The present disclosure relates generally to tools for use in earth-boring operations, such as fixed-cutter drill bits and bit bodies.
Earth-boring tools for forming boreholes in subterranean earth formations, such as for hydrocarbon production, carbon dioxide sequestration, etc., generally include a plurality of cutting elements secured to a body. For example, fixed-cutter earth-boring rotary drill bits (also referred to as “drag bits”) include cutting elements fixed to a bit body of the drill bit. The cutting elements may be affixed to blades disposed along an outer diameter of the bit body.
Bit bodies and blades may be formed of metal-matrix composites having a continuous phase and a dispersed phase. The continuous phase may be a metal or an alloy, such as a copper alloy, steel, cobalt, a cobalt-nickel alloy, etc. The dispersed phase may be a reinforcing material, and may be a different metal or another material, such as a ceramic. The dispersed phase may be selected to impart a particular property to the composite, such as hardness, wear resistance, strength, thermal conductivity, etc. For example, the dispersed phase may include materials such as tungsten carbide, cubic boron nitride, silicon carbide, diamond, etc. The dispersed phase may include particles, fibers, whiskers, etc. Bit bodies and blades may also be formed from steel.
During drilling operations, drill bits may be subjected to harsh conditions, such as high temperatures, high pressures, and corrosive fluids. Under some operating conditions, hard formation material may cause deflection of blades, and may cause damage to blades. Various methods have been developed to prevent damage to drill bits during drilling. For example, wear-resistant inserts may be disposed on blades to stabilize the drill bit and control bit aggressiveness. Such inserts may cause blades to engage the formation material to a preselected depth. Limiting the depth of the formation engaged by each blade may limit the potential damage to the blade, but may also limit the rate of penetration (ROP) of the drilling operation.
U.S. Pat. No. 7,571,782, issued Aug. 11, 2009, and entitled “Stiffened Blade for Shear-Type Drill Bit,” the disclosure of which is incorporated herein in its entirety by this reference, describes a steel bit body with stiffening elements to increase the stiffness of the blades. The blades may be less susceptible to wear and damage than unstiffened blades, and the bit may have a longer service life. Stiffening elements may include, for example, backing plates, brackets, carbide segments, or carbide rods. Drilling with blades having high stiffness may cause a more uniform or constant impact of cutting elements on the formation. Thus, ROP may be increased, and damage to drill bits may be limited.
In some embodiments of the disclosure, a fixed-cutter earth-boring tool includes a first blade carrying a first plurality of cutting elements and having a first stiffness and a second blade configured to have a second stiffness different from the first stiffness.
A method of forming an earth-boring tool may include forming a bit body having a plurality of blades, and providing at least one cutting element on at least one of the plurality of blades. At least one blade of the plurality has a stiffness different from a stiffness of another blade of the plurality.
In other embodiments, a fixed-cutter earth-boring drill bit may include a first blade having a first aggressiveness, and at least one additional blade having a second aggressiveness. The second aggressiveness is less than the first aggressiveness.
While the specification concludes with claims particularly pointing out and distinctly claiming what are regarded as embodiments of the disclosure, various features and advantages of embodiments of the disclosure may be more readily ascertained from the following description of some embodiments when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not actual views of any particular material, bit body, blades, or drill bit, and are not drawn to scale, but are merely idealized representations employed to describe embodiments of the disclosure. Elements common between figures may retain the same numerical designation.
As used herein, the term “drill bit” means and includes any type of bit or tool used for drilling during the formation or enlargement of a wellbore and includes, for example, rotary drill bits, percussion bits, core bits, eccentric bits, bicenter bits, reamers, expandable reamers, mills, drag bits, roller cone bits, hybrid bits, and other drilling bits and tools known in the art.
As used herein, the term “bit aggressiveness” (μ) of a drill bit is defined according to the following formula:
wherein T equals the torque applied to the drill bit, D equals the diameter of the bit, and W equals the weight-on-bit (WOB). Bit aggressiveness is a unitless number. Bit aggressiveness may be affected by factors such as vibration, number of blades or cones, cutter size, type, and configuration, hardness of the subterranean formation, etc. These factors may affect the bit aggressiveness by changing the torque delivered at a particular WOB. Different types of bits may have different bit aggressiveness. Conventional roller cone bits may have a bit aggressiveness of from about 0.10 to about 0.25, impregnated bits may have a bit aggressiveness of from about 0.12 to about 0.40, and PDC bits may have a bit aggressiveness of from about 0.40 to about 1.50 (assuming, in each case, similar cutter type on each blade or roller cone of a bit, and somewhat evenly distributed WOB is between each blade or roller cone). Hybrid bits (bits having a combination of roller cones and PDC blades) may have a bit aggressiveness between that of a roller cone bit and a PDC bit.
As used herein, the term “blade aggressiveness” of a blade of a drill bit is that portion of the bit aggressiveness attributable to an individual blade. The blade aggressiveness and the weight applied to the individual blade may contribute to the overall bit aggressiveness.
As used herein, the term “cutting element aggressiveness” of a cutting element of a drill bit is that portion of the bit aggressiveness attributable to an individual cutting element. Cutting element aggressiveness may depend on the type of cutting element, configuration (e.g., back rake), size, and/or position.
As used herein, the term “stiffness” means and includes the resistance of a body to deformation. Stiffness of a body may be a function of the geometry of the body and/or the composition of the material of which the body is formed. Thus, two bodies having the same size and shape may have different stiffnesses if they are formed of different materials. Similarly, two bodies formed of the same material may have different stiffnesses if they have different sizes or shapes. The stiffness (k) of a body is defined according to the formula:
wherein P equals the load applied to the body, δ equals the deflection of the body, A equals the cross-sectional area of the body, E equals the modulus of elasticity of the material of the body, and L equals the length of the body. Thus, stiffness may be calculated from load and deflection data or from material properties and body geometry. Stiffness has units of force divided by length. Bits may not have uniformly shaped blades; therefore, load deflection data and/or finite element analysis may be used to determine the stiffness of a blade.
In accordance with the present disclosure, an earth-boring tool may have one or more blades configured such that the overall bit aggressiveness of the tool is less than the bit aggressiveness of a conventional PDC, such as by incorporating at least one blade that has a lower blade aggressiveness than a conventional PDC blade. In some embodiments, bit aggressiveness may be varied during drilling by changing the WOB. Variable bit aggressiveness may be due to one or more blades or blade regions having different stiffness than other blades or regions, and/or different cutter types or arrangements on different blades or blade regions. In some embodiments, fixed-cutter earth-boring tools, such as drill bits, may have one or more blades configured to deflect under a load. Such deflection may cause a change in the overall bit aggressiveness by altering the distribution of forces (e.g., WOB) among the blades. Tools having deflectable blades may be used in applications wherein it may be advantageous to adjust the overall bit aggressiveness within a wellbore during a drilling operation.
During a drilling operation, the drill bit 10 may be coupled to a drill string (not shown). As the drill bit 10 is rotated within the wellbore, drilling fluid may be pumped down the drill string, through the internal fluid plenum and fluid passageways within the bit body 11 of the drill bit 10, and out from the drill bit 10 through the nozzles. Formation cuttings generated by contact of the cutting elements 18 with the formation may be carried with the drilling fluid through the fluid courses 16, around the drill bit 10, and back up the wellbore through an annular space within the wellbore and outside the drill string.
The drill bit 10 shown in
Various bit and blade geometries may be selected to achieve a desired stiffness. The blades 12, 14 of the drill bit 10 shown in
A drill bit 10 having blades 12, 14 with different aggressiveness may have an overall bit aggressiveness between the bit aggressiveness of a similarly configured conventional drill bit having only the more aggressive blades and the bit aggressiveness of a conventional drill bit having only the less aggressive blades.
A primary blade 12 and the cutting elements 18 thereon are shown as dashed lines and circles in the cutting element diagram of
When a force is applied to the secondary blade 14, such as weight-on-bit (WOB) during a drilling operation, a portion of the secondary blade 14 may deflect or bend into a portion of the space 20 (e.g., decreasing a dimension of the space 20). Such deflection may change the exposure of other blades, such as primary blades 12, to material of the formation. Thus, the area of the primary blades 12 exposed to the formation (e.g., in contact with and rubbing on the formation) may be varied by varying the load applied to the drill bit. The bit aggressiveness may be increased by deflecting the secondary blades 14. In a drill bit having blades 12, 14 of different stiffnesses, the bit aggressiveness may be varied during a drilling operation by varying the WOB. The capability of varying the bit aggressiveness may allow better tool face control, which may allow a higher overall rate of penetration. Such control may limit the necessity of changing drill bits during a drilling operation, and may thus lower the time required to drill a wellbore, lower costs, increase operational flexibility (e.g., the ability to change drilling parameters during operation in response to data collected), etc.
The spaces 20′ may be configured to tailor deflection as a function of applied force. As the volume of one or more spaces 20′ decreases, opposing interior surfaces 36 may contact one another. That is, spaces 20′ may collapse under a force, and the secondary blade 14′ may exert a discontinuity in the resistance to the force. For example, the resistance of the secondary blade 14′ may vary linearly with the WOB up to a point that opposing interior surfaces 36 contact one another. Once opposing interior surfaces 36 contact one another, the secondary blade 14′ having spaces 20′ therein may exert a much larger resistance to the WOB. In some embodiments, the resistance of a secondary blade 14′ having spaces 20′ that have collapsed may be similar to the resistance of a secondary blade without spaces 20′. The collapse of spaces 20′ may be reversible, such that when WOB is reduced, the interior surfaces 36 separate from one another and the resistance of the secondary blade 14′ reduces.
The secondary blade 14′ may be configured to deflect based on forces at various locations. For example, as shown in
The deflection of the secondary blade 14′ may change the bit aggressiveness of the drill bit upon which the secondary blade 14′ is carried. Secondary blades 14′ may act as depth-of-cut limiters to control the bit aggressiveness and/or ROP of the drill bit. For example, as WOB increases, the secondary blades 14′ may deflect more, and such deflection may increase the depth of cut of cutting elements 18 on the primary blades 12.
In some embodiments, the stiffness of the blades may depend on the transverse thickness of the blades (e.g., a distance measured circumferentially along the outside surface of the drill bit). A narrower blade (e.g., a blade having a smaller transverse thickness and/or a smaller contact area with the subterranean formation) may have a lower stiffness than a wider blade. For example, as shown in
Besides geometry, stiffness of a body may be determined in part by the elastic modulus of material of the body. As used here, the term “elastic modulus” is synonymous with the term “Young's modulus,” and is defined as the slope of the stress-strain curve in the elastic deformation region of the material. Elastic modulus is a property of a material, and may be a function of temperature. In some materials, elastic modulus may decrease with increasing temperature, meaning that a given body may deform more under a given load at a higher temperature than under the same given load at a lower temperature. In some embodiments, and as shown in
Cutting elements 18, as shown in
In some embodiments, the cutting elements 18 carried by a primary blade 12 may be of the same type as cutting elements 18 carried by a secondary blade 14. Cutting elements 18 may have the same or different configurations (e.g., back rake angles, side rake angles, etc.) and have the same or different cutting element aggressiveness. Some cutting elements 18 may follow the same paths as other cutting elements 18. Cutting elements 18 carried by a secondary blade 14 may be arranged and configured to be backup cutting elements, primary cutting elements, or a mixture of backup and primary cutting elements.
A blade (e.g., a secondary blade 14) having a lower stiffness than another blade (e.g., a primary blade 12) may act as a dampener. For example, a surface of a subterranean formation may exert a force on the secondary blade 14 during a drilling operation, and the force may vary with the magnitude of deflection of the secondary blade 14. As the drill bit (e.g., the drill bit 10) rotates, the force on the secondary blade 14 may vary, and the magnitude of the deflection of the secondary blade 14 may vary according the shape of the surface. Thus, deflection of the secondary blade 14 may provide more consistent contact between the secondary blade 14 and the surface of the subterranean formation.
Drill bits including blades 12, 14 having different stiffnesses may be formed by machining, infiltration, casting, powder compaction, sintering, or any other method known in the art. For example, blades 12, 14, 14′, 14″, 14″′, may be separately formed by machining a steel billet. Geometric features, such as spaces 20, 20′, interior surfaces 36, may be formed, if applicable. Blades 12, 14 may be attached to a bit body 11, such as by welding.
In another example, a bit body 11 may be formed by casting a metal into a mold. The mold may have cavities shaped to define one or more surfaces of the blades 12, 14 of the drill bit. The cavities may have varying transverse thicknesses (e.g., distances measured circumferentially along surfaces of the cavities corresponding to outside surfaces of the drill bit). In some embodiments, one or more displacement members may be placed within the mold, such as those disclosed in U.S. Patent Application Pub. No. 2008/0135305, published Jun. 12, 2008, and entitled, “Displacement Members and Methods of Using Such Displacement Members to Form Bit Bodies of Earth-Boring Rotary Drill Bits,” and U.S. Patent Application Pub. No. 2011/0174548, published Jul. 21, 2011, and entitled, “Downhole Tools Having Features for Reducing Balling and Methods of Forming Such Tools” the disclosures of each of which are incorporated herein in their entirety by this reference. A powder mixture may be provided in the mold, and may include particles of a matrix material, particles of hard material, plasticizers, lubricants, etc. The mold and/or displacement members may define blades having various geometries, such as those described above with reference to
In some embodiments, different portions of a bit body 11 may be formed from different materials. In powder compaction processes used to form such bit bodies, multiple powder mixtures may be provided within the same mold, such as described in U.S. Patent Application Pub. No. 2010/0006345, published Jan. 14, 2010, and entitled, “Infiltrated, Machined Carbide Drill Bit Body,” the disclosure of which is incorporated herein in its entirety by this reference. Different powder mixtures may be selected such that sintered material formed therefrom exhibits different elastic moduli. Thus, a bit body 11 formed in such embodiments may have blades with different stiffnesses at least by virtue of different properties of different materials of which the blades are composed.
Cutting elements may be provided on one or more blades 12, 14 during or after formation of the bit body 11. Cutting elements may be attached to the blades 12, 14 by any method now known or hereafter developed, such as by sintering, brazing, welding, etc. For example, inserts may be secured to the blades 12, 14 by methods described in U.S. Patent Application Pub. No. 2009/0301789, published Dec. 10, 2009, and entitled, “Methods of Forming Earth-Boring Tools Including Sinterbonded Components and Tools Formed by Such Methods,” the disclosure of which is incorporated herein in its entirety by this reference.
The blades 12, 14 may be integrally formed with the bit body 11, or they may be formed separately from the bit body 11 and subsequently attached to the bit body 11. In some embodiments, for example, the primary blades 12 may have a relatively higher average stiffness and may be integrally formed with the bit body 11, while the secondary blades 14 may have a relatively lower average stiffness and may be separately formed from the bit body 11 and subsequently attached thereto. For example, the secondary blade 14′ shown in
the stiffness of the blades may be the inverse of the slope of the deflection curves.
Similarly,
As shown in
In drill bits described herein, the weight supported by each blade may be a factor in the blade aggressiveness and overall bit aggressiveness. The weight supported by each blade may be a function of the stiffness of the blade. Assuming similar profiles, exposure, etc., a blade with a higher stiffness will tend to support more of the WOB than a blade with a lower stiffness. The deflection of a blade can be limited, such as by the addition of spaces 20′, as described and shown in
In one embodiment, a six-blade PDC bit may be designed to have increased bit aggressiveness as the WOB is increased. Three primary blades may have a higher stiffness than three secondary blades. As the WOB is increased, the secondary blades may deflect and more WOB would be carried by the primary blades. This may increase the overall bit aggressiveness. Additional changes in bit aggressiveness may be achieved by selecting less aggressive cutters for the secondary blades than for the primary blades.
Additional non-limiting example embodiments of the disclosure are described below.
A fixed-cutter earth-boring tool, comprising a first blade carrying a first plurality of cutting elements and having a first stiffness and a second blade configured to have a second stiffness different from the first stiffness.
The fixed-cutter earth-boring tool of Embodiment 1, wherein the first blade is a primary blade, the second blade is a secondary blade, and the first stiffness is higher than the second stiffness.
The fixed-cutter earth-boring tool of Embodiment 1 or Embodiment 2, wherein the first blade is configured to deflect a first distance under a selected load, and wherein the second blade is configured to deflect a second distance under the selected load, the second distance being greater than the first distance.
The fixed-cutter earth-boring tool of Embodiment 3, wherein the second distance is 0.001 inch (0.0254 mm) or more under a load on the blade of 1000 lbs.
The fixed-cutter earth-boring tool of Embodiment 4, wherein the second distance is 0.005 inch (0.127 mm) or more under a load on the blade of 1000 lbs.
The fixed-cutter earth-boring tool of any of Embodiments 1 through 5, wherein at least one surface of the second blade defines an open space and wherein the second blade is configured such that a force operative on the second blade causes a change in volume of the open space.
The fixed-cutter earth-boring tool of any of Embodiments 1 through 6, wherein the first blade comprises a first material having a first elastic modulus at a temperature, and the second blade comprises a second material having a second elastic modulus at the temperature, the first elastic modulus different from the second elastic modulus.
The fixed-cutter earth-boring tool of any of Embodiments 1 through 7, wherein the first blade has a first average transverse thickness, and the second blade has a second average transverse thickness. The second average transverse thickness is different from the first average transverse thickness.
The fixed-cutter earth-boring tool of any of Embodiments 1 through 8, wherein the second blade carries a second plurality of cutting elements.
The fixed-cutter earth-boring tool of Embodiment 9, wherein at least one cutting element of the second plurality of cutting elements comprises a tungsten carbide insert; a diamond insert, an impregnated insert, a polycrystalline diamond compact, or a thermally stable product.
The fixed-cutter earth-boring tool of any of Embodiments 1 through 10, wherein the second blade carries a depth-of-cut limiter or a wear pad.
A method of forming an earth-boring tool, comprising forming a bit body having a plurality of blades, and providing at least one cutting element on at least one of the plurality of blades. At least one blade of the plurality has a stiffness different from a stiffness of another blade of the plurality.
The method of Embodiment 12, wherein forming a bit body having a plurality of blades comprises providing a metal into a mold. The mold is configured to define at least a surface of the bit body.
The method of Embodiment 13, wherein forming a bit body having a plurality of blades comprises providing a metal into a mold having a plurality of cavities. Each cavity is configured to define at least a surface of a blade. At least one cavity has an average transverse thickness different from an average transverse thickness of another cavity.
The method of any of Embodiments 12 through 14, wherein forming a bit body having a plurality of blades comprises forming a first blade comprising a first material and a second blade comprising a second material different from the first material.
The method of Embodiment 15, further comprising selecting the first material to have a higher elastic modulus than the second material at room temperature.
The method of any of Embodiments 12 through 16, wherein securing at least one cutting element to at least one of the plurality of blades comprises attaching at least one of a tungsten carbide insert, a diamond insert, an impregnated insert, a polycrystalline diamond compact, or a thermally stable product to at least one of the plurality of blades.
The method of any of Embodiments 12 through 17, further comprising forming an open space within at least one of the plurality of blades.
A fixed-cutter earth-boring drill bit, comprising a first blade having a first aggressiveness, and at least one additional blade having a second aggressiveness. The second aggressiveness is less than the first aggressiveness.
The fixed-cutter earth-boring drill bit of Embodiment 19, wherein the first blade carries at least one cutting element.
The fixed-cutter earth-boring drill bit of Embodiment 19 or Embodiment 20, wherein the at least one additional blade carries at least one of a cutting element, a depth-of-cut limiter, and a wear pad.
The fixed-cutter earth-boring drill bit of any of Embodiments 19 through 21, wherein the at least one additional blade is configured to bend under a load.
The fixed-cutter earth-boring drill bit of Embodiment 22, wherein a cutting depth of the first blade is configured to increase under a load.
The fixed-cutter earth-boring drill bit of any of Embodiments 19 through 23, wherein the first blade carries at least one polycrystalline diamond compact cutting element, and the at least one additional blade carries at least one wear pad protruding from a surface thereof. The at least one wear pad has a substantially planar surface.
While the present disclosure has been described with respect to certain embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the embodiments described herein may be made without departing from the scope of the invention as hereinafter claimed, including legal equivalents. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventor. Further, embodiments of the disclosure have utility with different and various bit profiles as well as cutting element types and configurations.
Number | Name | Date | Kind |
---|---|---|---|
6349780 | Beuershausen | Feb 2002 | B1 |
6460631 | Dykstra et al. | Oct 2002 | B2 |
6564886 | Mensa-Wilmot et al. | May 2003 | B1 |
7571782 | Hall et al. | Aug 2009 | B2 |
8225886 | Mirchandani et al. | Jul 2012 | B2 |
20080135305 | Smith et al. | Jun 2008 | A1 |
20080164071 | Patel et al. | Jul 2008 | A1 |
20090301789 | Smith et al. | Dec 2009 | A1 |
20100006345 | Stevens | Jan 2010 | A1 |
20100108401 | Lanning et al. | May 2010 | A1 |
20110174548 | Patel et al. | Jul 2011 | A1 |
20110192651 | Lyons et al. | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130146370 A1 | Jun 2013 | US |