The present invention claims the benefit of Iranian Appl. No. 389030747, filed on Jun. 14, 2010, and granted as patent 69454, the entire content of which is incorporated herein by reference.
The present invention relates to the field of construction, particularly construction of an elevator system and staircase structures that are cost effective and earthquake safe and is designed for tight spaces.
Buildings of different kinds, such as apartment complexes, commercial buildings and office buildings are often made with an elevator and a staircase. The construction of the elevator and the staircase can add substantial cost to a building project. The first problem that increases the cost is the long duration for the construction of the elevator and the stairs. The second problem is constructing the stairs with the height of 15 centimeters instead of 18 centimeters, which is more comfortable. The third problem is the wasted space in the door way that is used for the elevator, which is important in expensive and business buildings. The fourth problem is the lack of harmony in dimension and the position of stairs relative to the elevator. The fifth problem is the large space of counterweight with the frame which in a standard design, comes with two rails for the weight with a bracket, a third rail for the cabin, which if the wall of the well is thin the sound and the vibration will be a problem for the adjacent units. The counterweight also may fall and cause damage or injury during an earthquake. Elevator and staircase construction requires a compact and cost effective design that is also safe during an earthquake.
In one embodiment, the present invention provides an earthquake safe elevator system comprising:
wherein the counterweight and the cabin are connected to each other so that as the cabin slides along the outside of the pipe, the counterweight slides in the opposite direction inside of the pipe. The pipe can be connected to the inside of a support structure that is parallel to the pipe, inside of which, the support structure defines a shaft for the elevator. The support structure can be a hollow cylinder or a pipe. The support structure can be an alloy fabricated as one piece for purpose of supporting an elevator system inside. The support structure can support stairs attached on the outside of the support structure.
The support structure can have slots for attachment of the stairs. One to four pipes per cabin can be used, with each pipe containing a counterweight. Only three pipes can be used. The elevator cabin can be circular. The pulleys can be used to connect the counterweight with the cabin through a cable. The wheels can be used for having one or more of the cabin or the counterweight sliding against the pipe. There can be four wheels on top of the cabin and four at the bottom, so as to surround the pipe on all sides. The pipe can cut into the cabin to allow for positioning of the wheels on all sides of the pipe. The counterweight can have wheels that slide against inside of the pipe. A helical staircase can surround the support structure, with the elevator system in middle.
In one embodiment, the present invention provides building support structure comprising:
wherein the counterweight and the cabin are connected to each other so that as the cabin slides along the outside of the pipe, the counterweight slides in the opposite direction inside of the pipe.
The present invention provides for a compact elevator with an earthquake safe counterweight, optionally with a staircase, for rapid installation. The elevator comprises:
wherein the counterweight and the cabin are connected to each other so that as the cabin slides along the outside of the pipe, the counterweight slides in the opposite direction inside of the pipe.
The diameter of the pipe (4) is preferably about 10 cm to about 50 cm, depending on the capacity of cabin and can be larger. The thickness of the pipe is preferably about 0.5 cm to about 10 cm, such as about 1 cm depending on the size of the cabin. The length of the pipe is preferably about 2 meters to the height of the building, such as about 2 m to about 12 meters. Standard 2 m sections can be welded together depending on height of the building. Preferably one to four pipes are used, however it is better to have 3 pipes. The pipe preferably also has an opening at the bottom to allow for movement of air as the counterweight moves. The support structure preferably has a diameter of about 1.5 m to about 5 m, such as about 1.5 m. Connectors (16) can be used to connect the pipe (4) to support structure (7, 10).
The elevator cabin can fit preferably one to ten people. The elevator cabin is preferably circular.
Pulleys (3) can be used to connect the counterweight with the elevator through a cable. A motor can be used to move the cabin. The motor can be gearless or with gear. Wheels (rollers) (6) can be used to make sure that the cabin slides smoothly against the pipe. The mechanism is similar to rack and pinion. These wheels are put on the cabin and slidably interact with the pipe. Preferably there are four wheels (6) on top of the cabin and four at the bottom, so as to surround the pipe on all sides. The pipe preferably cuts somewhat into the cabin (9) to allow for positioning of the rollers (6) on all sides of the pipe. The counterweight (5) also has wheels, such as made from Teflon, that slide against inside of the pipe.
The elevator system is preferably incorporated as part of a staircase structure, with a staircase that is helical.
The present invention provides a compact coupling of elevator accompanied by helical stairs or escalator with rapid Installation (CES). The elevator concrete well and the typical stairs are eliminated and instead; an industrial large pipe (4) is used which is applied from outside the pipe for easy stair installation (installation to support structure 10) and it is used from inside the pipe instead of a well. In one embodiment, 3 pipes (
This compact coupling of elevator accompanied helical stairs or escalators (CES), allows for mechanization of making elevators with stairs (CES) so that almost except the foundation, most of the construction such as the concrete well and the ordinary stairs is done by workers skilled in mechanics. The stairs and elevator installation is possible even before constructing the building. A standard dimension can be suggested for the near future
As for elevator, speed of up to about 17 m/s are possible, and even a turn sensor and even the considered floor. This complex eliminates all the constructions such as making well and traditional Stairs and instead, an extrude pipe made of aluminum alloy for example for the capacity of 6 person with a diameter of about 1.5 meter and the length of about 2 up to about 12 meters and the weight of about 140 kg/m with about 51 slots or holes for installing stairs in accordance with the
Inside the support structure pipe (number 10 in E and F), there are 3 guiding pipes (4) with 120 degree diversion altogether. They can be screwed with a special morsel that is noiseless. It is also of the pipe material made of steel. P (4) shown in
At the other side of the steps, the end and the beginning of every step can be controlled by a newel (1 in
Instead of the well, the industrial pipe and the stairs are produced in mass. The installation is quick and unchallengeable. For example, the work is done in 10 days rather than 3 months, and can be installed before construction. Supply of force from cables to the cabin is more uniform and the cabin is lighter, and the counterweights inside the pipes safer and in the same way, the cabin guide by rolls over the pipe in 120 degree in relation to each other. All these features allow a higher speed and smoothness. The other advantage is that design A is 23% less space than the design B and 55% less than the design C which is customary and take 3.5 m2 and 8.5 m2 more space in every floor with the same door way, stair and elevator capacity. The less space needed negates the stair and the elevator cost. The elevator is used in all residential, official and business buildings and is recommended in building of more than 2 floors.
Figure one of the application provides the following illustrations:
Number (14) illustrates a square cabin with capacity for six to eight or 10 passengers.
Number (4) illustrates a single pipe (No. 4 DIN2391) with a cabin K (14) which is square. The pipe (4) has a diameter of 20 cm and thickness of 1 cm and is a seamless steel pipe and guides the cabin from the corner of the cabin with four Rollers (6) at the bottom of the cabin and four at the top of the cabin, positioned 1 cm in the corner of the cabin from outside. Non-contact Guide System and technology magnet rails without noise can also be used in parallel with this system. Inside pipe (4) counterweight (5) with two wheels (15) is used. The cabin and counterweight are connected through a cable as shown in (8). The pipe (4) is connected to beam (
The above embodiments are for illustration and are not meant to limit the invention.
Number | Date | Country | Kind |
---|---|---|---|
389030747 | Jun 2010 | IR | national |