The present invention relates generally to row crop harvesters. More specifically, embodiments of the present invention concern a row crop header that includes a stalk stomper.
Conventional row crop harvesters include a row crop header with a plurality of discrete row units spaced laterally along the header length. The header is positioned so that each row unit is aligned with a row of plants to be harvested and is advanced along the rows to sever the plant stalks and receive an upper part of the plants.
However, conventional row crop headers have various deficiencies. For instance, prior art headers sever the plant stalks so that a lower part of the plant stalk remains standing. For plants with relative large-diameter stalks, such as corn, the remaining stalk can puncture or otherwise damage a tire of the harvester (or another vehicle traveling across the field).
It is also known in the art to attach a stomper mechanism to a row crop header so that the mechanism is positioned behind the header. However, conventional stomper mechanisms are bulky and are exposed relative to the header.
The following brief summary is provided to indicate the nature of the subject matter disclosed herein. While certain aspects of the present invention are described below, the summary is not intended to limit the scope of the present invention.
Embodiments of the present invention provide a harvesting header that does not suffer from the problems and limitations of the prior art headers set forth above.
A first aspect of the present invention concerns a row crop harvesting header operable to be advanced along a forward travel direction to harvest a series of plants in a crop row. The row crop harvesting header broadly includes a row crop toolbar, a crop-gathering row unit assembly, and a plant stalk stomper. The row crop toolbar extends laterally relative to the forward travel direction. The crop-gathering row unit assembly is supported by the toolbar to define a fore-and-aft extending row path, with the row unit assembly being operable to collect the crop row along the row path and sever crop stalks as the header moves forwardly. The row unit assembly includes a row unit bracket supported by and located adjacent to the row crop toolbar along at least one side of the row path to support the row unit assembly. The row unit housing is attached to the row crop toolbar by a forward fastener and an aft fastener located, respectively, forward and aft of the toolbar. The plant stalk stomper is attached to the toolbar using at least one of the forward and aft fasteners. The plant stalk stomper is laterally aligned with the row path to engage and knock down the severed stalks of the crop row.
A second aspect of the present invention concerns a row crop harvesting header operable to be advanced along a forward travel direction to harvest a series of plants in a crop row. The row crop harvesting header broadly includes a row crop toolbar, a crop-gathering row unit assembly, and a plant stalk stomper. The row crop toolbar extends laterally relative to the forward travel direction. The crop-gathering row unit assembly is supported by the toolbar to define a fore-and-aft extending row path, with the row unit assembly being operable to collect the crop row along the row path and sever crop stalks as the header moves forwardly. The row unit assembly is attached to the row crop toolbar by a forward fastener and an aft fastener located, respectively, forward and aft of the toolbar. The plant stalk stomper is mounted to the toolbar using the fasteners and is laterally aligned with the row path to engage and knock down the severed stalks of the crop row. The plant stalk stomper includes a mounting base that presents opposite forward and aft mounting ends. One of the mounting ends of the mounting base is attached directly to a respective one of the forward and aft fasteners, with the mounting base presenting a cam surface along the other one of the mounting ends to engage at least one of the plant stalk stomper and the row unit assembly so that the mounting base is under tension between the forward and aft fasteners.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
Preferred embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the preferred embodiment.
Turning initially to
The illustrated crop harvester 20 is preferably configured to harvest a row crop, such as corn, and broadly includes a wheeled chassis 22 and a row crop header 24. Preferably, the wheeled chassis 22 comprises a self-propelled machine that collects the separated grain and generally discharges MOG onto the field. The wheeled chassis 22 preferably includes a harvester frame 26, wheels 28, operator enclosure 30, an engine (not shown) that powers the harvester 20, a storage bin 32 operable to store clean grain separated from MOG, and a feederhouse 34.
Turning to
The header frame 36 supports the row units 38, hoods 40, and the stalk stompers 42 above the ground G. The header frame 36 preferably includes, among other things, an upper beam 46 and a lower toolbar 48 that both extend laterally relative to the travel direction T and along the length of the header frame 36. In the usual manner, the header frame 36 further includes a rear mounting interface 50 that is removably attached to a forward end of the feederhouse 34. The rear mounting interface 50 presents a header discharge opening 52 through which severed plant material is discharged from the header to the feederhouse 34 (see
The row units 38 are operable to be supported by the header frame 36 and advanced along the corn rows so that each row unit 38 collects a series of plants that define a respective one of the corn rows. In particular, each row unit 38 defines a fore-and-aft extending row path P (see
The deck plate 65 includes a pair of side-by-side deck plate sections located vertically between the gathering chain assemblies 58 and the stalk rolls 60. The deck plate sections are located adjacent to one another to cooperatively define an elongated deck plate opening 66 that receives the plant stalks and at least partly forms the row path P.
In the usual manner, the pair of gathering chain assemblies 58 are positioned along opposite sides of the deck plate opening 66 to cooperatively urge plants rearwardly through the deck plate opening 66. More particularly, each gathering chain assembly 58 includes an endless chain that presents an inboard run 58a and an outboard run (not shown). For each pair of gathering chain assemblies 58, the inboard runs 58a are opposed to one another and cooperatively engage the plants. Furthermore, as the pair of gathering chain assemblies 58 are operated, the corresponding inboard runs 58a both move rearwardly to cooperatively move the plants rearwardly relative to the deck plate 65.
The pair of stalk rolls 60 are positioned along opposite sides of the deck plate opening 66 and rotate in opposite directions to cooperatively pull the plant stalks downwardly. In particular, the stalk rolls 60 provide multiple pairs of blades that rotate into and out of engagement with one another. As the stalk rolls 60 are rotated, each pair of blades moves generally in a downward direction as the pair of blades rotate into and out of engagement. Thus, while the stalk rolls 60 are rotated, each pair of blades operates to pinch the plant stalks and pull the plant stalks downwardly.
The drive 56 is operable to power the gathering chain assemblies 58 and the stalk rolls 60. The drive 56 preferably includes a gear train 67 located within the drive housing 64 and a motor (not shown) that powers the gear train 67. The gear train 67 is operably housed within the drive housing 64.
The drive housing 64 comprises a rigid sealed enclosure and preferably includes lower mounting bosses 68 with internal threads (not shown). The drive housing 64 also presents lateral channels 70 that extend between pairs of the bosses 68 (see
The row unit housing 54 also preferably includes tubular spacers 72, a pair of elongated brackets 74, and threaded bolts 75 (see
The spacers 72 each have a cylindrical outer surface and present a bore (not shown) that extends through the spacer 72. The bore is sized to slidably receive a corresponding one of the bolts 75. The bolts 75 are removably inserted through the spacers 72 so as to be threaded into the bosses 68. While the illustrated fasteners 76a,b are preferred, the principles of the present invention are applicable where the row unit housing 54 includes alternative fasteners for being secured to the toolbar 48.
The drive housing 64 is removably secured to the toolbar 48 by positioning the drive housing so that the channel 70 receives the toolbar 48, with bosses 68 located on opposite sides of the toolbar 48. Each bracket 74 is positioned below the toolbar 48 so that the support surface 77 faces upwardly and receives a pair of spacers 72. The bolts 75 are inserted through the bracket 74 and the corresponding spacers 72 by aligning the bores of the spacers 72 with the fastener holes of the bracket 74.
With the bracket 74, spacers 72, and bolts 75 being located below the toolbar 48 and the support surface 77 facing upwardly, the bolts 75 can be threaded into engagement with the respective bosses 68. The bolts 75 are threaded into engagement with the bosses 68 so that the support surface 77 is brought into engagement with the toolbar 48, with the drive housing 64 and the bracket 74 being clamped against opposite sides of the toolbar 48. In this manner, the row unit housing 54 is securely mounted to the toolbar 48. However, it is within the ambit of the present invention where the row unit housing 54 is alternatively mounted on the toolbar 48. For instance, the header 24 could include mounting components other than the spacers 72, brackets 74, and fasteners 76a,b to secure the drive housing 64 to the toolbar 48.
Turning to
Preferably, the mounting base 78 comprises a rigid structure and includes a mounting plate 86 and a reinforcing rim 88 (see
The lip 94 is unitary and preferably presents a cam surface 98 that faces forwardly and is aligned relative to the body 90 at an oblique angle. As will be discussed further, the cam surface 98 of the lip 94 slidably engages the brace 44. It will be appreciated that the lip 94 could be alternatively configured without departing from the scope of the present invention. For instance, the lip 94 could include multiple sections spaced laterally from one another.
The body 90 of the mounting plate 86 interconnects the tabs 92 and the lip 94 of the mounting plate 86. The body 90 preferably includes a flat plate that presents longitudinal side edges 100 and a central opening 102 (see
The reinforcing rim 88 is unitary and includes a rear wall 104, side walls 106, and forward end walls 108 (see
The mounting plate 86 and reinforcing rim 88 cooperatively present forward and aft mounting ends 78a,78b of the mounting base 78 (see
The skid support bracket 80 preferably comprises a unitary, generally U-shaped structure and includes a rear wall 110 and side walls 112. Each side wall 112 presents three (3) slotted openings 114 positioned alongside one another (see
The illustrated skid adjustment bracket 82 comprises a unitary structure and preferably includes a top wall 120 and side walls 122 (see
Each side wall 122 of the skid adjustment bracket 82 is pivotally attached to a corresponding side wall 106 of the rim 88 by fasteners 118 to form pivot joints 126 (see
The skid adjustment bracket 82 is adjustably connected to the skid support bracket 80 with a removable pin 128. In particular, the pin 128 can be selectively inserted through the slotted openings 124 of the skid adjustment bracket 82 and through a corresponding pair of the slotted openings 114 of the skid support bracket 80. Thus, the pin 128 is operable to removably secure the skid adjustment bracket 82 in one of three (3) discrete positions relative to the skid support bracket 80.
Turning to
The illustrated plate mounting bracket 132 is unitary and includes a base wall 134, a forward lip 136, and side walls 138. Preferably, the side walls 138 are pivotally attached to corresponding side walls 122 of the skid adjustment bracket 82 with a fastener 140 to form a skid pivot joint 142 (see
The skid plate 130 is also unitary and includes an attachment section 144 and a lower depending section 145 that depends below the attachment section 144. The depending section 145 preferably comprises a unitary plate element and includes a lowermost ground-engaging margin 146. The skid plate 130 is removably secured to the plate mounting bracket 132 with fasteners 147 so that the skid plate 130 and plate mounting bracket 132 pivot with one another relative to the skid adjustment bracket 82. In the illustrated embodiment, the plate mounting bracket 132 is attached to the attachment section 144 of the skid plate 130, with the attachment section 144 being secured so as to be more rigid than the lower depending section 145.
The skid plate 130 also preferably includes transverse slots 148 that cooperatively form a relatively weak deformation region 149 (see
Again, the skid 84 is pivotally mounted at the skid pivot joint 142 so that the skid 84 can pivot relative to the skid adjustment bracket 82. However, it will be appreciated that the skid 84 could be alternatively mounted. For instance, the skid 84 could be slidably mounted relative to the mounting base 78 to slide up and down along an upright direction.
The forward lip 136 extends upwardly to restrict pivotal movement of the skid 84. More particularly, the skid 84 is pivotal into and out of a lowermost skid position where the forward lip 136 engages the top wall 120 of the skid adjustment bracket 82. Consequently, the forward lip 136 and the skid adjustment bracket 82 cooperatively restrict the lowermost margin 146 of the skid 84 from pivoting downwardly beyond the lowermost skid position.
The stalk stomper 42 also preferably includes a torsion spring 150 mounted on the skid pivot joint 142 (see
The skid support bracket 80, skid adjustment bracket 82, and the skid 84 each preferably include an alloy carbon steel material, although one or more of these components could include an alternative material.
Referring again to
The brace 44 is preferably positioned so that the tabs 160 engage corresponding spacers 72, with the spacers 72 being received by the open slots 162. At the same time, the tabs 160 engage the brackets 74 so that the brackets 74 support the brace 44.
With the brace 44 supported by the brackets 74, the stomper 42 can be secured to the toolbar 48. The stomper 42 is initially positioned so that the tabs 92 of the mounting base 78 are positioned on the forward margins of corresponding brackets 74, with the notches 96 receiving respective spacers 72. As the tabs 92 are positioned in this manner, the upturned lip 94 of the mounting base 78 is preferably spaced below the brace 44. The connection between the tabs 92 of the mounting base 78, the spacers 72, and the front ends of the brackets 74 permits the stomper 42 to be swung relative to the toolbar 48 through a limited range of pivotal movement about a lateral axis. In particular, this connection permits pivoting of the stomper 42 into and out of a mounted position (see
With the tabs 92 of the mounting base 78 supported on the brackets 74, the stomper 42 can be swung into and selectively secured in the mounted position. In the illustrated embodiment, the header 24 includes fasteners 164 that extend through the mounting plate 86 and the flange 158 of the brace 44 to secure these components to one another.
The mounting base 78, skid support bracket 80, skid adjustment bracket 82, removable fastening pin 128, and the removable brace 44 cooperatively provide an adjustable stomper frame 166 operable to selectively attach the stalk stomper 42 relative to the toolbar 48. As discussed above, the skid adjustment bracket 82 of the stomper frame 166 is selectively secured by the pin 128 in one of a plurality of positions relative to the skid support bracket 80 to control the orientation of the skid 84.
The stomper frame 166 is also preferably configured to permit selective attachment and detachment of the stalk stomper 42 relative to the toolbar 48. Most preferably, the stomper frame 166 is configured so that the stomper 42 can be attached and detached relative to the toolbar 48 without attaching or removing the fasteners 76a,b from the row unit housing 54.
In operation, the stomper 42 is removably secured relative to the toolbar 48. The stomper 42 is initially positioned so that the tabs 92 of the mounting base 78 are located on the forward margins of corresponding brackets 74, with the notches 96 receiving respective spacers 72. At the same time, the upturned lip 94 of the mounting base 78 is preferably spaced below the brace 44. The stomper 42 can then be swung relative to the toolbar 48 into a mounted position so that the lip 94 engages the braced 44 (see
With the stomper 42 secured, the header 24 can be advanced over the ground G to harvest multiple rows of corn. As the header 24 is advanced, the stomper 42 moves along the ground G to engage and knock down the severed stalks of one of the corn rows.
Although the above description presents features of preferred embodiments of the present invention, other preferred embodiments may also be created in keeping with the principles of the invention. Such other preferred embodiments may, for instance, be provided with features drawn from one or more of the embodiments described above. Yet further, such other preferred embodiments may include features from multiple embodiments described above, particularly where such features are compatible for use together despite having been presented independently as part of separate embodiments in the above description.
The preferred forms of the invention described above are to be used as illustration only, and should not be utilized in a limiting sense in interpreting the scope of the present invention. Obvious modifications to the exemplary embodiments, as hereinabove set forth, could be readily made by those skilled in the art without departing from the spirit of the present invention.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.
Under provisions of 35 U.S.C. § 119(e), Applicant claims the benefit of U.S. Provisional Application No. 62/098,192, entitled EASY MOUNT STALK STOMPER and filed Dec. 30, 2014, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/068133 | 12/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/109714 | 7/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3520121 | Ashton | Jul 1970 | A |
3982384 | Rohweder | Sep 1976 | A |
4029155 | Blair | Jun 1977 | A |
4144698 | Shelton | Mar 1979 | A |
4149361 | Pauletti et al. | Apr 1979 | A |
4211057 | Dougherty | Jul 1980 | A |
4573308 | Ehrecke | Mar 1986 | A |
4723608 | Pearson et al. | Feb 1988 | A |
6289659 | Fox | Sep 2001 | B1 |
6516595 | Rhody | Feb 2003 | B2 |
D742938 | Benoit | Nov 2015 | S |
9730374 | Wick | Aug 2017 | B2 |
9743587 | Lohrentz | Aug 2017 | B2 |
20020112461 | Burk | Aug 2002 | A1 |
20110179758 | Kitchel | Jul 2011 | A1 |
20120159917 | Lohrentz | Jun 2012 | A1 |
20130019581 | Hyronimus | Jan 2013 | A1 |
20130020100 | Shoup | Jan 2013 | A1 |
20130020101 | Shoup | Jan 2013 | A1 |
20130061569 | McClenathen | Mar 2013 | A1 |
20130174529 | Hyronimus | Jul 2013 | A1 |
20130177348 | Hyronimus et al. | Jul 2013 | A1 |
20130192857 | Shoup | Aug 2013 | A1 |
20140131973 | Benoit et al. | May 2014 | A1 |
20150096773 | Miller | Apr 2015 | A1 |
20160066504 | Holman | Mar 2016 | A1 |
20160183468 | Lohrentz | Jun 2016 | A1 |
20170367262 | Lohrentz | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
10 2013 004438 | Mar 2014 | DE |
2915421 | May 2017 | EP |
2181182 | Nov 1973 | FR |
Entry |
---|
UK Intellectual Property Office, International Search Report for related UK Application No. GB1500829.5, dated Jun. 22, 2015. |
European Patent Office, International Search Report for parent International Application No. PCT/US2015/068133, dated Apr. 5, 2016. |
Number | Date | Country | |
---|---|---|---|
20180325027 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62098192 | Dec 2014 | US |