The present invention relates generally to earthmoving equipment. Earthmoving equipment is typically used for excavating, pushing, and/or transporting large quantities of earth. Some examples of earthmoving equipment include bulldozers, track or wheel front end loaders, backhoes, and wheel tractor-scrapers. More particularly, the invention relates to a device that can be attached to conventional earthmoving equipment to enhance its material scraping and transportation abilities.
In earthmoving, the goals are to move material quickly and economically. Typically to increase the speed of removal requires a higher investment cost in more expensive equipment. For example, a piece of specialized heavy equipment, similar to the wheel-tractor scraper disclosed in U.S. Pat. No. 6,276,077, is used to remove and transport large amounts of earth. The wheel tractor-scraper has a rear portion with a vertically moveable hopper that has a sharp horizontal front edge. The hopper can be hydraulically lowered and raised. In the lowered position, the front edge of the hopper “cuts” into the soil, which is then collected into the hopper as the scraper advances along its path. When the hopper is filled, it can be closed with a vertical blade and the tractor-scraper is driven to a desired location, typically called a “fill” area, where the contents are dumped. Scrapers can be very efficient on short hauls where the cut and fill areas are close together and have a scraping area of sufficient length to fill the hopper. One disadvantage of wheeled tractor-scrapers is that they are large, expensive machines that are highly specialized solely for the purpose of scraping and dumping. Furthermore, the operator must cease scraping to dump the contents of the hopper.
Another disadvantage of such devices is their weight, especially when loaded. That weight can cause severe problems when operating in certain soil conditions, more particularly the weight of the device can break through the soil surface. That, in turn, can mire the device in loose soil and prevent effective scraping.
Other prior material removal devices, such as the continuous excavating machine disclosed in U.S. Pat. No. 4,616,880 (Nozaki et al.), comprise a scraper that is pulled or pushed along the ground to collect material and force it onto a conveyor belt. The conveyor belt transfers the material to a desired location or dump truck for transporting to a more distant location. The primary disadvantage of this type of scraper is that, like the tractor-scraper, a user must purchase a separate piece of relatively large and expensive equipment to scrape and remove material from the earth.
Bulldozers, loaders and other types of relatively common earthmoving equipment can also be used to remove and transport earth or other material. A bulldozer is a conventional device, as described, for example, in U.S. Patent Application Publication 2005/0126055, and is a tracked vehicle equipped with a large thick metal plate, typically called a blade, attached on its front end. As the machine is driven forward, the blade scrapes, pushes and relocates earthen material. A similar machine called a loader, also known as a front loader, front end loader, bucket loader, scoop loader or shovel, is a type of wheeled or tracked vehicle that, like a bulldozer, can scrape and push material, but also has arms and a rotatable bucket that lift and move material into, for example, a truck. Loaders and bulldozers may be provided with linkage and hydraulic couplers that allow the user to replace the bucket or plate with other tools.
Bulldozer and loaders are advantageous in that they are more versatile, more readily available, and may be relatively less expensive compared to tractor-scrapers and specialized excavator equipment. However, these vehicles are typically relatively limited in the amount of material that they can remove. For example, bulldozers are typically limited to pushing material around and are unable to load material on a truck for more distant dumping. Although a front end loader or other bucket style device can lift dirt to a dump truck or other transportation means, the removal process advances relatively slowly because the operator must periodically stop scraping in order to dump the contents of the bucket. Furthermore, a loader bucket can usually store only about 3-5 cubic yards of earthen material before it must be emptied.
It is therefore an objective of the present invention to provide a device that will allow for the quick and efficient scraping and removal of dirt or other earthen material. It is further an objective of the present invention to adapt the scraping and removing device for attachment to a standard and versatile piece of equipment such as a bulldozer or front-end loader. It is still further an objective of the invention that the scraper attachment be capable of simultaneously scraping the earth and moving material along a boom conveyor to move the material to another location, such as a truck.
The following disclosure describes a novel earthmoving device that can be attached to standard earthmoving equipment and that overcomes the deficiencies of the prior art.
In order to achieve the above mentioned objectives the invention provides an attachment for the front of earthmoving equipment, such as a bulldozer or front end loader. More particularly, the invention may include a scraper housing with a back wall, a first side wall, a second side wall including an opening through a portion of the second side wall. A scraper blade for scraping material may be located proximate the front the scraper. An earth transfer plate may be attached to the scraper blade for directing material from the scraper blade to a scraper conveyor. The scraper conveyor may be conveyor belt for continuously moving material in a direction toward the second side wall and positioned so that a top surface of the scraper conveyor belt lies below at least one edge of the earth transfer plate for catching material as it is scraped and collected.
The invention may also comprise a boom conveyor attached to and extending from an outside portion of the second side wall of the scraper housing and located below the opening in the second side wall to catch material conveyed past the edge of the scraper conveyor belt, the boom conveyor further comprising a belt oriented to carry the material away from the scraper housing.
Novel features and advantages of the present invention in addition to those noted above will become apparent to persons of ordinary skill in the art from a reading of the following detailed description in conjunction with the accompanying drawings wherein similar reference characters refer to similar parts and in which:
A preferred embodiment of the scraping device according the present invention will now be described in detail with reference to
The scraper housing 12 may be generally box-shaped and may include a rear wall 11 and side walls 13 and 15, shown in
As shown in
The earth transfer plate 26 and scraper blade 24 may be placed at an angle of, for example, 20 to 60 degrees with respect to the bottom of scraper housing 12. Preferably, the earth transfer plate 26 and scraper blade 24 are oriented at an angle of 30 degrees with respect to the scraper housing 12. Earth transfer plate 26 may be of any suitable material of any suitable thickness. For example, earth transfer plate 26 may be a one inch thick steel. Blade 24 may also be constructed of hardened steel and may have a tapered end to enhance the scraping function. Blade 24 may extend approximately two inches below the bottom of scraper housing 12.
As mentioned above, material 20 is deposited from the earth transfer plate 26 onto the scraper conveyor belt 14. Scraper belt 14 may be comprised of metal, rubber, plastic, fabric, or other suitable material and may be driven by one or more motors 28. The motor(s) 28 may be powered by a separate power supply located on the rear of the vehicle 10. Alternatively, the motors 28 may be hydraulic and may be connected to the hydraulic system of the bulldozer 10. Belt 14 may be supported by rollers 30 located proximate to side wall 13 and side wall 15 of scraper 12. Additional, and potentially smaller, rollers 32 may also be placed under belt 14 to provide additional support. Rollers 30 and 32 may comprise bearings (not shown) that are mounted on rods (not shown) as is conventional in the arts of roller and conveyor belt technologies. Rollers 30 and 32 may be attached to scraper housing 12 at the back wall 11 and at center support member 57 to provide support to scraper belt 14. Center support member 57 may be attached to side wall 13 and side wall 15 and may provide support to the earth transfer plate 26. Alternatively or additionally, center support member 57 may be attached to and supported by one or more lateral cross-members 56. Motor 28 turns belt 14 and advances material 20 toward opening 19 provided in side wall 13 which is aligned with boom conveyor 16, as shown in
As belt 14 turns, material 20 is eventually deposited onto boom conveyor 16. Boom conveyor is attached to side wall 13 at brackets 39 using any conventional means, such as, for example, a bolt and nut configuration. Boom conveyor 16 comprises a belt 34 that may be driven by a motor 36. Boom conveyor 16 may also be provided with rollers 38 at each end to allow belt 34 to rotate more freely. Rollers 38 may comprise bearings (not shown) that are mounted on rods (not shown) as is conventional in the art and described with respect to rollers 30 and 32 above. Support structure 40 may be provided between rollers 38 to provide structural support for belt 34. Belt 34 may also be provided with raised slats 42 to improve the transportation of material 20 along boom conveyor 16.
Boom 16 may be supported by one or more boom support members 44, which each may comprise a cable, wire, rod or other suitable means of support. An anchor bracket 46 or other attachment means may be provided to attach support member 44 to boom 16. Support member 44 may be attached to scraper housing 12 with mounting bracket 48. Support member 44 may further be provided with an adjustor 50 to permit a user to raise and lower boom 16. Adjustor 50 may be manual or power-assisted with a hydraulic cylinder or other suitable power means. If the adjustor 50 is a hydraulic cylinder as show in
As shown in
As shown in
The foregoing description of the invention illustrates and describes the present invention. Additionally, the disclosure shows and describes only the preferred embodiments of the invention, but it is to be understood that the invention is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or the skill or knowledge in the art of equipment manufacture. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.