Typically glazed roofs are assembled on-site. The walls, supporting posts, rafters and beams are assembled to form a complete conservatory roof and enclosed structure. The beam rafters and panels of the glazed roof are then assembled at the job site.
On-site construction is problematic simply because it is very labor intensive and requires a great deal of time to ensure that everything is properly installed to prevent leakage and other like problems. Even with relative small roofs, such as a bay window roof, on-site fabrication is required and can be expensive due to the labor costs.
It is an object of the present invention to provide an eaves beam for a glazed roof system which is easier to install and allows for pre-assembly of a glazed roof prior to being attached to a support structure. It is further an object of the present invention to provide for an eaves beam system that can be adapted to accommodate a wide range of exterior sidings such as wood, vinyl, aluminum, masonry, and the like.
The objects and advantages of the present invention are provided by an eaves beam with framing. The eaves beam is adapted to rest on a support frame which in a preferred embodiment is comprised of an upper beam and a lower beam the upper beam being wider than the lower beam. The frame runs the length of the eaves beam and allows the eaves beam to be pre-attached to the frame. The framing provides either an area for siding or an area for brick. With this construction, the conservatory roof can be pre-assembled at the factory, transported to the installation site, and installed on top of its support structure. The present invention thus minimizes the on-site fabrication and assembly time.
As shown in
The rafters 16 are generally attached at an upper end 18 to a ridge beam 20, which as shown, typically extends outward from a wall 22 of a house or other building. The ridge beam 20 may be adorned with a decorative crest 24 which may be bolted or otherwise fastened to ridge beam 20. The lower ends 26 of the rafters 16 are supported on the eaves beam 10.
The eaves beam 10 is supported by a support structure, exemplarily shown in
Although most of the surface area will be taken up by windows 32, siding 34 which could be comprised of wood, vinyl, aluminum, brick veneer, or the like, covers a portion of the wall 36 not taken up by window.
As shown in
A J-channel 46 is attached by a plurality of screws or fasteners 44 to the top edge of stud wall 28. This trim piece 46 which is typically sandwiched between the lower beam 42 and the siding 34 and positioned on the outside surface 48 of the support structure 28 immediately below the extended edge 52 of beam 40. The siding 34 is secured to the stud wall 28 with its uppermost edge resting in the J-channel 46.
The eaves beam 10, which is positioned on top of the frame 38, is exemplarily shown as a two-piece unit having a base member 56 and an upper member 58. The upper member 58 is attached to the base member 56 with a plurality of screws, nails, staples, or other like fasteners 60. The base member 56, as shown, rests on the upper beam 40 of frame 38. The base member 56 includes a plurality of feet 62 extended from a base surface plate 64. The base plate 64 is secured to the upper beam 40 of the frame 38 with a plurality of screws, nails, staples, or other like fasteners 66. The base member 56 also includes an outer groove 68 which is designed to accept a flashing 69. The base member 56, as shown, also includes an inner groove 70.
The flashing or trim member 69 includes a mounting barb 72 which is designed to mate with groove 68. The flashing 69 also includes a horizontal arm 74 which is designed to sandwich the outside foot 76 of the upper member 58 of the eaves beam 10 between it and the base plate 64 of the base member 56 of the eaves beam 10. The flashing 69 may be decorative, may serve as a guide for positioning the eaves beam 10 on the frame 38, and may also protect the outside surface 78 of the upper beam 40 from weather and exposure. The flashing 69 will typically run the entire length of the upper beam 40. Typically the flashing 69 will be comprised of plastic, fiberglass, or aluminum, but any like suitable material may be used.
Extending up from the base plate 64 are inner and outer side walls 80, 82. Upper portions 84, 86 of side walls 80, 82 are bent inwardly toward each other. The side walls 80, 82 also include a plurality of stiffening ridges 88.
The top member 58 of the eaves beam 10 includes an inner wall 90 and an outer wall 92. These walls 90, 92 include lower leg members 94, 96 with feet 74, 98 which rest on base plate 64. The lower leg members 94, 96 are spaced slightly outwardly from the walls 80, 82, respectively, of base member 56. The top member 58 further includes a downwardly sloping wall 100 which slopes down from the inner wall 90 to the outer wall 92. This downwardly sloping wall 100 can be used to facilitate internal drainage. Inner wall 90 also includes a plurality of barbed members 102 which are adapted to accept a trim piece 104. Typically the trim piece 104 is comprised of plastic, fiberglass, or aluminum, but any like suitable material may be used.
The upper surface 106 of top member 58 includes a trough 108 which can be utilized to facilitate moisture collection and drainage. The top wall 106 further includes a rafter support channel 110 which has a generally C-shaped configuration. Outer wall 92 also includes an upper ledge 112 and a lower channel 114 which are adapted to support either a trim plate or a gutter system (neither of which is shown) if they are desired for a particular application.
In operation, the eaves beam 10 can be installed on the upper beam 40 in a factory. This permits the entire glazed roof assembly 12, including the rafters 16 and panels 14, to be preassembled in the factory and shipped to the construction site as a module. The entire roof assembly 12 resting on the upper beam 40 can then be placed on top of the lower beam 42 resting on the stud wall 28. The upper beam 40 and lower beam 42 are attached to one another via a bolt, screw, nail or other like fastener 115. Preconstructing the roof saves valuable field construction time and improves the overall quality of the system by standardizing preassembly processes in the factory.
As shown in
Similarly, if materials other than wood, such as steel, were used for the frame 38 or the upper beam 118, the need for an additional brace 120 would likely also be eliminated. Finally, if the frame 38 was comprised of a thicker upper beam 118, the support bracket 120 may also be eliminated.
As shown in
The creation of a brick pocket 132 makes it easy to install and finish out the brick wall 116. Of significance, since the brick wall 116 does not support the upper frame being 118 or the eaves beam 10 or roof structure 12, the brick wall 116 can be installed before or after the eaves beam 10 and frame 38 is installed on the stud wall 28. Whether the brick 116 is laid before the roof 12 is installed or after it is secured on the stud wall 28, the brick edge or frame cap 130 can easily be added and sandwiched between the upper frame beam 118 and the flange 69.
This has been a description of the present invention and the preferred mode of practicing the invention. However, the invention itself should only be defined by the claims, wherein