The present disclosure relates generally to earth grounding systems, and more specifically to earth ground enhancing systems that improve DC/AC leakage current dissipation caused by an overvoltage event or occurrence.
In electrical installations such as electric power distribution stations and substations, and other installations there are structures within such installations that may be susceptible to static charge build-up and that require protection from overvoltage events. Such static charge build-up and overvoltage events may present a safety risk to personnel within such installations. To dissipate charge build-up and overvoltage events, an earth grounding system is typically deployed that connects specific structures of such installations with the Earth's conductive surface for safety purposes and in many instances for functional purposes. For example, electric power distribution systems may require earth grounding systems for safety and functional purposes. Tall structures may have lightning rods as part of a lightning protection system to protect the structures from lightning strikes. Communication towers and antennas may require an earth grounding system for operation, as well as to control static electricity build-up and provide lightning protection.
Typically, such earth grounding systems utilize bare copper conductors buried in the soil that are connected to the structures within the installations. Leakage current on the copper conductors exits the copper conductor and enters the soil to dissipate the leakage current into the earth.
The present disclosure provides embodiments of earth ground enhancing systems that improve the dissipation of static direct current electrical energy that may have been imposed on a structure or object being grounded, or that may have built up on a structure or object being grounded. The present disclosure provides embodiments of methods for assembling or installing the earth ground enhancing systems of the present disclosure, and embodiments of methods for grounding structures or objects. The present disclosure also provides embodiments of kits for the distribution of components forming the earth ground enhancing systems contemplated by the present disclosure.
In an exemplary embodiment of an earth ground enhancing system, the system may include one or more conductive mats and one or more conductors. The one or more conductors are secured to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats can remain substantially constant when assembled or installed. The one or more conductive mats may be positioned relative to the one or more conductors by placing the one or more conductive mats on the one or more conductors or by placing the one or more conductors on the one or more conductive mats. In one exemplary embodiment, the one or more conductive mats include a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The conductive material may be, for example, carbon black. In another exemplary embodiment, the one or more conductive mats may include a fabric substrate impregnated with a conductive material, a moisture retaining material and a binder that adheres the conductive material and moisture retaining material to the fabric substrate. The conductive material may be, for example, carbon black and the moisture retaining material may be, for example, bentonite.
In an exemplary embodiment of a method for assembling or installing an earth ground enhancing system, the method may include positioning one or more conductive mats relative to one or more conductors and attaching the one or more conductive mats to the one or more conductors so that the positioning of the one or more conductors relative to the one or more conductive mats remains substantially constant. The one or more conductive mats may be positioned relative to the one or more conductors by placing the one or more conductive mats on the one or more conductors or by placing the one or more conductors on the one or more conductive mats. In one exemplary embodiment, the one or more conductive mats include a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The conductive material may be, for example, carbon black. In another exemplary embodiment, the one or more conductive mats may include a fabric substrate impregnated with a conductive material, a moisture retaining material and a binder that adheres the conductive material and moisture retaining material to the fabric substrate. The conductive material may be, for example, carbon black and the moisture retaining material may be, for example, bentonite.
In an exemplary embodiment of a method for grounding a structure or a group of structures, the method may include laying one or more conductors in a trench, electrically connecting the one or more conductors to the structure or structures, laying one or more conductive mats over the one or more conductors, and attaching the one or more conductive mats to the one or more conductors so that the positioning of the one or more conductors relative to the one or more conductive mats remains substantially constant. The method may also include backfilling the trench with soil so that an electrically conductive path is created between at least a portion of each of the one or more conductive mats and at least a portion of each of the one or more conductors. In one exemplary embodiment, the one or more conductive mats include a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The conductive material may be, for example, carbon black. In another exemplary embodiment, the one or more conductive mats may include a fabric substrate impregnated with a conductive material, a moisture retaining material and a binder that adheres the conductive material and moisture retaining material to the fabric substrate. The conductive material may be, for example, carbon black and the moisture retaining material may be, for example, bentonite.
In an exemplary embodiment of a method for grounding a structure or a group of structures, the method may include laying one or more conductive mats in a trench, laying one or more conductors over the one or more conductive mats, attaching the one or more conductors to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats remains substantially constant, and electrically connecting the one or more conductors to the structure or structures to be grounded. The method may also include backfilling the trench with soil so that an electrically conductive path is created between at least a portion of each of the one or more conductive mats and at least a portion of each of the one or more conductors. In one exemplary embodiment, the one or more conductive mats include a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The conductive material may be, for example, carbon black. In another exemplary embodiment, the one or more conductive mats may include a fabric substrate impregnated with a conductive material, a moisture retaining material and a binder that adheres the conductive material and moisture retaining material to the fabric substrate. The conductive material may be, for example, carbon black and the moisture retaining material may be, for example, bentonite.
In an exemplary embodiment of an earth ground enhancing system, the system may include a first conductive layer, a second conductive layer and a substrate layer between the first conductive layer and the second conductive layer. The first conductive layer includes one or more conductive mats, and one or more conductors secured to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats can remain substantially constant when assembled or installed. The second conductive layer includes one or more conductive mats, and one or more conductors secured to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats can remain substantially constant when assembled or installed. The substrate layer is positioned between the first conductive layer and the second conductive layer.
In another exemplary embodiment of an earth ground enhancing system, the system may include a first conductive layer, a second conductive layer and a substrate layer between the first conductive layer and the second conductive layer. The first conductive layer includes one or more conductive mats, and one or more conductors secured to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats can remain substantially constant when assembled or installed. The second conductive layer includes one or more conductive mats, and one or more conductors secured to the one or more conductive mats so that the positioning of the one or more conductors relative to the one or more conductive mats can remain substantially constant when assembled or installed. The substrate layer is positioned between the first conductive layer and the second conductive layer.
In another exemplary embodiment of an earth ground enhancing system, the system may include a first conductive layer, a second conductive layer and a substrate layer between the first conductive layer and the second conductive layer. The first conductive layer includes a first layer conductive mat and a first layer electrical conductor. The first layer electrical conductor is secured to the first layer conductive mat so that the positioning of the first layer conductor relative to the first layer conductive mat remains substantially constant when assembled or installed. The second conductive layer includes a second layer conductive mat and a second layer electrical conductor. The second layer conductor is secured to the second layer conductive mat so that the positioning of the second layer conductor relative to the second layer conductive mat can remain substantially constant when assembled or installed. The substrate layer is positioned between the first conductive layer and the second conductive layer, and may be composed of soil, sand or a combination of soil and sand.
In another exemplary embodiment of a method for grounding a structure or a group of structures, the method may include laying one or more first layer conductors in a trench, electrically connecting the one or more first layer conductors to the structure or structures, laying one or more first layer conductive mats over the one or more first layer conductors, attaching the one or more first layer conductive mats to the one or more first layer conductors so that the positioning of the one or more first layer conductors relative to the one or more first layer conductive mats remains substantially constant. With the first conductive layer formed a substrate layer is formed by filling the trench with a substrate material, such as soil, sand or a combination of soil and sand so that the substrate layer covers the one or more first layer conductive mats. With the substrate layer formed a second conductive layer is formed by laying one or more second layer conductors in the trench on the substrate layer, electrically connecting the one or more second layer conductors to the structure or structures so that the one or more first layer conductors are electrically interconnected with the one or more second layer conductors, laying one or more second layer conductive mats over the one or more second layer conductors, and attaching the one or more second layer conductive mats to the one or more second layer conductors so that the positioning of the one or more second layer conductors relative to the one or more second layer conductive mats remains substantially constant.
The figures depict embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures illustrated herein may be employed without departing from the principles described herein, wherein:
The present disclosure provides embodiments of earth ground enhancing systems that improve the dissipation of electrical energy, e.g., static electrical (DC) charges, that may have been imposed on a structure or object being grounded, or that may have built up on a structure or object being grounded. The present disclosure provides embodiments of methods for assembling or installing the earth ground enhancing systems of the present disclosure, and embodiments of methods for grounding structures or objects. The present disclosure also provides embodiments of kits for the distribution of components forming the earth ground enhancing systems contemplated by the present disclosure. The earth ground enhancing systems contemplated by the present disclosure may be used in any environment where electrical energy is to be dissipated through earth ground. For ease of description, the structures and/or objects to be or being grounded may also be referred to herein collectively as the “structure” in the singular and as the “structures” in the plural.
Referring to
The one or more bare electrical conductors 12 used in the earth ground enhancing system 10 may be referred to as the “conductor” in the singular and the “conductors” in the plural. The one or more conductors 12 may be fabricated of, for example, copper or aluminum, and they may be solid conductors, stranded conductors, braided conductors, or any other type of electrical conductors. The conductor 12 may be any shape conductor. Non-limiting examples include round conductors and flat conductors. The one or more conductors 12 within the trench may have an end or other portion thereof attached to a structure or structures being grounded using, for example, exothermic welds, ground lugs or ground clamps. The length of the one or more conductors 12 may vary depending upon a number of factors, including the structure or structures being grounded and the distance between the structures being grounded. For example, the length of the one or more conductors 12 may range from about 1 foot and greater, e.g., in excess of 1000 feet, to ensure proper leakage current dissipation. More specifically, for every meter of conductive metal of the conductor 12 that is in contact with the soil or stratum, a calculable amount of current flowing through the conductor will exit the conductor and enter the earth. This current that exits the conductor and enters the earth is known as the “leakage current.” The leakage current of the earth ground enhancing systems contemplated by the present disclosure may range from about 0.0001 amps and greater, e.g., in excess of 100,000 amps. The conductors 12 used with the earth ground enhancing systems of the present disclosure range in size from, for example, about 2/0 AWG to about 4/0 AWG. However, the present disclosure contemplates that any size conductor may be included in the earth ground enhancing systems. In the exemplary size range of a about 2/0 AWG to about 4/0 AWG, a ten-foot length conductor would have a dissipation surface area of conductive metal that can contact the soil in the range of about 90 square inches to about 180 square inches. This surface area would permit the leakage current of about 0.0001 amps to about 10000 amps to exit the conductor and enter the soil. The conductive mat used in the earth ground enhancing systems of the present disclosure increases the “leakage current” capacity of the earth ground enhancing systems by increasing the dissipation surface area of the conductor by a factor of at least 10. Thus, in the example above, the dissipation surface area of the conductor 12 plus the conductive mat 14 would be in the range of about 900 square inches to about 1800 square inches.
In one exemplary embodiment, the conductive mats are fabricated from a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The fabric substrate may be a woven, nonwoven, knit or paper substrate. The fabric substrate may be natural, synthetic or a blend. In the exemplary embodiment of the present disclosure, the fabric substrate is a nonwoven substrate. The fabric substrate is then dipped into an aqueous solution containing a conductive material and a binder so that the fabric substrate is saturated or impregnated with the solution. The saturated fiber substrate is nipped to a predetermined wet add-on, dried and cured to form a flexible, electrically conductive fabric. The aqueous-based treatment is applied using standard textile wet processing methods, and the drying and curing of the saturated fabric are similarly performed by conventional means. The conductive material may be any material capable of providing conductivity to a nonconductive substrate. Examples include carbon black, jet black or lamp black, carbonized acrylonitrile black, dry powdered carbon, tin-doped antimony trioxide, and powdered metal dispersions. The preferred conductive material is carbon black.
The binder used in the aqueous solution can be any binder, resin or latex capable of binding the conductive material to the fabric substrate. Non-limiting examples include, butadiene acrylonitrile latex emulsions, carboxymodified acrylonitrile emulsions, acrylonitrile butadiene styrene emulsions, acrylic emulsions, polyvinyl chloride emulsions, butyl rubber emulsions, ethylene/propylene rubber emulsions, polyurethane emulsions, polyvinyl acetate emulsions, SB vinyl pyridine emulsions, polyvinyl alcohol emulsions, and melamine resins. Blends of these materials, or any aqueous-based emulsions of binders, resins, or latexes, may also be used. A more detailed description of the conductive mat is provided in U.S. Pat. No. 5,723,186 to Fraser, Jr. which is incorporated herein in its entirety by reference.
To ensure sufficient dissipation of leakage current, the surface resistivity of the conductive mat 14 is in the range of about 1×10−4 ohm per square foot and about 1.0×1010 ohms per square foot. It is noted that the greater the surface resistivity of the conductive mat 14 the more DC/AC current the conductive mat 14 may dissipate. As a result, the surface resistivity of the conductive mat 14 can be adjusted by, for example, including known additives to the aqueous solution to adjust the ratio of the fabric substrate to the conductive material.
To further improve the dissipation of leakage current from the conductive mat 14 a moisture retaining material may be added to the aqueous solution containing the conductive material and binder so that the fiber substrate is saturated or impregnated with a solution of conductive material, binder and moisture retaining material. A non-limiting example of a suitable moisture retaining material includes bentonite, which is a moisture retaining clay that can help to lower the resistivity between the conductive mat 14 and the soil. The conductive bentonite clay is a sodium activated montmorillonite which when mixed with water swells to several times its original volume mass when in a dry condition. The inherent ability of bentonite to absorb and retain water increases the electrical conductivity between the conductive mat 14 and the soil. Typically, bentonite has a 3 ohms per meter resistivity level.
The conductive mat 14 may vary in length “L”, width “W” and thickness “T”, seen in
As set forth above, the present disclosure provides embodiments of methods for assembling or installing the earth ground enhancing systems of the present disclosure. In an exemplary embodiment, and referring again to
In another exemplary embodiment, and referring again to
As set forth above, the present disclosure provides embodiments of methods for grounding structures. In an exemplary embodiment, and referring again to
In another exemplary embodiment, and referring again to
Referring to
Referring now to
Continuing to refer to
As described above, preferably the conductor 12 is positioned along a center line “CL,” seen in
As described above, in one exemplary embodiment, the conductive mats are fabricated from a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The fabric substrate may be a woven, nonwoven, knit or paper substrate. The fabric substrate may be natural, synthetic or a blend. In the exemplary embodiment of the present disclosure, the fabric substrate is a nonwoven substrate. The fabric substrate is then dipped into an aqueous solution containing a conductive material and a binder so that the fabric substrate is saturated or impregnated with the solution. The saturated fiber substrate is nipped to a predetermined wet add-on, dried and cured to form a flexible, electrically conductive fabric. The aqueous-based treatment is applied using standard textile wet processing methods, and the drying and curing of the saturated fabric are similarly performed by conventional means. The conductive material may be any material capable of providing conductivity to a nonconductive substrate. Examples include carbon black, jet black or lamp black, carbonized acrylonitrile black, dry powdered carbon, tin-doped antimony trioxide, and powdered metal dispersions. The preferred conductive material is carbon black. A more detailed description of the conductive mats 14 is provided above and is not repeated.
Continuing to refer to
Referring again to
Continuing to refer to
Referring now to
As described above, in one exemplary embodiment, the conductive mats are fabricated from a fabric substrate impregnated with a conductive material and a binder that adheres the conductive material to the fabric substrate. The fabric substrate may be a woven, nonwoven, knit or paper substrate. The fabric substrate may be natural, synthetic or a blend. In the exemplary embodiment of the present disclosure, the fabric substrate is a nonwoven substrate. The fabric substrate is then dipped into an aqueous solution containing a conductive material and a binder so that the fabric substrate is saturated or impregnated with the solution. The saturated fiber substrate is nipped to a predetermined wet add-on, dried and cured to form a flexible, electrically conductive fabric. The aqueous-based treatment is applied using standard textile wet processing methods, and the drying and curing of the saturated fabric are similarly performed by conventional means. The conductive material may be any material capable of providing conductivity to a nonconductive substrate. Examples include carbon black, jet black or lamp black, carbonized acrylonitrile black, dry powdered carbon, tin-doped antimony trioxide, and powdered metal dispersions. The preferred conductive material is carbon black.
The binder used in the aqueous solution can be any binder, resin or latex capable of binding the conductive material to the fabric substrate. Non-limiting examples include, butadiene acrylonitrile latex emulsions, carboxymodified acrylonitrile emulsions, acrylonitrile butadiene styrene emulsions, acrylic emulsions, polyvinyl chloride emulsions, butyl rubber emulsions, ethylene/propylene rubber emulsions, polyurethane emulsions, polyvinyl acetate emulsions, SB vinyl pyridine emulsions, polyvinyl alcohol emulsions, and melamine resins. Blends of these materials, or any aqueous-based emulsions of binders, resins, or latexes, may also be used. A more detailed description of the conductive mat is provided in U.S. Pat. No. 5,723,186 to Fraser, Jr.
To ensure sufficient dissipation of leakage current, the surface resistivity of the conductive mat 14 is in the range of about 1×10−4 ohm per square foot and about 1.0×1010 ohms per square foot. It is noted that the greater the surface resistivity of the conductive mat 14 the more DC/AC current the conductive mat 14 may dissipate. As a result, the surface resistivity of the conductive mat 14 can be adjusted by, for example, including known additives to the aqueous solution to adjust the ratio of the fabric substrate to the conductive material.
To further improve the dissipation of leakage current from the conductive mat 14 a moisture retaining material may be added to the aqueous solution containing the conductive material and binder so that the fiber substrate is saturated or impregnated with a solution of conductive material, binder and moisture retaining material. A non-limiting example of a suitable moisture retaining material includes bentonite, which is a moisture retaining clay that can help to lower the resistivity between the conductive mat 14 and the soil. The conductive bentonite clay is a sodium activated montmorillonite which when mixed with water swells to several times its original volume mass when in a dry condition. The inherent ability of bentonite to absorb and retain water increases the electrical conductivity between the conductive mat 14 and the soil. Typically, bentonite has a 3 ohms per meter resistivity level.
The conductive mat 14 may vary in length “L”, width “W” and thickness “T”, seen in
As set forth above, the present disclosure also provides embodiments of methods for assembling or installing the earth ground enhancing system of
While exemplary embodiments of the present disclosure have been described above and illustrated herein, it should be understood that these are exemplary of the disclosure and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present disclosure. Accordingly, the present disclosure is not to be considered as limited by the foregoing description.
The present disclosure is based on and claims benefit from co-pending U.S. Provisional Patent Application Ser. No. 62/855,318, filed May 31, 2019 entitled “Earth Ground Enhancing Systems” the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62855318 | May 2019 | US |