This application is the National Stage filing under 35 U.S.C. 371 of International Application No. PCT/US2009/045783 filed on Jun. 1, 2009, which claims priority to U.S. Provisional Application Ser. No. 61/058,296 filed on Jun. 3, 2008, both entitled “Easy-Open Container and Container Coating,” each of which is incorporated herein by reference in its entirety.
This invention relates to easy-open containers.
The packaging industry has long sought improved containers that safely protect and contain the contents while at the same time allowing the end-user to easily open the container to remove the contents. An example of an “easy-open” container is a three-piece metal can having a scored metal end that can be ripped by the end-user. Unfortunately, these easy-open ends are quite costly, and the scored metal end creates sharp edges when opened. As a result, the containers are not suitable for all uses, e.g., drinking from such a container would be potentially dangerous due to the sharp edges.
Plastic containers with easy-open plastic or metal foil lids have been introduced to fairly wide acceptance. These containers work very well for a variety of end uses; however, they cannot always be used for certain types of contents or in certain extreme processing conditions.
What is needed is an economical container that is easy to open, while not suffering the disadvantages of the existing containers.
In one embodiment the present invention provides a container, such as a metal or plastic can, that has a rim with an integral heat seal zone. A heat sealable powder or hot melt coating is preferably applied to at least a portion of the heat seal zone of the upper rim.
In another embodiment, the present invention provides a container, such as a metal or plastic can, that includes: a sidewall having an upper rim, wherein the upper rim includes an upwardly inclined and integrally formed heat seal zone; a heat sealable coating applied to at least a portion of the heat seal zone of the upper rim; and a peelable foil lid removably attached to the heat seal zone of the upper rim.
In another embodiment, the present invention provides a heat-sealable polymer (such as, for example, a powder or hot-melt composition) that is applied to at least a portion of the rim of a container and optionally (e.g., in the case of a welded metal can body) along the inner weld zone of the can body.
In another embodiment, the present invention provides a heat sealable polymer that is applied to the rim of a container.
In another embodiment, the present invention provides a method, including the steps of: providing a container body having a sidewall having an upper rim, wherein the upper rim includes an integrally formed heat seal zone; and applying a heat sealable powder (or hot melt) coating to at least a portion of the heat seal zone of the upper rim.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
The present invention relates to easy-open containers, such as, for example, metal or plastic cans and packages. The following description is primarily illustrated in the context of a metal can, though this invention has broader applicability.
Metal cans used in the food and beverage industry are typically categorized as being either “two-piece” cans or “three-piece” cans. A typical two-piece can has a can body (which resembles a cup, i.e., a cylinder having an integral bottom) and a separate “top” piece or “lid.” The top piece is typically attached to the body during the filling process. A typical three-piece can has a top piece, a cylindrical body piece, and a bottom piece. Typically either the top or bottom piece is attached to the body during the can fabrication process, and the remaining piece is attached during the filling process. In some cases, the top piece may itself be made up of sub-pieces. For example, in some cans the top piece includes a riveted tab for opening the top along a score line. In other cases, a top piece has been made comprising a ring of metal to which a foil has been sealed.
In one embodiment, heat seal layer 34 comprises polypropylene. Other suitable heat seal layer materials are discussed elsewhere in this document. One or more heat sealable coatings 42 is applied to the heat seal zone 26. The heat sealable coating is preferably a powder coating (or a “hot melt” coating) that is optionally applied to the heat seal zone after the container is formed. In another embodiment, the heat sealable coating is applied to the entire inside surface of the container body (e.g., as a liquid coil or sheet coating composition). In the case of three-piece containers, any weld areas of the container body are covered with additional heat sealable coating at least in the region of the heat seal zone.
Any suitable foil lid material may be used in the present invention. (See, e.g., U.S. Pat. Nos. 6,790,508 and 7,118,800 for description of suitable foil lid materials.) Depending on the end use, the foil lid material will need to meet a variety of possible requirements, such as: containing the contents in the container, serving as a barrier to gasses or liquids, blocking harmful UV rays, etc. Consequently, the choice of lid material can vary depending on the requirements.
In one embodiment, the foil lid material comprises (i) one or more backing layers (e.g., paper, plastic, metal, etc.) and (ii) one or more heat seal layers on at least one major surface of the backing.
The backing layer or layers are typically designed to perform the structural requirements of the lid and specific choice of the most suitable backing layer will depend on those requirements. For example, a metal backing (e.g., aluminum foil) may be a good choice when one or more of strength, gas and/or liquid impermeability, and/or UV blocking are required. Some plastic backing materials are also suitable for these same requirements, though to achieve gas impermeability with a plastic backing generally requires the use of a specialty barrier material.
The backing may comprise multiple layers of different materials to achieve the desired overall properties needed for the particular lid. For example, a PET layer may be used adjacent a “barrier” plastic layer (see, e.g., U.S. Pat. No. 6,933,055 for description of suitable barrier materials). In this case the PET layer provides strength and low cost, while the barrier layer provides some degree of oxygen or CO2 impermeability.
Typically, the backing will provide the lid material with sufficient heat resistance to (i) permit the heat sealing of the lid to a container, and (ii) withstand the temperatures the container is subject to (e.g., during processing and use conditions). For example, food containers are sometimes “hot filled.” Consequently, preferred sealed lids are capable of withstanding temperatures of 100° C., more preferably at least 121° C., and most preferably at least 135° C.
Suitable heat seal layers include any materials that are capable of forming a seal with the heat sealable coating that is applied to the container rim.
Suitable heat seal layers include polymeric layers that are designed to melt at an appropriate heat seal temperature (e.g., 150 to 180° C., more preferably 160 to 170° C.). Suitable polymers include polyethylene (PE), ethylene vinyl acetate (EVA), polypropylene (PP), propylene ethylene copolymers (PPE), ethylene alpha-olefin copolymer, ethylene butyl acrylate copolymer (EBA), ethylene methacrylic acid copolymer (EMAA), ethylene acrylic acid copolymer (EAA), ethylene methyl acrylate copolymer (EMA), mixtures and copolymers of these materials, etc. A presently preferred heat seal layer material comprises polypropylene or propylene ethylene copolymers.
If desired, a delaminating heat seal layer system may be used, such as is described in U.S. Pat. No. 7,314,669 (see particularly layers 12 and 14 of that reference). In systems of this type, two layers are selected such that the user's peeling of the foil away from the container causes the first layer (12) and second layer (14) to delaminate in the vicinity of the heat seal area.
A heat sealable coating is preferably selected to provide a suitable surface against which the foil material may be heat sealed. Preferred heat sealable coatings “bridge-the-gap” between the foil and the container. In the case of a metal food or beverage can, for example, the heat seal coating provides adhesion to the metal sidewall and a ready surface for heat sealing with the foil.
Metal containers, such as food cans, are oftentimes coated with specialized coatings that protect the container against degradation over prolonged periods of time and in very harsh conditions. One such high performance food-contact coating is an epoxy coating. Unfortunately, a typical epoxy-based can coating used on the interior of food or beverage cans does not provide a surface that is adapted to the heat-sealing process and traditional heat seal foils simply do not adhere well to these coatings. To make such coatings suitable, one may add an adhesion promotion additive to the epoxy coating. One such additive is a PP or acid-modified PP material (e.g., MorPrime™, available from Rohm and Haas). The inclusion of a suitable additive helps render the packaging coating compatible with typical heat seal films.
The use of such coatings is within the scope of the present invention. In certain situations, the use of one of these coatings will be all that is required to provide a suitable heat seal zone on the containers of the present invention. However, as is described below, there are situations where the modified inside spray container coating will not be sufficient to meet the heat seal requirements, or where drawbacks to this approach will be outweighed by the alternative described herein. One drawback of using a modified inside spray is that the cost of the inside coating goes up unnecessarily, as most of the adhesion additive is in areas where it is not needed (i.e., away from the relatively small heat seal zone). In addition, the additive may negatively impact the performance of the container coating. Another situation that would make reliance on the modified inside coating unwarranted is that in the case of a three-piece can, where the inside coating is uncoated in the weld area. Since at least a portion of the heat seal zone is welded, the lid would be unable to heat seal in the region of the weld, thus causing a leak.
According to the present invention, the entire rim of the container in the heat seal zone has a suitable surface for heat sealing with the heat seal foil. This can be accomplished in several ways, including without limitation:
Alternatively, one may apply a spot applied coating to the interior side of a foil material that provides the properties to seal, and (for a three-piece can) to bridge the step gap in the welding area.
In one embodiment, the container is an unwelded metal can having an interior coating applied to the inside surface, wherein the coating has been formulated to include an efficacious amount of a PP or acid-modified PP additive. The upper portion of the can body is formed to include an upper rim that includes an integrally formed heat seal zone. The heat seal zone, with the modified interior coating applied thereto, is ready for use with a suitable heat seal lid material.
In another embodiment, the container is a metal can having a weld. The upper portion of the can body is formed to include an upper rim that includes an integrally formed heat seal zone. A powder or hot-melt coating is applied to the heat seal zone of the rim to thereby make the entire coating around the rim acceptable for use with a suitable heat seal lid material.
Suitable powder coatings or hot-melt coatings include thermoplastic coatings that adhere to the container (or a coating applied to the container) as well as that provide a suitable surface to which the heat seal layer of a foil lid may be heat sealed. Generally a suitable powder coating is a thermoplastic material that is ground into a suitable size powder, to facilitate application of the powder (e.g., by electrostatic spraying) to a substrate. The powder, when heated, melts to thereby form a film. Suitable hot-melt coatings can be made from the same or similar materials. However, rather than being applied as a powder to the substrate, the hot-melt coating is applied as a solvent free and melted liquid. Upon cooling the coating solidifies to form a film.
Preferred powder coatings have a mean particle size of between 20 and 150 microns, more preferably between 40 and 80 microns weight average.
Suitable materials from which to make the powder coating or the hot-melt coating include polymeric compositions containing one or more polymers such as acid-modified PP, blends of acid-modified PP with (i) one or more polyester polymers or copolymers (e.g., PBT, etc), or (ii) one or more epoxy or phenoxy resins, or (iii) blends of (i) and (ii).
One suitable powder coating was made by blending a PP material with a polyester material. These two types of materials are generally incompatible at a microscopic level. However, the blend was sufficiently compatible so as to permit the preparation of powder particles having both polyester and PP components. The polyester polymers have preferably a melting point that is substantially above (preferably 20° C. above) the food packaging or food processing temperature. This is to ensure that the coating has sufficient adhesion and bonding strength at the packing and food processing conditions. In some embodiments, one or more polyester polymers have a melting point of from about 120 to about 200° C., preferably from about 140 to about 180° C., and even more preferably from about 150 to about 170° C. Preferably, the polyester polymer is semi-crystalline. While not intending to be bound by any theory, it is also believed that in some embodiments it may be desirable to select one or more polyester polymers having a similar, or substantially similar, polarity to a PP component (more preferably similar to an acid-modified PP component).
Physical blends of two different powders may work as well, if the powders do not need to undergo too much deformation after the film formation. In preferred embodiments, at least one powder of the blend promotes adhesion to the substrate and at least one powder of the blend promotes adhesion to the PP foil. Preferably the two powders have a sufficient compatibility in the molten stage in order to form a melt that provides sufficient cohesion between the different particulates. Powder blends that have little cohesion between the different particulates may have limitations in regard to flexibility which is sometimes beneficial for side stripe powder application, where the sealing area needs to be shaped before the lid sealing. Moreover, incompatible PP-particulates may tend to pop out from the coating at the deformation stage.
Several illustrative powders were prepared as follows.
For direct metal applications on preformed metal we found that Fusabond P M613-05 internally ground to particle size of less than about 120 microns worked well. This material is a modified PP-powder from DuPont. This powder was also tried for side stripe on tinplate, but it was not flexible enough for the can body deformations. Moreover, it does not adhere well onto internal can coatings that do not have dispersed PP-particles incorporated therein.
For side stripe and rim coating application we found that Samples A, B, and C as per the following table (each coextruded and ground below 120 microns) worked well.
Sample A had good flow, flexibility and adhesion before processing, but reduced adhesion onto metal after processing. The adhesion onto some packaging coatings without PP spiking was acceptable. Sample B had poor flow, limited flexibility and good adhesion before processing. In order to improve the adhesion of Sample A it is anticipated that one might substitute the acid-modified epoxy resin Araldit GT 6810-1 by a standard epoxy resin such as Araldite GT 6099 from Huntsman, or a low BADGE grade epoxy resin from Kukdo KD 6719.
In one embodiment the container is a “three-piece” container and the foil lid is attached to the upper portion of the container prior to attachment of the bottom. In this embodiment, the seal between the foil lid and the body can be assessed to make sure that a complete seal has been achieved. Such assessment can be done on a random sampling basis or on an every-can basis. The can is then inverted and filled through the bottom. The bottom end is then attached in the normal manner to enclose the contents therein.
In another embodiment, which is useable on either a three-piece or a two-piece container, the can minus the foil lid is filled with its contents and the foil lid is applied to close the container. Preferably, the heat sealable coating has been applied to the rim of the container (or to the foil) prior to the container being filled with the contents. In that manner, it is only necessary to heat seal the foil to the heat seal zone.
Containers of the present invention may be fitted with a “cap,” not shown in the drawings, to protect the foil lid (or provide resealability of the container). Such caps may be made out of plastic, paper or other materials.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims. The complete disclosure of all patents, patent applications, and publications are incorporated herein by reference as if individually incorporated.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/045783 | 6/1/2009 | WO | 00 | 2/14/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/148988 | 12/10/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3807332 | Okubo et al. | Apr 1974 | A |
3932368 | McConnell et al. | Jan 1976 | A |
4012270 | Fitko | Mar 1977 | A |
4370369 | Bonis | Jan 1983 | A |
4382525 | Kobayashi et al. | May 1983 | A |
4384657 | Ueno et al. | May 1983 | A |
4387830 | Kitamura et al. | Jun 1983 | A |
4501375 | Katsura et al. | Feb 1985 | A |
4735835 | Taira et al. | Apr 1988 | A |
4865882 | Okano et al. | Sep 1989 | A |
4946895 | Ohmae et al. | Aug 1990 | A |
5152418 | Kroeschell et al. | Oct 1992 | A |
5387653 | Merval et al. | Feb 1995 | A |
5413244 | Ramsey | May 1995 | A |
5725120 | Ramsey et al. | Mar 1998 | A |
5752614 | Nelson et al. | May 1998 | A |
5958531 | Stevenson | Sep 1999 | A |
6306934 | Bode et al. | Oct 2001 | B1 |
6601727 | Sauer et al. | Aug 2003 | B2 |
6680082 | Chou et al. | Jan 2004 | B2 |
6790508 | Raseti | Sep 2004 | B2 |
6933055 | Share et al. | Aug 2005 | B2 |
7118800 | Shirane et al. | Oct 2006 | B2 |
7168581 | Robinson et al. | Jan 2007 | B2 |
7174762 | Turner et al. | Feb 2007 | B2 |
7314669 | Galloway | Jan 2008 | B2 |
7651779 | Sato et al. | Jan 2010 | B2 |
20030062370 | Ball et al. | Apr 2003 | A1 |
20050109784 | Varadarajan | May 2005 | A1 |
20060191940 | Heyn | Aug 2006 | A1 |
20070082151 | Hatano et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
638092 | Aug 1991 | AU |
0078625 | May 1983 | EP |
0362020 | Apr 1990 | EP |
0440550 | Aug 1991 | EP |
0447563 | Sep 1991 | EP |
0529336 | Mar 1993 | EP |
0683110 | Nov 1995 | EP |
0700838 | Mar 1996 | EP |
0806370 | Nov 1997 | EP |
1747826 | Jan 2007 | EP |
2244254 | Nov 1991 | GB |
9300403 | Jan 1993 | WO |
02059186 | Aug 2002 | WO |
02068196 | Sep 2002 | WO |
03006329 | Jan 2003 | WO |
2006000773 | Jan 2006 | WO |
2006092364 | Sep 2006 | WO |
Entry |
---|
International Search Report and Written Opinion for corresponding International Application No. PCT/US2009/045783 mailed on Nov. 20, 2009 (18 pages). |
Number | Date | Country | |
---|---|---|---|
20110127268 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61058296 | Jun 2008 | US |