Ventilators or respirators are used for mechanical ventilation of the lungs of a patient in a medical setting. The ventilator unit is connected to a hose set; the ventilation tubing or tubing circuit, delivering the ventilation gas to the patient. At the patient end, the ventilation tubing is typically connected to a tracheal ventilation catheter or tube, granting direct and secure access to the lower airways of a patient. Tracheal catheters are equipped with an inflated sealing balloon element, or “cuff”, creating a seal between the tracheal wall and tracheal ventilation tube shaft, permitting positive pressure ventilation of the lungs.
One type of tracheal catheter, an endotracheal tube (ET tube), inserted through the mouth, is generally used for a number of days before a decision is made to switch a patient to a tracheostomy tube, inserted directly into the trachea through a stoma in the tracheal wall. Endotracheal tubes have been linked in some studies to an increased rate of ventilator acquired pneumonia (VAP) and so tracheostomy operations are becoming increasingly common and are being performed earlier in the patient's hospital stay in order to reduce the occurrence of VAP.
A tracheostomy procedure involves making a small horizontal incision in the skin of the neck to grant access to the trachea. Because of the uniquely flexible and elastic nature of the trachea, it has been found that healing is much faster if only a small hole is made in the tracheal wall and the hole dilated, rather than cutting the tracheal wall. After the skin incision, a hemostat or other implement may be used to separate the subcutaneous tissues to gain access to the trachea, and digital palpation is used to locate the tracheal rings. A bronchoscope is usually inserted into the ET tube and the tube withdrawn from the trachea until the light of the bronchoscope transdermally illuminates the site of the incision. A sheathed needle is used to puncture the tracheal wall, usually between the second and third tracheal rings. The needle is removed with the sheath remaining, a flexible guide wire (also called a J-wire) is inserted in the place of the needle and the sheath is removed. The bronchoscope is used for viewing the procedure from within the trachea in order to avoid damage to the tracheal wall. A small (e.g. 14 French) introducer dilator is introduced over the guide wire to perform an initial dilation of the tracheal wall, and then removed. A smaller (e.g. 8 French) guiding catheter is then introduced over the guide wire. (Note, French is a measure of circumference based on the theory that non-round tubes of the same circumference will fit into the same incision. One French is approximately 0.33 mm or 0.013 inch).
After the guiding catheter is introduced, a first dilator such as the Cook Medical Inc. Blue Rhino® dilator (see also U.S. Pat. No. 6,637,435), is placed over the guide wire and the guiding catheter and first dilator are advanced into the trachea through the tracheal wall as a unit to perform the dilation. Cook Medical recommends a slight over-dilation of the tracheal wall in order to make the placement of the tracheostomy tube easier. After dilation, the first dilator is removed and the tracheostomy tube (with cannula removed) is introduced over the guide catheter using a second, loading dilator that fits just inside the trachostomy tube and protrudes about 2 cm beyond the distal end of the tracheostomy tube. The guide catheter, second dilator and tracheostomy tube are advanced into the trachea through the tracheal wall as a unit. Once the tracheostomy tube is at the proper depth, the second dilator, guide catheter and guide wire are removed through the tracheostomy tube, the inner cannula inserted into the tracheostomy tube and the tube connected to the ventilator.
As can be understood from the above description, the current state of the art for tracheostomy involves numerous steps and the insertion and removal of a number of components before the successful completion of the procedure. For most of this time, the patient is disconnected from the ventilator and is therefore, not breathing. In addition, the large number of parts used in current tracheostomy kits increases the likelihood that an item may be accidentally rendered unsterile and be unable to be used. In such cases, the patient must be re-intubated with an ET tube. Even if the procedure proceeds uneventfully, however, the amount of time the patient is not breathing is significant; on the order of 7 minutes or more. This is clearly a significant event, especially for a patient who is, most likely, not in optimal physical condition.
There remains a need for a device that can more quickly and safely allow for the successful placement of a tracheostomy tube.
There is provided a device for performing a tracheostomy. The described tracheostomy dilator has a body and a tip which are detachably attached. The tip has a cannula sized to accommodate a guiding catheter. The tip has a proximal inner portion which is within the body while the tip is attached to the body. After the trachea has been dilated, the body may be detached from the tip and removed and a tracheostomy tube may be inserted over the inner portion of the tip. The tip then may serve to guide a tracheostomy tube into the trachea. After the tracheostomy tube is installed, the tip and other components may be withdrawn through the tracheostomy tube and the tracheostomy tube placed in service.
Tracheostomy is a lifesaving procedure to allow a patient to be ventilated directly through the trachea. Tracheostomy is also believed by many to prevent or retard the onset of ventilator acquired pneumonia (VAP). This lifesaving procedure, unfortunately, is relatively time consuming and current technology requires a large number of steps and pieces of equipment that must remain sterile and functioning properly in order to arrive at a successful conclusion.
Dilators are instruments or substances for enlarging a canal, cavity, blood vessel or opening, according to the American Heritage Stedman's Medical dictionary 2001.
The tracheostomy procedure may be greatly improved using the device described in the Summary above; the novel easy grip tapered dilator (the device). The device replaces a number of pieces used in the current state of the art procedure described in the introduction. The device replaces both the first and second dilators and so provides fewer steps in the procedure, saving time and reducing risk to the patient. The device also has a number of other novel features to help ensure the consistency and ease of the procedure for the physician. The device is used after the placement of the guiding catheter and J-wire in the trachea.
Turning to the Figures, one embodiment of the device 10 has a body 20 and a distal tip 12 (
The distal tip 12 meets the body 20 at the proximal end 28 of the tip 12 (
As described above, once the J-wire 16 is inserted into the trachea 24 through the incision 32 and tracheal wall 34, a guiding catheter 14 is introduced over the J-wire 16 (
Once the trachea 24 is satisfactorily dilated, the device 10 may be partially removed from the trachea 24, leaving the tip 12 partially, e.g., about half way, into the trachea 24. Note that this view is essentially the same as
After removal of the body 20, a tracheostomy tube 26 is passed axially over the inner portion 18 of the tip 12 until it reaches the proximal end 28 of the tip 12 where the tube 26 mates with the proximal end 28 of the tip 12 (
In addition to the above features, the device may have a number of other features to aid the physician in placement of the dilator, some of which are illustrated in
Another optional trauma reducing feature is a lubricious coating that may be added to the tip and dilator body up to the stop ridge on the exterior and/or interior. The coating may be activated by exposure to water (
Still another optional feature is a locking means, discussed briefly above, to hold the inner portion 18 and the rest of the tip 12 in place within the body 20. As seen in
Lastly, the marking line 22 at 42 French on the dilator body may instead be a an additional ridge or other marking and alternate or additional markings may be placed on the dilator body at, for example, 32, 38 or still larger French diameters.
The exact size of the dilator device may be varied since the device may be used with adults of varying sizes as well with pediatric patients. A device of a size that functions well with adults may be greatly oversized for use on infants. There are, however, some recommended criteria that should be met. The device, for example, should have a total length of less than 30 cm and weigh less than 35 gms. The dilator tip 12 may be between about 25 and 80 mm in length, particularly about 35 mm long, tapering from 3 to 6 mm at the distal end to about 5 to 16 mm, particularly 4 mm at the distal end to 8 mm. The tip inner portion 18 may be between 15 and 30 cm, particularly about 24 cm, in length. The body 20 should be between 12 and 25 cm, more particularly between 15 and 20 cm.
The device should be made from a pliable, flexible material so that it is firm enough to enter the trachea and dilate the tracheal wall, yet not so rigid and firm that it will not flex or “give” when it meets an obstruction. The flexibility of the parts of the device may vary, furthermore, with the distal tip 12 being the most flexible, the proximal end of the body being the least flexible and the flexibility of the body varying between the two. Polymers that may be suitable for use in making the device include polyolefins, polycaprolactones, polyurethanes and others. Polyurethane has been found to be particularly useful in producing the device. The device must be biocompatible, free of di(2-ethylhexyl) phthalate (DEHP) and preferably free of animal derived products.
In contrast to the prior art dilator, the dilator body described herein should be substantially curved (
This application is one of a group of commonly assigned patent application which are being filed on the same day. The group includes application Ser. No.: ______ (attorney docket No. 64375503US01) in the name of Brian J. Cuevas and is entitled “Easy Grip Tapered Dilator”; application Ser. No.: ______ (attorney docket No. 64375503US02) in the name of Brian J. Cuevas and is entitled “Method of Performing a Tracheostomy”; application Ser. No.: ______ (attorney docket No. 64375504US01) in the name of Brian J. Cuevas and is entitled “Dilator Loading Catheter”; application Ser. No.: ______ (attorney docket no.64392563US01) in the name of Brian J. Cuevas and is entitled “Tracheostomy Tube Butterfly Flange”; application Ser. No.: ______ (attorney docket no 64482359US01) in the name of James Schumacher and is entitled “Tracheostomy Tube”; design application no. ______ (attorney docket no. 64392563US02) in the name of Brian J. Cuevas and is entitled “Butterfly Flange”; design application serial no. ______ (attorney docket no. 64375503US03) in the name of Brian J. Cuevas and is entitled “Tapered Dilator Handle”; design application ______ (attorney docket no. 64392563US03) in the name of Brian J. Cuevas and is entitled “Stoma Pad”. The subject matter of these applications is hereby incorporated by reference.
As will be appreciated by those skilled in the art, changes and variations to the invention are considered to be within the ability of those skilled in the art. Such changes and variations are intended by the inventors to be within the scope of the invention. It is also to be understood that the scope of the present invention is not to be interpreted as limited to the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing disclosure.