The present invention generally relates to earth-boring tools, and to methods of manufacturing such earth-boring tools. More particularly, the present invention generally relates to earth-boring tools that include a body having at least a portion thereof substantially formed of a particle-matrix composite material, and to methods of manufacturing such earth-boring tools.
Rotary drill bits are commonly used for drilling bore holes, or well bores, in earth formations. Rotary drill bits include two primary configurations. One configuration is the roller cone bit, which conventionally includes three roller cones mounted on support legs that extend from a bit body. Each roller cone is configured to spin or rotate on a support leg. Teeth are provided on the outer surfaces of each roller cone for cutting rock and other earth formations. The teeth often are coated with an abrasive, hard (hardfacing) material. Such materials often include tungsten carbide particles dispersed throughout a metal alloy matrix material. Alternatively, receptacles are provided on the outer surfaces of each roller cone into which hard metal inserts are secured to form the cutting elements. In some instances, these inserts comprise a superabrasive material formed on and bonded to a metallic substrate. The roller cone drill bit may be placed in a bore hole such that the roller cones abut against the earth formation to be drilled. As the drill bit is rotated under applied weight on bit, the roller cones roll across the surface of the formation, and the teeth crush the underlying formation.
A second primary configuration of a rotary drill bit is the fixed-cutter bit (often referred to as a “drag” bit), which conventionally includes a plurality of cutting elements secured to a face region of a bit body. Generally, the cutting elements of a fixed-cutter type drill bit have either a disk shape or a substantially cylindrical shape. A hard, superabrasive material, such as mutually bonded particles of polycrystalline diamond, may be provided on a substantially circular end surface of each cutting element to provide a cutting surface. Such cutting elements are often referred to as “polycrystalline diamond compact” (PDC) cutters. The cutting elements may be fabricated separately from the bit body and are secured within pockets formed in the outer surface of the bit body. A bonding material such as an adhesive or a braze alloy may be used to secure the cutting elements to the bit body. The fixed-cutter drill bit may be placed in a bore hole such that the cutting elements abut against the earth formation to be drilled. As the drill bit is rotated, the cutting elements scrape across and shear away the surface of the underlying formation.
The bit body of a rotary drill bit of either primary configuration may be secured, as is conventional, to a hardened steel shank having an American Petroleum Institute (API) threaded pin for attaching the drill bit to a drill string. The drill string includes tubular pipe and equipment segments coupled end-to-end between the drill bit and other drilling equipment at the surface. Equipment such as a rotary table or top drive may be used for rotating the drill string and the drill bit within the bore hole. Alternatively, the shank of the drill bit may be coupled directly to the drive shaft of a down-hole motor, which then may be used to rotate the drill bit.
The bit body of a rotary drill bit may be formed from steel. Alternatively, the bit body may be formed from a particle-matrix composite material. Such particle-matrix composite materials conventionally include hard tungsten carbide particles randomly dispersed throughout a copper or copper-based alloy matrix material (often referred to as a “binder” material). Such bit bodies conventionally are formed by embedding a steel blank in tungsten carbide particulate material within a mold, and infiltrating the particulate tungsten carbide material with molten copper or copper-based alloy material. Drill bits that have bit bodies formed from such particle-matrix composite materials may exhibit increased erosion and wear resistance, but lower strength and toughness, relative to drill bits having steel bit bodies.
As subterranean drilling conditions and requirements become ever more rigorous, there arises a need in the art for novel particle-matrix composite materials for use in bit bodies of rotary drill bits that exhibit enhanced physical properties and that may be used to improve the performance of earth-boring rotary drill bits.
In some embodiments, the present invention includes earth-boring tools for drilling subterranean formations. The tools include a bit body comprising a composite material. The composite material includes a first discontinuous phase within a continuous matrix phase. The first discontinuous phase includes silicon carbide. In some embodiments, the discontinuous phase may comprise silicon carbide particles, and the continuous matrix phase may comprise aluminum or an aluminum-based alloy. Furthermore, the first discontinuous phase may optionally comprise what may be referred to as an ABC-SiC material, as discussed in further detail below. Optionally, such ABC-SiC materials may comprise toughened ABC-SiC materials that exhibit increased fracture toughness relative to conventional silicon carbide materials.
In further embodiments, the present invention includes methods of forming earth-boring tools. The methods include providing a plurality of silicon carbide particles in a matrix material to form a body, and shaping the body to form at least a portion of an earth-boring tool for drilling subterranean formations. In some embodiments, the silicon carbide particles may comprise an ABC-SiC material. Optionally, such ABC-SiC materials may be toughened to cause the ABC-SiC materials to exhibit increased fracture toughness relative to conventional silicon carbide materials. In some embodiments, silicon carbide particles may be infiltrated with a molten matrix material, such as, for example, an aluminum or aluminum-based alloy. In additional embodiments, a green powder component may be provided that includes a plurality of particles comprising silicon carbide and a plurality of particles comprising matrix material, and the green powder component may be at least partially sintered.
In still further embodiments, the present invention includes methods of forming at least a portion of an earth-boring tool. An ABC-SiC material may be consolidated to form one or more compacts, and the compacts may be broken apart to form a plurality of ABC-SiC particles. At least a portion of a body of an earth-boring tool may be formed to comprise a composite material that includes the plurality of ABC-SiC particles. Optionally, such ABC-SiC materials may be toughened to cause the ABC-SiC materials to exhibit increased fracture toughness relative to conventional silicon carbide materials.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention may be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
The illustrations presented herein are not meant to be actual views of any particular material, apparatus, or method, but are merely idealized representations which are employed to describe embodiments of the present invention. Additionally, elements common between figures may retain the same numerical designation.
An embodiment of an earth-boring rotary drill bit 10 of the present invention is shown in
As shown in
The silicon carbide particles 50 may comprise, for example, generally rough, non-rounded (e.g., polyhedron-shaped) particles or generally smooth, rounded particles. In some embodiments, each silicon carbide particle 50 may comprise a plurality of individual silicon carbide grains, which may be bonded to one another. Such interbonded silicon carbide grains in the silicon carbide particles 50 may be generally plate-like, or they may be generally elongated. For example, the interbonded silicon carbide grains may have an aspect ratio (the ratio of the average particle length to the average particle width) of greater than about five (5) (e.g., between about five (5) and about nine (9)).
In some embodiments, the silicon carbide particles 50 may comprise small amounts of aluminum (Al), boron (B), and carbon (C). For example, the silicon carbide material in the silicon carbide particles 50 may comprise between about one percent by weight (1.0 wt %) and about five percent by weight (5.0 wt %) aluminum, less than about one percent by weight (1.0 wt %) boron, and between about one percent by weight (1.0 wt %) and about four percent by weight (4.0 wt %) carbon. Such silicon carbide materials are referred to in the art as “ABC-SiC” materials, and may exhibit physical properties that are relatively more desirable than conventional SiC materials for purposes of forming the particle-matrix composite material 15 of the bit body 12 of the earth-boring rotary drill bit 10. As one non-limiting example, the silicon carbide material in the silicon carbide particles 50 may comprise about three percent by weight (3.0 wt %) aluminum, about six tenths of one percent by weight (0.6 wt %) boron, and about two percent by weight (2.0 wt %) carbon. In some embodiments, the silicon carbide particles 50 may comprise an ABC-SiC material that exhibits a fracture toughness of about five megapascal root meters (5.0 MPa-m1/2) or more. More particularly, the silicon carbide particles 50 may comprise an ABC-SiC material that exhibits a fracture toughness of about six megapascal root meters (6.0 MPa-m1/2) or more. In yet further embodiments, the silicon carbide particles 50 may comprise an ABC-SiC material that exhibits a fracture toughness of about nine megapascal root meters (9.0 MPa-m1/2) or more. Optionally, the silicon carbide particles 50 may comprise an in situ toughened ABC-SiC material, as discussed in further detail below. Such in situ toughened ABC-SiC materials may exhibit a fracture toughness greater than about five megapascal root meters (5 MPa-m1/2), or even greater than about six megapascal root meters (6 MPa-m1/2). In some embodiments, the in situ toughened ABC-SiC materials may exhibit a fracture toughness greater than about nine megapascal root meters (9 MPa-m1/2).
In some embodiments, the silicon carbide particles 50 may comprise a coating comprising a material configured to enhance the wettability of the silicon carbide particles 50 to the matrix material 52 and/or to prevent any detrimental chemical reaction from occurring between the silicon carbide particles 50 and the surrounding matrix material 52. By way of example and not limitation, the silicon carbide particles 50 may comprise a coating of at least one of tin oxide (SnO2), tungsten, nickel, and titanium.
In some embodiments of the present invention, the bulk matrix material 52 may include at least seventy-five percent by weight (75 wt %) aluminum, and at least trace amounts of at least one of boron, carbon, copper, iron, lithium, magnesium, manganese, nickel, scandium, silicon, tin, zirconium, and zinc. Furthermore, in some embodiments, the matrix material 52 may include at least ninety percent by weight (90 wt %) aluminum, and at least three percent by weight (3 wt %) of at least one of boron, carbon, copper, magnesium, manganese, scandium, silicon, zirconium, and zinc. Furthermore, trace amounts of at least one of silver, gold, and indium optionally may be included in the matrix material 52 to enhance the wettability of the matrix material relative to the silicon carbide particles 50. Table 1 below sets forth various examples of compositions of matrix material 52 that may be used as the particle-matrix composite material 15 of the crown region 14 of the bit body 12 shown in
By way of example and not limitation, the matrix material 52 may include a continuous phase 54 comprising a solid solution. The matrix material 52 may further include a discontinuous phase 56 comprising a plurality of discrete regions, each of which includes precipitates (i.e., a precipitate phase). In other words, the matrix material 52 may comprise a precipitation hardened aluminum-based alloy comprising between about ninety-five percent by weight (95 wt %) and about ninety-six and one-half percent by weight (96.5 wt %) aluminum and between about three and one-half percent by weight (3.5 wt %) and about five percent by weight (5 wt %) copper. In such a matrix material 52, the solid solution of the continuous phase 54 may include aluminum solvent and copper solute. In other words, the crystal structure of the solid solution may comprise mostly aluminum atoms with a relatively small number of copper atoms substituted for aluminum atoms at random locations throughout the crystal structure. Furthermore, in such a matrix material 52, the discontinuous phase 56 of the matrix material 52 may include one or more intermetallic compound precipitates (e.g., CuAl2). In additional embodiments, the discontinuous phase 56 of the matrix material 52 may include additional discontinuous phases (not shown) present in the matrix material 52 that include metastable transition phases (i.e., non-equilibrium phases that are temporarily formed during formation of an equilibrium precipitate phase (e.g., CuAl2)). Furthermore, in yet additional embodiments, substantially all of the discontinuous phase 56 regions may be substantially comprised of such metastable transition phases. The presence of the discontinuous phase 56 regions within the continuous phase 54 may impart one or more desirable properties to the matrix material 52, such as, for example, increased hardness. Furthermore, in some embodiments, metastable transition phases may impart one or more physical properties to the matrix material 52 that are more desirable than those imparted to the matrix material 52 by equilibrium precipitate phases (e.g., CuAl2).
With continued reference to
Referring again to
As shown in
The drill bit 10 may include a plurality of cutting structures on the face 18 thereof. By way of example and not limitation, a plurality of polycrystalline diamond compact (PDC) cutters 34 may be provided on each of the blades 30, as shown in
The steel blank 16 shown in
The rotary drill bit 10 shown in
In some embodiments, the bit body 12 may be formed using so-called “suspension” or “dispersion” casting techniques. For example, a mold (not shown) may be provided that includes a mold cavity having a size and shape corresponding to the size and shape of the bit body 12. The mold may be formed from, for example, graphite or any other high-temperature refractory material, such as a ceramic. The mold cavity of the mold may be machined using a five-axis machine tool. Fine features may be added to the cavity of the mold using hand-held tools. Additional clay work also may be required to obtain the desired configuration of some features of the bit body 12. Where necessary, preform elements or displacements (which may comprise ceramic components, graphite components, or resin-coated sand compact components) may be positioned within the mold cavity and used to define the internal passageways 42, cutting element pockets 36, junk slots 32, and other external topographic features of the bit body 12.
After forming the mold, a suspension may be prepared that includes a plurality of silicon carbide particles 50 (
Optionally, a metal blank 16 (
The suspension comprising the silicon carbide particles 50 and molten matrix material 52 may be poured into the mold cavity of the mold. As the molten matrix material 52 (e.g., molten aluminum or aluminum-based alloy materials) may be susceptible to oxidation, the infiltration process may be carried out under vacuum. In additional embodiments, the molten matrix material 52 may be substantially flooded with an inert gas or a reductant gas to prevent oxidation of the molten matrix material 52. In some embodiments, pressure may be applied to the suspension during casting to facilitate the casting process and to substantially prevent the formation of voids within the bit body 12 being formed.
After casting the suspension within the mold, the molten matrix material 52 may be allowed to cool and solidify, forming a solid matrix material 52 of the particle-matrix composite material 15 around the silicon carbide particles 50.
In some embodiments, the bit body 12 may be formed using so-called “infiltration” casting techniques. For example, a mold (not shown) may be provided that includes a mold cavity having a size and shape corresponding to the size and shape of the bit body 12. The mold may be formed from, for example, graphite or any other high-temperature refractory material, such as a ceramic. The mold cavity of the mold may be machined using a five-axis machine tool. Fine features may be added to the cavity of the mold using hand-held tools. Additional clay work also may be required to obtain the desired configuration of some features of the bit body 12. Where necessary, preform elements or displacements (which may comprise ceramic components, graphite components, or resin-coated sand compact components) may be positioned within the mold cavity and used to define the internal passageways 42, cutting element pockets 36, junk slots 32, and other external topographic features of the bit body 12.
After forming the mold, a plurality of silicon carbide particles 50 (
Molten matrix material 52 having a composition as previously described herein, then may be prepared by mixing stock material, particulate material, and/or powder material of each of the various elemental constituents in their respective weight percentages, heating the mixture to a temperature sufficient to cause the mixture to melt, thereby forming a molten matrix material 52 of desired composition. The molten matrix material 52 then may be allowed or caused to infiltrate the spaces between the silicon carbide particles 50 within the mold cavity. Optionally, pressure may be applied to the molten matrix material 52 to facilitate the infiltration process as necessary or desired. As the molten materials (e.g., molten aluminum or aluminum-based alloy materials) may be susceptible to oxidation, the infiltration process may be carried out under vacuum. In additional embodiments, the molten materials may be substantially flooded with an inert gas or a reductant gas to prevent oxidation of the molten materials. In some embodiments, pressure may be applied to the molten matrix material 52 and silicon carbide particles 50 to facilitate the infiltration process and to substantially prevent the formation of voids within the bit body 12 being formed.
After the silicon carbide particles 50 have been infiltrated with the molten matrix material 52, the molten matrix material 52 may be allowed to cool and solidify, forming the solid matrix material 52 of the particle-matrix composite material 15.
In additional embodiments, reactive infiltration casting techniques may be used to form the bit body 12. By way of example and not limitation, the mass to be infiltrated may comprise carbon, and molten silicon may be added to the molten matrix material 52. The molten silicon may react with the carbon to form silicon carbide as the molten mixture infiltrates the carbon material. In this manner, a reaction may be used to form silicon carbide particles 50 in situ during the infiltration casting process.
In some embodiments, the bit body 12 may be formed using so-called particle compaction and sintering techniques such as, for example, those disclosed in application Ser. No. 11/271,153, filed Nov. 10, 2005, now U.S. Pat. No. 7,802,495, issued Sep. 28, 2010, and application Ser. No. 11/272,439, filed Nov. 10, 2005, now U.S. Pat. No. 7,776,256, issued Aug. 17, 2010. Briefly, a powder mixture may be pressed to form a green bit body or billet, which then may be sintered one or more times to form a bit body 12 having a desired final density.
The powder mixture may include a plurality of silicon carbide particles 50 and a plurality of particles comprising a matrix material 52, as previously described herein. Optionally, the powder mixture may further include additives commonly used when pressing powder mixtures such as, for example, binders for providing lubrication during pressing and for providing structural strength to the pressed powder component, plasticizers for making the binder more pliable, and lubricants or compaction aids for reducing inter-particle friction. Furthermore, the powder mixture may be milled, which may result in the silicon carbide particles 50 being at least partially coated with matrix material 52.
The powder mixture may be pressed (e.g., axially within a mold or die, or substantially isostatically within a mold or container) to form a green bit body. The green bit body may be machined or otherwise shaped to form features such as blades, fluid courses, internal longitudinal bores, cutting element pockets, etc., prior to sintering. In some embodiments, the green bit body (with or without machining) may be partially sintered to form a brown bit body, and the brown bit body may be machined or otherwise shaped to form one or more such features prior to sintering the brown bit body to a desired final density.
The sintering processes may include conventional sintering in a vacuum furnace, sintering in a vacuum furnace followed by a conventional hot isostatic pressing process, and sintering immediately followed by isostatic pressing at temperatures near the sintering temperature (often referred to as sinter-HIP). Furthermore, the sintering processes may include subliquidus phase sintering. In other words, the sintering processes may be conducted at temperatures proximate to but below the liquidus line of the phase diagram for the matrix material. For example, the sintering processes described herein may be conducted using a number of different methods known to one of ordinary skill in the art, such as the Rapid Omnidirectional Compaction (ROC) process, the CERACON® process, hot isostatic pressing (HIP), or adaptations of such processes.
When the bit body 12 is formed by particle compaction and sintering techniques, the bit body 12 may not include a metal blank 16 and may be secured to the shank 20 by, for example, one or more of brazing, welding, and mechanically interlocking.
As previously mentioned, in some embodiments, the silicon carbide particles 50 may comprise an in situ toughened ABC-SiC material. In such embodiments, the bit body 12 may be formed by various methods, including those described below.
In some embodiments of methods of forming a bit body 12 of the present invention, particles of ABC-SiC may be consolidated to form relatively larger structures or compacts by, for example, hot pressing particles of ABC-SiC at elevated temperatures (e.g., between about 1,650° C. and about 1,950° C.) and pressures (e.g., about fifty megapascals (50 MPa)) for a period of time (e.g., about one hour) in an inert gas (e.g., argon).
After consolidation of the ABC-SiC particles to form relatively larger compacts, the compacts may be annealed to tailor the size and shape of the SiC grains in a manner that enhances the fracture toughness of the ABC-SiC material (e.g., to toughen the ABC-SiC material in situ). By way of example, the relatively larger compacts may be annealed at elevated temperatures (e.g., about 1,000° C. or more) for a time period of about one hour or more) in an inert gas.
The consolidated and annealed compacts then may be crushed or otherwise broken up (e.g., in a ball mill or an attritor mill) to form relatively smaller silicon carbide particles 50 comprising the in situ toughened ABC-SiC material. Optionally the relatively smaller silicon carbide particles 50 comprising the in situ toughened ABC-SiC material may be screened to separate the particles into certain particle size ranges, and only selected particle size ranges may be used in forming the bit body 12. The silicon carbide particles 50 comprising the in situ toughened ABC-SiC material then may be used to form the bit body 12 by, for example, using any of the suspension casting, infiltration casting, or particle compaction and sintering methods previously described herein.
In additional embodiments of methods of forming a bit body 12 of the present invention, particles of ABC-SiC may be consolidated to form relatively larger compacts as previously described. Prior to annealing (and in situ toughening of the ABC-SiC), however, the relatively larger compacts may be crushed or broken up to form relatively smaller silicon carbide particles 50 comprising the ABC-SiC material. The silicon carbide particles 50 comprising the ABC-SiC material then may be used to form the bit body 12 by, for example, using any of the suspension casting, infiltration casting, or particle compaction and sintering methods previously described herein. A matrix material 52 may be used that has a sufficiently high melting point (e.g., greater than about 1,250° C.) to allow annealing and in situ toughening of the ABC-SiC material after forming the bit body 12 without causing incipient melting of the matrix material 52 or undue dissolution between the matrix material 52 and the silicon carbide particles 50. Such matrix materials 52 may include, for example, cobalt, cobalt-based alloys, nickel, nickel-based alloys, or a combination of such materials. In this manner, the ABC-SiC material may be in situ toughened after forming the bit body 12.
In further embodiments of methods of forming a bit body 12 of the present invention, particles of ABC-SiC may be consolidated to form a first set of relatively larger compacts as previously described. Prior to annealing (and in situ toughening of the ABC-SiC), however, the relatively larger compacts may be crushed or broken up to form relatively smaller silicon carbide particles comprising the ABC-SiC material. A second set of relatively larger compacts may be formed by infiltrating (or otherwise consolidating) the silicon carbide particles 50 comprising the ABC-SiC material with a first material that has a sufficiently high melting point (e.g., greater than about 1,250° C.) to allow annealing and in situ toughening of the ABC-SiC material after infiltrating with the first material. The second set of compacts then may be annealed and in situ toughened, as previously described, after which the second set of compacts may be crushed or otherwise broken up to form the relatively smaller silicon carbide particles 50 comprising in situ toughened ABC-SiC material. The silicon carbide particles 50 comprising the in situ toughened ABC-SiC material then may be used to form the bit body 12 by, for example, using any of the suspension casting, infiltration casting, or particle compaction and sintering methods previously described herein. A matrix material 52 may be used having a melting point such that the bit body 12 may be formed without causing incipient melting of the first material (which is used to infiltrate the ABC-SiC particles prior to in situ toughening), or undue dissolution between the matrix material 52 and the first material or the silicon carbide particles 50.
After or during formation of the bit body 12, the bit body 12 optionally may be subjected to one or more thermal treatments (different than in situ toughening, as previously described) to selectively tailor one or more physical properties of at least one of the matrix material 52 and the silicon carbide particles 50.
For example, the matrix material 52 may be subjected to a precipitation hardening process to form a discontinuous phase 56 comprising precipitates, as previously described in relation to
Tungsten carbide materials have been used for many years to form bodies of earth-boring tools. Silicon carbide generally exhibits higher hardness than tungsten carbide materials. Silicon carbide materials also may exhibit superior wear resistance and erosion resistance relative to tungsten carbide materials. Therefore, embodiments of the present invention may provide earth-boring tools that exhibit relatively higher hardness, improved wear resistance, and/or improved erosion resistance relative to conventional tools comprising tungsten carbide composite materials. Furthermore, by employing toughened silicon carbide materials, as disclosed herein, earth-boring tools may be provided that comprise silicon carbide composite materials that exhibit increased fracture toughness.
While the present invention is described herein in relation to embodiments of concentric earth-boring rotary drill bits that include fixed cutters and to embodiments of methods for forming such drill bits, the present invention also encompasses other types of earth-boring tools such as, for example, core bits, eccentric bits, bicenter bits, reamers, mills, and roller cone bits, as well as methods for forming such tools. Thus, as employed herein, the term “bit body” includes and encompasses bodies of all of the foregoing structures, as well as components and subcomponents of such structures.
While the present invention has been described herein with respect to certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors. Further, the invention has utility in drill bits and core bits having different and various bit profiles as well as cutter types.
This application is a divisional of U.S. patent application Ser. No. 11/965,018, filed Dec. 27, 2007, now U.S. Pat. No. 7,807,099, issued Oct. 5, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/271,153, filed Nov. 10, 2005, now U.S. Pat. No. 7,802,495, issued Sep. 28, 2010, and U.S. patent application Ser. No. 11/272,439, filed Nov. 10, 2005, now U.S. Pat. No. 7,776,256, issued Aug. 17, 2010, the disclosure of each of which is hereby incorporated herein by this reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1676887 | Chamberlin | Jul 1928 | A |
1954166 | Campbell | Apr 1934 | A |
2299207 | Bevillard | Oct 1942 | A |
2507439 | Goolsbee | May 1950 | A |
2819958 | Abkowitz et al. | Jan 1958 | A |
2819959 | Abkowitz | Jan 1958 | A |
2906654 | Abkowitz | Sep 1959 | A |
3368881 | Abkowitz et al. | Feb 1968 | A |
3471921 | Feenstra | Oct 1969 | A |
3660050 | Iler et al. | May 1972 | A |
3757878 | Wilder et al. | Sep 1973 | A |
3757879 | Wilder et al. | Sep 1973 | A |
3841852 | Wilder et al. | Oct 1974 | A |
3880971 | Pantanelli | Apr 1975 | A |
3987859 | Lichte | Oct 1976 | A |
4017480 | Baum | Apr 1977 | A |
4047828 | Makely | Sep 1977 | A |
4094709 | Rozmus | Jun 1978 | A |
4098363 | Rohde et al. | Jul 1978 | A |
4128136 | Generoux | Dec 1978 | A |
4134759 | Yajima et al. | Jan 1979 | A |
4157122 | Morris | Jun 1979 | A |
4198233 | Frehn | Apr 1980 | A |
4221270 | Vezirian | Sep 1980 | A |
4229638 | Lichte | Oct 1980 | A |
4233720 | Rozmus | Nov 1980 | A |
4252202 | Purser, Sr. | Feb 1981 | A |
4255165 | Dennis et al. | Mar 1981 | A |
4306139 | Shinozaki et al. | Dec 1981 | A |
4341557 | Lizenby | Jul 1982 | A |
4389952 | Dreier et al. | Jun 1983 | A |
4398952 | Drake | Aug 1983 | A |
4453605 | Short et al. | Jun 1984 | A |
4499048 | Hanejko | Feb 1985 | A |
4499795 | Radtke | Feb 1985 | A |
4499958 | Radtke et al. | Feb 1985 | A |
4503009 | Asaka | Mar 1985 | A |
4526748 | Rozmus | Jul 1985 | A |
4552232 | Frear | Nov 1985 | A |
4554130 | Ecer | Nov 1985 | A |
4562990 | Rose | Jan 1986 | A |
4596694 | Rozmus | Jun 1986 | A |
4597730 | Rozmus | Jul 1986 | A |
4620600 | Persson | Nov 1986 | A |
4686080 | Hara et al. | Aug 1987 | A |
4694919 | Barr | Sep 1987 | A |
4738322 | Hall et al. | Apr 1988 | A |
4743515 | Fischer et al. | May 1988 | A |
4744943 | Timm | May 1988 | A |
4774211 | Hamilton et al. | Sep 1988 | A |
4809903 | Eylon et al. | Mar 1989 | A |
4838366 | Jones | Jun 1989 | A |
4871377 | Frushour | Oct 1989 | A |
4881431 | Bieneck | Nov 1989 | A |
4884477 | Smith et al. | Dec 1989 | A |
4889017 | Fuller et al. | Dec 1989 | A |
4919013 | Smith et al. | Apr 1990 | A |
4923512 | Timm et al. | May 1990 | A |
4940099 | Deane et al. | Jul 1990 | A |
4956012 | Jacobs et al. | Sep 1990 | A |
4968348 | Abkowitz et al. | Nov 1990 | A |
4981665 | Boecker et al. | Jan 1991 | A |
5000273 | Horton et al. | Mar 1991 | A |
5030598 | Hsieh | Jul 1991 | A |
5032352 | Meeks et al. | Jul 1991 | A |
5049450 | Dorfman et al. | Sep 1991 | A |
5090491 | Tibbitts et al. | Feb 1992 | A |
5101692 | Simpson | Apr 1992 | A |
5150636 | Hill | Sep 1992 | A |
5161898 | Drake | Nov 1992 | A |
5232522 | Doktycz et al. | Aug 1993 | A |
5281260 | Kumar et al. | Jan 1994 | A |
5286685 | Schoennahl et al. | Feb 1994 | A |
5311958 | Isbell et al. | May 1994 | A |
5322139 | Rose et al. | Jun 1994 | A |
5333699 | Thigpen et al. | Aug 1994 | A |
5348806 | Kojo et al. | Sep 1994 | A |
5372777 | Yang | Dec 1994 | A |
5373907 | Weaver | Dec 1994 | A |
5433280 | Smith | Jul 1995 | A |
5439068 | Huffstutler et al. | Aug 1995 | A |
5443337 | Katayama | Aug 1995 | A |
5445231 | Scott et al. | Aug 1995 | A |
5455000 | Seyferth et al. | Oct 1995 | A |
5467669 | stroud | Nov 1995 | A |
5479997 | Scott et al. | Jan 1996 | A |
5482670 | Hong | Jan 1996 | A |
5484468 | Ostlund et al. | Jan 1996 | A |
5492186 | Overstreet et al. | Feb 1996 | A |
5506055 | Dorfman et al. | Apr 1996 | A |
5541006 | Conley | Jul 1996 | A |
5543235 | Mirchandani et al. | Aug 1996 | A |
5544550 | Smith | Aug 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5586612 | Isbell et al. | Dec 1996 | A |
5593474 | Keshavan et al. | Jan 1997 | A |
5611251 | Katayama | Mar 1997 | A |
5612264 | Nilsson et al. | Mar 1997 | A |
5624002 | Huffstutler | Apr 1997 | A |
5641251 | Leins et al. | Jun 1997 | A |
5641921 | Dennis et al. | Jun 1997 | A |
5662183 | Fang | Sep 1997 | A |
5666864 | Tibbitts | Sep 1997 | A |
5677042 | Massa et al. | Oct 1997 | A |
5679445 | Massa et al. | Oct 1997 | A |
5697046 | Conley | Dec 1997 | A |
5697462 | Grimes et al. | Dec 1997 | A |
5710969 | Newman | Jan 1998 | A |
5725827 | Rhodes et al. | Mar 1998 | A |
5732783 | Truax et al. | Mar 1998 | A |
5733649 | Kelley et al. | Mar 1998 | A |
5733664 | Kelley et al. | Mar 1998 | A |
5740872 | Smith | Apr 1998 | A |
5753160 | Takeuchi et al. | May 1998 | A |
5765095 | Flak et al. | Jun 1998 | A |
5776593 | Massa et al. | Jul 1998 | A |
5778301 | Hong | Jul 1998 | A |
5789686 | Massa et al. | Aug 1998 | A |
5792403 | Massa et al. | Aug 1998 | A |
5806934 | Massa et al. | Sep 1998 | A |
5829539 | Newton et al. | Nov 1998 | A |
5830256 | Northrop et al. | Nov 1998 | A |
5856626 | Fischer et al. | Jan 1999 | A |
5865571 | Tankala et al. | Feb 1999 | A |
5878634 | Tibbitts | Mar 1999 | A |
5880382 | Fang et al. | Mar 1999 | A |
5897830 | Abkowitz et al. | Apr 1999 | A |
5904212 | Arfele | May 1999 | A |
5947214 | Tibbitts | Sep 1999 | A |
5957006 | Smith | Sep 1999 | A |
5963775 | Fang | Oct 1999 | A |
5967248 | Drake et al. | Oct 1999 | A |
5979575 | Overstreet et al. | Nov 1999 | A |
5980602 | Carden | Nov 1999 | A |
6029544 | Katayama | Feb 2000 | A |
6045750 | Drake et al. | Apr 2000 | A |
6051171 | Takeuchi et al. | Apr 2000 | A |
6063333 | Dennis | May 2000 | A |
6068070 | Scott | May 2000 | A |
6073518 | Chow et al. | Jun 2000 | A |
6086980 | Foster et al. | Jul 2000 | A |
6089123 | Chow et al. | Jul 2000 | A |
6099664 | Davies et al. | Aug 2000 | A |
6148936 | Evans et al. | Nov 2000 | A |
6200514 | Meister | Mar 2001 | B1 |
6209420 | Butcher et al. | Apr 2001 | B1 |
6214134 | Eylon et al. | Apr 2001 | B1 |
6214287 | Waldenstrom | Apr 2001 | B1 |
6220117 | Butcher | Apr 2001 | B1 |
6227188 | Tankala et al. | May 2001 | B1 |
6228139 | Oskarrson | May 2001 | B1 |
6241036 | Lovato et al. | Jun 2001 | B1 |
6254658 | Taniuchi et al. | Jul 2001 | B1 |
6284014 | Carden | Sep 2001 | B1 |
6287360 | Kembaiyan et al. | Sep 2001 | B1 |
6290438 | Papajewski | Sep 2001 | B1 |
6293986 | Rodiger et al. | Sep 2001 | B1 |
6322746 | LaSalle et al. | Nov 2001 | B1 |
6348110 | Evans | Feb 2002 | B1 |
6375706 | Kembaiyan et al. | Apr 2002 | B2 |
6408958 | Isbell et al. | Jun 2002 | B1 |
6453899 | Tselesin | Sep 2002 | B1 |
6454025 | Runquist et al. | Sep 2002 | B1 |
6454028 | Evans | Sep 2002 | B1 |
6454030 | Findley et al. | Sep 2002 | B1 |
6458471 | Lovato et al. | Oct 2002 | B2 |
6474425 | Truax et al. | Nov 2002 | B1 |
6500226 | Dennis | Dec 2002 | B1 |
6503572 | Waggoner et al. | Jan 2003 | B1 |
6511265 | Mirchandani et al. | Jan 2003 | B1 |
6576182 | Ravagni et al. | Jun 2003 | B1 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6607693 | Saito et al. | Aug 2003 | B1 |
6615935 | Fang et al. | Sep 2003 | B2 |
6655481 | Findley et al. | Dec 2003 | B2 |
6685880 | Engstrom et al. | Feb 2004 | B2 |
6742608 | Murdoch | Jun 2004 | B2 |
6742611 | Illerhaus et al. | Jun 2004 | B1 |
6756009 | Sim et al. | Jun 2004 | B2 |
6766870 | Overstreet | Jul 2004 | B2 |
6782958 | Liang et al. | Aug 2004 | B2 |
6849231 | Kojima et al. | Feb 2005 | B2 |
6862970 | Aghajanian et al. | Mar 2005 | B2 |
6908688 | Majagi et al. | Jun 2005 | B1 |
6918942 | Hatta et al. | Jul 2005 | B2 |
6995103 | Aghajanian | Feb 2006 | B2 |
7044243 | Kembaiyan et al. | May 2006 | B2 |
7048081 | Smith et al. | May 2006 | B2 |
7395882 | Oldham et al. | Jul 2008 | B2 |
7513320 | Mirchandani et al. | Apr 2009 | B2 |
20020004105 | Kunze et al. | Jan 2002 | A1 |
20030010409 | Kunze et al. | Jan 2003 | A1 |
20040007393 | Griffin | Jan 2004 | A1 |
20040013558 | Kondoh et al. | Jan 2004 | A1 |
20040060742 | Kembaiyan et al. | Apr 2004 | A1 |
20040196638 | Lee et al. | Oct 2004 | A1 |
20040243241 | Istephanous et al. | Dec 2004 | A1 |
20040245022 | Izaguirre et al. | Dec 2004 | A1 |
20040245024 | Kembaiyan | Dec 2004 | A1 |
20050008524 | Testani | Jan 2005 | A1 |
20050072496 | Hwang et al. | Apr 2005 | A1 |
20050084407 | Myrick | Apr 2005 | A1 |
20050117984 | Eason et al. | Jun 2005 | A1 |
20050126334 | Mirchandani | Jun 2005 | A1 |
20050211474 | Nguyen et al. | Sep 2005 | A1 |
20050211475 | Mirchandani et al. | Sep 2005 | A1 |
20050247491 | Mirchandani et al. | Nov 2005 | A1 |
20050268746 | Abkowitz et al. | Dec 2005 | A1 |
20060016521 | Hanusiak et al. | Jan 2006 | A1 |
20060032677 | Azar et al. | Feb 2006 | A1 |
20060043648 | Takeuchi et al. | Mar 2006 | A1 |
20060057017 | Woodfield et al. | Mar 2006 | A1 |
20060131081 | Mirchandani et al. | Jun 2006 | A1 |
20060231293 | Ladi et al. | Oct 2006 | A1 |
20070042217 | Fang et al. | Feb 2007 | A1 |
20070102198 | Oxford et al. | May 2007 | A1 |
20070102199 | Smith et al. | May 2007 | A1 |
20070102200 | Choe et al. | May 2007 | A1 |
20070102202 | Choe et al. | May 2007 | A1 |
20080202814 | Lyons et al. | Aug 2008 | A1 |
20090031863 | Lyons et al. | Feb 2009 | A1 |
20090044663 | Stevens et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
695583 | Feb 1998 | AU |
2212197 | Oct 2000 | CA |
0264674 | Apr 1988 | EP |
0453428 | Oct 1991 | EP |
0995876 | Apr 2000 | EP |
1244531 | Oct 2002 | EP |
945227 | Dec 1963 | GB |
2017153 | Oct 1979 | GB |
2203774 | Oct 1988 | GB |
2345930 | Jul 2000 | GB |
2385350 | Aug 2003 | GB |
2393449 | Mar 2004 | GB |
10219385 | Aug 1998 | JP |
03049889 | Jun 2003 | WO |
2004053197 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100326739 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11965018 | Dec 2007 | US |
Child | 12875570 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11271153 | Nov 2005 | US |
Child | 11965018 | US | |
Parent | 11272439 | Nov 2005 | US |
Child | 11271153 | US |