.