Ebonite preforms

Information

  • Patent Application
  • 20030105234
  • Publication Number
    20030105234
  • Date Filed
    October 10, 2002
    21 years ago
  • Date Published
    June 05, 2003
    21 years ago
Abstract
An ebonite preform is made either of a single component mixture or a two-component mixture. A single component mixture includes unsaturated polymers, a sulfur vulcanization agent, a sulfur solubilizer, a vulcanization accelerator, and a vulcanization activator. Preferably, the sulfur solubilizer is polyamine, and the vulcanization accelerator is tetramethylthiuram disulfide. Reaction of polyamine and tetramethylthiuram disulfide causes a gelation in the mixture at ambient condition. A two-component mixture includes first and second components. First component includes first unsaturated polymers having first functional groups capable of reaction at ambient temperature, a sulfur vulcanization agent, and a vulcanization activator. Second component includes second unsaturated polymers having second functional groups that will react with first functional groups of the first unsaturated polymers at ambient condition, which causes a gelation in the mixture. Single component mixture or two-component mixture is mixed and cast onto a release paper to form a soft elastic tape. The ebonite tape is then wrapped on a substrate and baked at elevated temperature for vulcanization to form a tough coating on the substrate.
Description


FIELD OF THE INVENTION

[0002] This invention relates generally to ebonite materials. More particularly, it relates to an ebonite preformed articles in the tape form or block form.



BACKGROUND ART

[0003] There is a pervasive and continuing need for protecting metals from corrosive chemical action, such as in metal pipes, tanks, stacks, chimneys, bridges, chemical plant constructions, ship hulls, and containers for aggressive chemicals, to name just a few applications. In addition to having a high resistance to chemical action, an ideal protective material has certain other properties: the raw materials required to produce the protective material are preferably commercially available, inexpensive and non-hazardous; the protective material should have the ability to be easily applied to the metal; the protective material adheres strongly to many different metals; the protective material should be strong, hard, abrasion resistant and thermally stable; and the hardening process of the protective material can be performed in contact with moisture, does not require extreme or long heating, and does not release toxic fumes. An ideal metal protective material may have many additional properties, depending on the particular application or purpose of the protective material.


[0004] The most widespread anticorrosive protective materials possessing many of the above properties are polyurethanes and epoxy resins (see for example, Coating Systems: A guidance Manual For Field Surveyors, American Bureau of Shipping and Affiliated Companies, 1995). These protective materials have good chemical resistance to many substances, have adhesion to metals that is satisfactory for many purposes, and have good mechanical properties. Neither polyurethanes nor epoxy resins, however, satisfy all the criteria for an ideal protective material for metal. In particular, although polyurethanes have outstanding oil-gasoline resistance, a unique combination of favorable physical-mechanical properties, and strong adhesion to some metals, they are not stable under elevated temperature, alkaline hydrolysis, and persistent tension. Epoxy resins, although they have outstanding adhesion to some metals, do not have a satisfactory resistance to acids, certain solvents, temperature changes, and vibration. One of the most significant problems associated with both epoxy resins and polyurethanes is their susceptibility to underfilm corrosion associated with defects in the protective material surface. Because these protective materials are bonded to the metal only by adhesive bonding, these bonds can be broken by the introduction of moisture, solvents or other substances.


[0005] As is known from rubber chemistry (Encyclopedia of Polymer Science & Technology, John Wiley & Sons, N.Y., vol 12, p.161, 1970), solid ebonite, commonly known as hard rubber, is a polymer material with sulfur content used for vulcanization. Ebonite, like elastomeric or flexible rubber, is made from a combination of sulfur with polydienes (unsaturated rubbers containing double bonds). The sulfur and polydienes are combined with some auxiliary additives and heated to produce vulcanization. Typical mass ratios of sulfur to rubber are 2:100 for elastomeric rubber and 40:100 for hard rubber. Due to the large degree of sulfide cross-linking formed in the vulcanization process, solid ebonite is a hard, non-flexible, plastic-like material possessed of unique chemical resistance to aggressive substances such as acids, alkalis, salt solutions, oil, and gasoline. In addition, solid ebonite has good mechanical properties. Consequently, these conventional rubbers are commonly used as materials for fuel tanks, containers for aggressive substances, and other applications. In spite of these advantages, however, solid rubbers can not be easily applied to metal surfaces, they release toxic fumes during vulcanization, and they require a long time to harden.


[0006] More than 30 years ago liquid rubbers were synthesized. (See Alan R. Luxton, “The Preparation, modification and application of non-functional liquid polybutadienes”, Rubber Chemistry and Technology, 54 (1981) 3, 596-626.) Like earlier rubbers, liquid rubbers are formed from compounds such as polybutadiene, polyisoprene, butadiene-styrene, and butadiene-nitrile. In contrast to the hard rubbers, which are made from such compounds having molecular weights on the order of 100,000 to 500,000, the liquid rubbers are made from such compounds having molecular weights of only 2,000 to 4,000. Consequently, the low molecular weight rubbers permit castable processing by pouring, spreading, spraying, or rolling, while providing similar properties as the hard rubbers after curing. Liquid rubber, therefore, may be used to more easily coat metal surfaces.


[0007] Liquid ebonite mixture (LEM) compositions are disclosed by Figovsky in WO 0,006,639 issued Feb. 10, 2000, and liquid rubber based ebonite coating has been disclosed by Rappoport in U.S. Pat. No. 5,766,687 issued Jun. 16, 1998 and U.S. Pat. No. 5,997,953 issued Dec. 7, 1999. The liquid ebonite compositions have advantage of applying, by brushing, rolling or spraying a thin layer to coat any surface with complex geometry, such as bolts and anchors. The liquid coatings can usually stick to the substrate directly without using additional primer or adhesive. However, after the coating is applied, the material remains gooey; it is usually inconvenient and messy to handle. It is unsuitable for making tapes. The ebonite mixture can also be cast into a mold to make shaped articles. However, it must remain in the mold during vulcanization since the material cannot maintain a shape on its own. During vulcanization, gaseous decomposition products such as sulfur dioxide, hydrogen sulfide, etc., are generated. The walls of the mold prevent the diffusion and escape of the gaseous byproducts. The resulting vulcanized articles are often full of porosities. The problem is especially severe for molded articles with thick cross-sections. Typically, it's difficult to make parts with thickness greater than 0.030 inches without having significant porosities. Furthermore, the coating is heated by hot air or steam to typically 160° C. to 180° C. for vulcanization.


[0008] Ebonite rubber sheets have been produced for coating metal substrates. The ebonite rubber sheets of prior art are either extruded or calendered to give a relatively thick layer, typically greater than 0.0625 inch, which is easy to handle and can be cut into any desired shapes. However, due to its thickness and high modulus, the rubber sheets of prior art can only be applied by laying them onto a substrate without stretching. It is usually very craft sensitive to lay and join rubber sheets neatly to provide a complete surface coverage. In addition, such sheets can not effectively coat a substrate with complex geometry, such as bolts and anchors. Furthermore, an adhesive or primer is invariably required to fix and bond rubber sheets onto the substrate. Ebonite rubber can be molded into preformed shapes with compression or injection molding machines. However, the molded parts must be kept under high pressure of >1000 psi in the mold to prevent the porosities. In addition, similar to liquid ebonite coating, the same vulcanization condition is required to cure the laid rubber sheet.


[0009] There is a need, therefore, for an ebonite composition that can preset at ambient temperature to form stand-alone preformed articles in a variety of shapes. Such ebonite composition should overcome the disadvantages of the prior art, while maintaining all ebonite key properties, such as chemical resistance and tenacious bonding to metal.



SUMMARY

[0010] The present invention addresses this need by providing a liquid rubber based ebonite composition that can preset at ambient temperature to form a tape or other stand-alone preformed articles in a variety of shapes. Such ebonite tape can be supplied in sheets or rolls and subsequently applied to a metal substrate without messiness. A final bake at elevated temperature will result in hard rubber like properties. Similarly, other shapes of stand-alone preformed articles can be cast and preset in a mold and then removed from the mold and handled without messiness. The stand-alone preformed articles can be placed in an oven and baked at elevated temperature to achieve hard rubber like properties. The stand-alone preformed articles of the ebonite composition greatly facilitate the diffusion and escape of gaseous products. According to the present invention, certain formulations of the ebonite composition can be vulcanized at 80 to 115° C., which is much lower than 150-180° C. required in the vulcanization of prior arts. The combination of low temperature vulcanization and preset preforms allow the manufacturing of substantially porosity free parts with thickness greater than 0.030 inches. The vulcanized preformed articles are ideal for making protective bricks, blocks, sheets, inserts and laminates in various shapes and sizes. According to an aspect of the invention, ebonite preformed articles, either in tape or block shapes, can be made of either a single component mixture or a two-component mixture.


[0011] According to a first embodiment of the present invention, an ebonite preformed article is made of a single component mixture. The mixture includes unsaturated polymers, a vulcanization agent, a vulcanization activator, a solubilizer for the vulcanization agent, and a vulcanization accelerator. Unsaturated polymers can be polybutadiene, polyisoprene, or poly(butadiene-co-acrylonitrile), which contain high amount of unsaturation (typically double bonds) in the backbones for forming linkage with a high loading of the vulcanization agent. The mass parts of unsaturated polymers in the mixture are 100. Unsaturated polymers may or may not contain functional groups, such as hydroxyl, epoxy, anhydride or acrylic, and may be partially epoxidized.


[0012] A preferable vulcanization agent is sulfur, with mass parts of approximately 15-50, preferably 30-50. A solubilizer for sulfur preferably contains polyamine, such as aliphatic, cycloaliphatic, amidoamide, and polyamide amine, with the mass parts approximately 1.5-6.


[0013] The vulcanization accelerator preferably contains thiuram disulfide, such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetraisobutylthiuram disulfide, tetraalkylthiuram and tetrabenzylthiuram disulfide, and its mass parts are approximately 3-5. The thiuram disulfide will react with polyamine and causes the mixture to gel at ambient condition to make preformed articles which can be vulcanized by raising temperature gradually at 0.9° C./min from room temperature to 110° C. and maintaining at 110° C. for 24 hours. Under these conditions, thick parts can be manufactured substantially free of porosities. The combination of thiuram accelerator and polyamine will work with either non-functional or functionalized liquid rubbers.


[0014] If the liquid rubber contains anhydride functional groups, they will react with a polyamine to gel and preset at ambient temperature. In this case, any vulcanization accelerator, including guanidines, mercaptobenzothiazoles, benzothiazo-2-sulfenmides, metal dialkyldithiocarbamides, thioureas, thiurams, xanthates, thiadiazines, etc. can be used. However, the vulcaniztion temperature needs to be about 140° C. to 180° C. The vulcanization activator may contain zinc oxide or zinc stearate, and its mass parts are approximately 5-35. The mixture further includes a viscosity reducer for adjusting the viscosity of the mixture and the surface tack of the tape. The viscosity reducer can be any liquid rubber, which is compatible with and has a lower viscosity than the unsaturated liquid rubber. Furthermore, the viscosity reducer is reasonably non-volatile so that no significant weight loss occurs during vulcanization condition. The mass parts of the viscosity reducer is approximately 0-30. The single component mixture additionally includes a thixotropic agent of fume silica or bentonite with mass parts approximately 0-10, and a reinforcing agent of carbon black with mass parts approximately 0-10.


[0015] To make an ebonite tape, the single component mixture is mixed and cast on a release paper, such as silicone release paper, polypropylene release paper, or polyethylene terephthalate release paper, at ambient condition. The mixture gels after one to seven days and turns into a soft elastic tape that typically has a tensile strength at 100% elongation less than 100 psi, and an elongation greater than 50%. An ebonite coating is formed on a metal substrate by wrapping the ebonite tape onto the substrate and baking it at elevated temperature for vulcanization.


[0016] To make the preformed article in different shapes, the single component mixture is mixed and cast into a mold made of metal, paper, plastic, or other suitable materials. The casting is allowed to cure at ambient temperature, and the mixture will gel in one to seven days. At this stage, the surface of the mixture is substantially tack free, and it can be removed from the mold as a preform. The preform can then be placed in an oven for vulcanization without significant distortion from its preformed (molded) shape. The vulcanization temperature depends on the accelerator selected. For preforms with greater than 0.030″ thickness, it is preferable that the combination of a thiuram accelerator with a polyamine is selected. Such preform is heated up slowly at less than 1° C./min up to 115° C. The temperature is then held constant at 115° C. for at least eight hours to complete the vulcanization. We have found that following such a procedure, a thick part such as a solid cylinder with diameter of 1.5 inches and height of 2.0 inches can be successfully prepared substantially free of porosities. If the vulcanization temperature exceeds 120° C., a cylindrical block with the same dimensions (1.5″ diameter and 2″ height) will contain significant porosities. Therefore, it is important to keep the vulcanization temperature below 120° C.


[0017] According to a second embodiment of the present invention, an ebonite preform is made of a two-component mixture. First component of the mixture includes first unsaturated polymers, a sulfur vulcanization agent, and a vulcanization activator. Selected first unsaturated polymers contain first functional groups, such as hydroxyl, epoxy, acrylic, and their combinations, which are capable of reaction at ambient condition.


[0018] Second component includes second unsaturated polymer having second functional groups, such as isocyanate or maleic anhydride, which will react with the first functional groups at ambient condition. Upon mixing the first and second components, the first functional groups will react with the second functional groups at the ambient condition, with or without the aid of a catalyst, to form an elastic network, thereby the two-component mixture gels at ambient condition. By adjusting the molecular weight and the stoichiometry of the first and second unsaturated polymers, desired low modulus, high elongation and surface tack suitable for the tape application are achieved. Furthermore, the second unsaturated polymers must be thermodynamically compatible with the first unsaturated polymers so that the macroscopic phase separations will not occur and the sulfur vulcanization can happen homogeneously throughout the coating.


[0019] The first and second unsaturated polymers must contain sufficient unsaturation in the backbones for forming linkages with the vulcanization agent. It is preferable that the polymer backbone is polybutadiene. However, polyisoprene, poly(butadiene-co-acrylonitrile), poly(isobutyl-co-isoprene), and poly(ethylene-co-propylene-co-diene) can also be used. The mass parts of the first unsaturated polymers in the mixture is 50, and the mass parts of the second unsaturated polymers is approximately 50-100. Alternatively, functional terminated polymers that are partially epoxidized can be used as the first unsaturated polymers. In addition, toluene diisocyanate terminated prepolymers and 4,4′-methylene diphenyldiisocyanate prepolymers are also used as the second unsaturated polymers.


[0020] In addition, first and second components may include first and second viscosity reducers for adjusting the viscosity of the mixture and the surface tack of the ebonite preform. The first and second viscosity reducers must have lower molecular weight and lower viscosity than the first and second unsaturated polymers respectively. The mass parts of the first and second viscosity reducers are approximately 0-30.


[0021] Furthermore, the first component may include a thixotropic agent of fume silica or bentonite, and a reinforcing agent of carbon black. Mass parts of the thixotropic agent and the reinforcing agent are approximately 0-10. The amount of thixotropic agent and reinforcing agent should be minimized so that they will not increase the viscosity of the mixture drastically.


[0022] The first component, preferably but not absolute necessarily, further includes a sulfur solubilizer. Preferred sulfur solubilizer is polyamine with the mass parts approximately 1.5-6. In addition as serving as a solubilizer, polyamine is also reactive to the isocyanate groups in the second unsaturated polymers to form polyurea linkages, which accelerates the gelation process. Furthermore, a urethane catalyst is also added into the first component with mass parts approximately 0-3.


[0023] A vulcanization accelerator is additionally added into either first or second components. If thiuram disulfide, such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetraisobutylthiuram disulfide, tetraalkylthirum and tetrabenzylthiuram disulfide, is used as the vulcanization accelerator, it must be added into the second component since it works synergistically with polyamine contained in the first component, which accelerates the sulfur vulcanization, but also causes the first component mixture to gel. Thus, to maintain sufficient shelf life, thiuram disulfide must be separated from polyamine and is mixed into the second component. The mass parts of thiuram disulfide accelerator in the mixture is approximately 1-10. If diphenylguanidine (DGP) is used as a vulcanization accelerator, since DGP can be mixed with polyamine in the first component without causing a shelf life problem, it can be added in the first component. The mass parts of DPG in the mixture is approximately 1-7.


[0024] Optionally, both first and second components can contain other commonly used compounding ingredients, such as fillers, plasticizers, tackifiers, antioxidant, antiozonants, surfactants, wetting agents, defoamers, deaerants, antifouling agents, biocides, corrosion inhibitors, and rheology modifiers.


[0025] The first and second components are first formed separately by mixing their compositions. The two components are then mixed together with a mass ratio of between about 0.75 and about 2.75. Two-component mixture is then cast onto a release paper at ambient condition. The mixture gel in 10 minutes and turn into a soft ebonite tape that has a tensile strength at 100% elongation less than 100 psi, and an elongation greater than 50%. The ebonite tape is wrapped onto a metal substrate and is baked at elevated temperature for sulfur vulcanization to form a coating on the substrate.


[0026] The above embodiments provide an ebonite preform that is easy to handle and quick to apply while maintaining all ebonite key properties. For example, the inventive ebonite tape has low modulus and high elongation so that it can be stretched during application to provide some compressive force on a metal substrate, and thereby to ensure good contact and adhesion to the metal substrate as well as to itself. The inventive ebonite tape also can be wrapped multiple times to achieve any desired coating thickness.



DETAILED DESCRIPTION

[0027] Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.


[0028] An ebonite preform can be made with either a single component mixture or a two-component mixture. According to the first embodiment of the present invention, the ebonite preform is made of a single component mixture. The mixture includes unsaturated polymers, a vulcanization activator, a vulcanization agent, a solubilizer for the vulcanization agent, and a vulcanization accelerator. Unsaturated polymers must contain sufficient diene unsaturation in the backbones for forming linkages with the vulcanization agent. It is preferable that unsaturated polymers contain backbones of polybutadiene. However, polyisoprene, poly(butadiene-co-acrylonitrile) and the like can also be used. Unsaturated polymers may contain no functional groups, or they may contain additional functional groups, such as hydroxyl, epoxy, anhydride or acrylic. An example of such hydroxyl terminated unsaturated liquid polymers is Polybd-R45HTLO(supplied by Atofina). An example of an anhydride functional unsaturated polybutadiene is Polyvest OC 800S supplied by Degussa. A partially epoxidized unsaturated polymers, such as Polybd 600E from Atofina can also be used.


[0029] Sulfur is a preferred vulcanization agent. Vulcanization activator can be zinc oxide. The selections of sulfur and zinc oxide are not critical. However, it is preferable that they have fine particle sizes to make mixing easier. Alternatively, magnesium oxide or zinc stearate can be used as the vulcanization activator.


[0030] A preferred solubilizer for sulfur is polyamine, such as aliphatic, cycloaliphatic, amidoamine, and polyamide amine. An example of polyamine is Unirez 2140 (supplied by Arizona Chemicals). The vulcanization accelerator preferably contains tetramethylthiuram disulfide (e.g., Methyl Tuads supplied by R. T. Vanderbilt). However, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetraisobutylthiuram disulfide, and tetrabenzylthiuram disulfide can also be used. Polyamine works synergistically with tertamethylthiuram disulfide to accelerate the sulfur vulcanization that makes the sulfur curing feasible at 80° C. Furthermore, the reaction of polyamine and tetramethylthiuram disulfide will cause the mixture to gel at ambient condition.


[0031] The mixture further includes a viscosity reducer, which can be any liquid rubber. The viscosity reducer must be thermodynamically compatible with unsaturated polymers. The viscosity reducer should also be reasonably nonvolatile so that no significant weight loss occurs during vulcanization condition, typically between 180° C. for 30 minutes to 80° C. for three days. Furthermore, the viscosity reducer must have a viscosity lower than the viscosity of the unsaturated polymers.


[0032] In addition, carbon black is added into the mixture as a reinforcing agent, colorant and UV stabilizer. Furthermore, the mixture can include a thixotropic agent, such as fume silica or bentonite. The amount of the reinforcing agent and the thixotropic agent should be minimized so that they will not increase the viscosity of the mixture drastically.


[0033] Typical composition of a single component mixture is shown in Table 1. The mass parts of a compound is number of parts by mass of the compound in the mixture.
1TABLE 1CompoundDescriptionMass PartsLiquid polybutadieneLiquid unsaturated rubber100Fume SilicaThixotropic agent0-10Carbon blackReinforcing agent0-10Zinc oxideVulcanization activator5-35SulfurVulcanization agent30-50 PolyamineSulfur solubilizer1.5-6  TetramethyltiuramVulcanization accelerator3-5 disulfideNon-functional liquidViscosity reducer0-30polybutadiene


[0034] The mixture is mixed by charging the liquid polybutadiene, sulfur, zinc oxide, tetramethyltiuram disulfide, and optionally fillers, such as fume silica and carbon black, into a metal can. The mixture is subjected to a high shear mixer, commonly known as Cowles or Lightning mixer, operated at 300 to 3000 rpm for 30 minutes. Due to the shear action, the solid powders (i.e., sulfur, zinc oxide, tetramethylthiuram disulfide, carbon black, and fume silica) are evenly distributed and dispersed into the liquid polybutadiene to form a homogeneous viscous liquid. At this stage, the temperature of the mixture reaches about 65° C. At this time, polyamine is added into the mixture, followed by non-functional liquid polybutadiene.


[0035] The reaction of polyamine with tetramethylthiuram disulfide causes the liquid mixture to gel at ambient condition. However, the single component mixture has a limited shelf life. The liquid mixture will gel in approximately 15 days after polyamine was added into the mixture. Therefore, to make an ebonite tape, it is essential to cast and prepare it right away. The ebonite tape can be prepared by spreading the mixture on a release paper, such as silicone release paper, polypropylene release paper, and polyethylene terephthalate release paper, by using a doctor blade to form a thin film of about 0.020 inch thickness and about 3 inch width, at ambient condition. After four days, the film gels into an elastic ebonite tape. Ebonite tape made of single component mixture has a tensile stress at 100% elongation less than 100 psi, and an elongation greater than 50%. Since the ebonite tape has low tensile strength and high elongation, it can be stretched during application for coating metal substrate, which provide some compressive force on the substrate and thereby to ensure good contact and adhesion to the metal substrate as well as itself.


[0036] When using to coat a metal substrate, such as a sand-blasted steel pipe of 1 inch outside diameter, the ebonite tape is wrapped, by applying slight tension, around the pipe with a average coating thickness of about 0.035 inch. The coated pipe is baked for vulcanization in an air-circulated oven at 150° C. for 30 minutes.


[0037] In a second embodiment of the present invention, an ebonite tape is formed by using a two-component mixture, which overcomes the limited shelf life problem of the single component mixture discussed above. A first component of the mixture includes first unsaturated polymers. Selected first unsaturated polymers must contain first functional groups, such as hydroxyl, epoxy, acrylic that are capable of reaction at ambient condition, and must have a high amount unsaturation (typically double bonds) in the backbones, such as polybutadiene, polyisoprene, poly(butadiene-co-acrylonitrile), poly(isobutyl-co-isoprene) or poly(ethylene-co-propylene-co-diene), for forming sulfur linkages during vulcanization. A preferred liquid unsaturated rubber is Polybd-R45HTLO supplied by Atofina.


[0038] The second component typically includes second unsaturated polymers, which have second functional groups that can react with the first functional groups of the first unsaturated polymers at ambient condition, such as isocyanate or maleic anhydride, whereby the mixture can gel at ambient condition. For example, if the first unsaturated polymers contain hydroxyl terminated polybutadiene, then an isocyanate terminated liquid rubber can be used for the second unsaturated polymers. Similar to the first unsaturated polymers, the second unsaturated polymers must contain sufficient unsaturation in the backbones for forming sulfur linkages. Upon mixing of the two-components, the first functional groups and the second functional groups will react at the ambient condition, with or without a catalyst, to form an elastic network. The desired low tensile strength, high elongation, and surface tack suitable for the tape application can be achieved by adjusting molecular weight and stoichiometry of the second functional groups to the first functional groups (or the mix ratio of the first and second components).


[0039] A vulcanization agent and a vulcanization activator are added into the first component since a hydroxyl terminated liquid rubber is more inert than an isocyanate terminated liquid rubber. The vulcanization activator can be zinc oxide or zinc stearate. Sulfur is a preferable vulcanization agent with the mass parts approximately 15-50, preferably 30-50. It is preferable that sulfur has fine particle size so that the dispersion will be easier. Furthermore, the first component further includes a thixotropic agent of fume silica or bentonite, and a solubilizer for the vulcanization agent. Sulfur solubilizer preferably contains polyamine, such as aliphatic, cycloaliphatic, amidoamine, and polyamide amine. Carbon black is used as a reinforcing agent, colorant and UV stabilizer. Urethane catalyst, such as dibutyl tin dilaurate (DBTDL), can be mixed in the first component.


[0040] The first and second components optionally include the first and second viscosity reducers for adjusting the viscosity of the mixture and the surface tack of the tape. The first and second viscosity reducers usually have lower molecular weights and lower viscosity than those of the first and the second unsaturated polymers.


[0041] Furthermore, either first or second component includes a vulcanization accelerator. If thiuram disulfide, such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetraisobutylthiuram disulfide, tetraakylthiuram, and tetrabenzylthiuram disulfide, is used as the vulcanization accelerator, it must be added into the second component since it works synergistically with polyamine contained in the first component, which accelerates the sulfur vulcanization, but also causes the first component mixture to gel at ambient condition. If diphenylguanidine is used as the vulcanization accelerator, it can be added into the first component without causing a shelf life problem.


[0042] Optionally, both first and second components can contain other commonly used compounding ingredients, such as fillers, plasticizers, tackifiers, antioxidant, antiozonants, surfactants, wetting agents, defoamers, deaerants, antifouling agents, biocides, corrosion inhibitors, and rheology modifiers.


[0043] A typical formulation of the two-component mixture is shown in Tables 2a and 2b.
2TABLE 2aCompositions of First ComponentDescriptionCompoundMass PartsFirst unsaturated polymersHydroxyl terminated50liquid polybutadieneThixotropic agentFume silica0-10Reinforcing agentCarbon black0-10Vulcanization activatorZinc oxide5-35Vulcanization agentSulfur30-50 SolubilizerPolyamine1.5-6  CatalystUrethane0-3 First viscosity reducerNon-functional liquid0-30polybutadiene


[0044]

3





TABLE 2b










Compositions of Second Component











Description
Compound
Mass Parts







Second unsaturated
Isocyanate terminated
50-100



polymers
liquid polybutadiene



Vulcanization accelerator
Tetramethylthiuram
 1-10




disulfide



Second viscosity reducer
Non-functional liquid
 0-30




polybutadiene











[0045] The first component is mixed by charging the hydroxyl terminated liquid polybutadiene, sulfur, zinc oxide and optional fillers, such as fume silica and carbon black, into a metal can. The mixture is subjected to a high shear mixer, commonly known as Cowles or Lightening mixer, operated at 300 to 3000 rpm for 30 minutes. Due to the shear action, the solid powders (i.e., sulfur, zinc oxide, and optional fillers) are evenly distributed and dispersed into the hydroxyl terminated liquid rubber to form a homogeneous viscous liquid. The temperature of the mixture reaches 65° C. At this time, polyamine is added into the mixture, followed by the non-functional liquid polybutandiene and the catalyst.


[0046] The second component is mixed similar to the first component. Since isocyanate is sensitive to moisture, the mixing has to be careful to minimize air and moisture entrapment into the mixture.


[0047] The first and second components are then mixed together with a mass ratio between 0.75 and 2.75 for preparing an ebonite tape. For further information on formulations of two-component mixtures, see above referenced U.S. patent application Ser. No. 09/724,698.


[0048] The two-component mixture is spread on a release paper by using a doctor blade to form a thin film of about 0.020 inch thickness and about 3 inch width, at ambient condition. The film gels into an elastic ebonite tape in 10 minutes and become a soft elastic tape in four to eight hours. Ebonite tape made of two-component mixture has a tensile stress at 100% elongation less than 100 psi, and an elongation greater than 50%. Since the tape has low tensile strength and high elongation, it can be stretched during application for coating metal substrate, which provide some compressive force on the substrate and thereby to ensure good contact and adhesion to the metal substrate as well as itself.


[0049] When using to coat a metal substrate, such as a sand-blasted steel pipe of 1 inch outside diameter, the ebonite tape is wrapped, by applying slight tension, around the pipe with a average coating thickness of about 0.035 inch. The coated pipe is baked for vulcanization in an air-circulated oven at about 150° C. for 30 minutes.







ILLUSTRATIONS AND EXAMPLES

[0050] To supplement the foregoing disclosure, the following examples are provided to illustrate specific aspects of the invention and particular techniques useful for making various coatings according to the present invention. However, it is to be understood that the examples are for illustrative purposes only and in no manner is the present invention limited to the specific disclosures therein.



Example 1a

[0051] Compositions of a single component mixture are shown in Tables 3a and 3b.
4TABLE 3aCompound NameCompound, DescriptionMass PartsPolybd-R45HTLOHydroxyl terminated liquid100polybutadiene, liquidunsaturated rubberMogul LCarbon black, reinforcing1agentKadox 930Zinc oxide, vulcanization35activatorRedball superfineSulfur, vulcanization agent50Unirez 2140Polyamine, sulfur3solubilizerMethyl TuadsTetramethylthiuram5disulfide, vulcanizationacceleratorSubtotal129.9


[0052] Polybd-R45HTLO (supplied by Atofina), Mogul L (supplied by Cabot), Kadox 930 (supplied by American zinc) , Reddball superfine (available at International Sulphur), and Methyl Tuads (supplied by R. T. Vanderbilt) were mixed in a metal can. The mixture was subjected to a high shear mixer, such as Cowles or Lightening mixer, operated at 300 to 3000 rpm for 30 minutes. Due to the shear action, the solid powders of Mogul L, Kadox 930, Reddball superfine, and Methyl Tuads were evenly distributed and dispersed into Polybd-R45HTLO liquid rubber to form a homogeneous viscous liquid. The temperature of the mixture reached 65° C. At that time, Unirez 2140 (supplied by Arizona Chemicals) was added into the mixture.


[0053] The dispersion of the mixture was checked by a Hegman gauge (ASTM D1210). Solid particles having sizes greater than 0.003 inch were not found in the mixture, which indicated a good dispersion. The mixture had a viscosity of 17,200 cps, which was measured by using a Cole Palmer Viscometer (Model 98936, spindle R7 at 2.5 rpm), according to ASTM D2196.


[0054] An ebonite tape having dimensions of 12″×3″×0.020″ was prepared by spreading the mixture on a silicone release paper. The mixture gelled in four days and turned into a soft elastic tape. The tape had a tensile stress at 100% elongation of about 16 psi, a Young's modulus of about 3786 psi, a maximum tensile strength of 16 psi, and an elongation of 110%.


[0055] The tape was then wrapped around a sand-blasted steel pipe having an outside diameter of 1 inch. The surface of the tape had a slight tack to facilitate bonding between the tape and the steel pipe or between the tape itself during wrapping, but was not too sticky to make the wrapping difficult. The coated pipe was baked at 150° C. for 30 minutes for vulcanization. After vulcanization, the tape turned into a tough coating that had a Shore D hardness of 81D, a tensile strength of 4241 psi, a Young's modulus of 142,564 psi, and an elongation of 6.8%. The bonding between the tape and the steel surface was excellent.


[0056] Alternatively, to make a preform, the mixture was cast into a cylindrical plastic jar with 1 inch diameter and 3″ height. The cast filled to the 2 inch mark of the plastic jar. After 4 days at ambient condition, the mixture cured to an elastic block which can be easily removed from the plastic jar. The elastic block was placed in an air-circulated oven without any support. The temperature of the oven was programmed to increase at 0.9° C./minutes from 23° C. to 115° C., and then the temperature was maintained at 115° C. for 16 hours to complete the vulcanization. The vulcanized block was substantially free of porosity, and it had Shore D hardness of 86.



Example 1b

[0057]

5









TABLE 3b











Compound Name
Compound, Description
Mass Parts




















Polyvest OC 800S
Anhydride functional liquid
63.45




polybutadiene, liquid




unsaturated rubber



Polybd R45HTLO
Hydroxyl functional liquid
31.75




polybutadient



Polyoil 110
Non-functional liquid
4.72




polybutadiene



Kadox 930
Zinc oxide, vulcanization
35




activator



Redball superfine
Sulfur, vulcanization agent
50



Hardener HY 840
Polyamine, sulfur
1.0




solubilizer



Vanax DPG
Diphenylguanidine,
3.5




vulcanization accelerator



Cabot Mogul L
Carbon black
1.0




Subtotal
190.42











[0058] Polyvest OC 800S and Polyoil 110 were supplied by Degussa, Vanax DPG by Vanderbilt Chemicals, and Hardener HY840 by Vantico Chemicals. The mixing procedure was similar to that of Example 1a.


[0059] To make an ebonite tape, the mixture was coated onto a silicone coated release paper by a doctor blade with thickness of 0.020 inch. The mixture gelled in three days at ambient condition. The surface was slightly tacky, but ideal for making a tape which can be wrapped around a substrate such as carbon steel pipe and develop self adhesion between the layers. The tape was removed from the release paper and samples were cut for measuring mechanical properties. The tensile strength at 100% elongation was 70 psi, tensile strength was 72 psi and the elongation was 103%.



Example 2

[0060] Compositions of a two-component mixture are shown in Tables 4a and 4b.
6TABLE 4aCompositions of First ComponentMassCompound NameCompound, descriptionPartsPolybd-Hydroxyl terminated liquid50R45HTLOpolybutadiene, first unsaturatedpolymersCab-O-Sil M5Fume silica, thixotropic agent2.9Mogul LCarbon black, reinforcing agent2.3Kadox 930Zinc oxide, vulcanization7activatorRedballSulfur, vulcanization agent50superfineUnirez 2140Polyamine, sulfur solubilizer3Dabco T12Tin, Catalyst1.7Ricon 130Non-functional liquid13polybutadiene, first viscosityreducerSubtotal129.9


[0061]

7





TABLE 4b










Compositions of Second Component











Description
Compound
Mass Parts















Krasol LBD3000
TDI terminated liquid
100




polybutadiene, second




unsaturated polymers



Methyl Tuads
Tetramethylthiuram disulfide,
10




vulcanization accelerator



Ricon 130
Non-functional liquid
12.2




polybutadiene, second




viscosity reducer





Subtotal
122.2











[0062] The first component was mixed by charging Polybd-R45HTLO, Cab-O-Sil M5 (available at Cabot), Mogul L, Kadox 930, and Redball superfine into a metal can. The mixture was subjected to a high shear mixer, such as Cowles or lightening mixer, operated at 300 to 3000 rpm for 30 minutes. Due to the shear action, the solid powders of Cab-O-Sil M5, Mogul L, Kadox 930, and Redball superfine were evenly distributed and dispersed into the Polybd-R45HTLO liquid rubber to form a homogeneous viscous liquid mixture. The temperature of the mixture reached 65° C. At that time, Unirez 2140 was added into the mixture, followed by Ricon 130 (available at Atofina) and Dabco T12 (available at Air Products).


[0063] The dispersion of the first component was checked by a Hegman gauge (ASTM D1210). No solid particles having sizes greater than 0.003 inch were detected in the mixture, which indicated a good dispersion. The viscosity of the first component was 60,900 cps at 30° C., which was measured by using a Cole Palmer Viscometer (Model 98936, Spindle R7 at 2.5 rpm) according to ASTM D2196.


[0064] The second component was mixed and its viscosity was measured with the same equipment and similar procedure with those used for the first component. The viscosity of the second component was 63,900 cps at 30° C. (Krasol LBD3000 is available at Kaucuk.)


[0065] The first and the second components were then mixed together with a mass ratio of 1.06 to 1 (or 129.9/122.2), and then spread onto a silicone release paper to form an ebonite tape having dimensions of 12″×3″×0.020″. The mixture gelled in ten minutes and turned in a soft elastic tape in four to eight hours at ambient condition. The tape had a tensile stress at 100% elongation of about 53 psi, a Young's modulus 31,119 psi, a maximum tensile strength of 155 psi, and an elongation of 710%.


[0066] The ebonite tape was then wrapped around a sand-blasted steel pipe having 1 inch outside diameter. The surface of the ebonite tape had slight tack to facilitate bonding between the ebonite tape and the pipe or between the ebonite tape itself, but it was not too sticky to make the wrapping difficult. The coated pipe was then baked at 150° C. for 30 minutes for sulfur vulcanization. After vulcanization, the ebonite tape became a tough coating that had a Shore D hardness of 83D, a tensile strength of 6436 psi, a Young's modulus of 175,223 psi, and an elongation of 8%. The bonding between the ebonite tape and the steel surface was excellent.



Example 3

[0067] Compositions of the first and second components are similar to those used in Example 2, but two components were mixed with a mass ratio of 2.12 to 1 (or 129.9/61.1), instead of 1.06 to 1 (or 129.9/122.2). Typical compositions of the first and second components are shown in Tables 5a and 5b.
8TABLE 5aCompositions of First ComponentCompound NameCompound, descriptionMass PartsPolybd-R45HTLOHydroxyl terminated liquid50polybutadiene, firstunsaturated polymersCab-O-Sil M5Fume silica, thixotropic agent2.9Mogul LCarbon black, reinforcing2.3agentKadox 930Zinc oxide, vulcanization7activatorRedball superfineSulfur, vulcanization agent50Unirez 2140Polyamine, sulfur solubilizer3Dabco T12Tin, Catalyst1.7Ricon 130Non-functional liquid13polybutadiene, first viscosityreducerSubtotal129.9


[0068]

9





TABLE 5b










Compositions of Second Component











Description
Compound
Mass Parts















Krasol LBD3000
TDI terminated liquid
50




polybutadiene, second




unsaturated polymers



Methyl Tuads
Tetramethylthiuram disulfide,
5




vulcanization accelerator



Ricon 130
Non-functional liquid
6.1




polybutadiene, second




viscosity reducer





Subtotal
61.1











[0069] The processes of preparing an ebonite tape from the two-component mixture were performed using similar equipment and in the same way as described in Example 2. The mixture gelled in 10 minutes and turned into a soft elastic tape in four to eight hours at ambient condition. The tape had a tensile stress at 100% elongation of 8.2 psi, a Young's modulus of 23 psi, a maximum tensile strength of 33 psi, and an elongation of 653%.


[0070] The tape was wrapped around a sand-blasted steel pipe having 1 inch outside diameter. The surface of the tape had slight tack to facilitate bonding between the tape and the pipe or between the tape itself, but it was not too sticky to make the wrapping difficult. The coated pipe was then subjected to 150° C. for 30 minutes for sulfur vulcanization. After vulcanization, the tape became a tough coating that had a Shore D hardness of 83D, a tensile strength of 6436.5 psi, a Young's modulus of 175,223 psi, and an elongation of 8.22%. The bonding between the tape and the steel surface was excellent.



Example 4

[0071] Diphenylguanidine, such as Vanax DPG (supplied by R. T. Vanderbilt), was used as a vulcanization accelerator, which was added into the first component. Also, Krasol NN23 (supplied by Kaucuk), 4,4′-methylene diphenyl diisocyanate (MID) terminated polybutadiene, was used in the second component. The compositions of first and second components are shown in Tables 6a and 6b.
10TABLE 6aCompositions of First ComponentCompound NameCompound, descriptionMass PartsPolybd-R45HTLOHydroxyl terminated liquid50polybutadiene, firstunsaturated polymersCab-O-Sil M5Fume silica, thixotropic agent1.2Mogul LCarbon black, reinforcing2.3agentKadox 930Zinc oxide, vulcanization7activatorRedball superfineSulfur, vulcanization agent50Vanax DPGDiphenylguanidine,5vulcanization acceleratorDabco T12Tin, Catalyst1.7Ricon 130Non-functional liquid13polybutadiene, first viscosityreducerSubtotal130.2


[0072]

11





TABLE 6b










Compositions of Second Component











Description
Compound
Mass Parts















Krasol NN23
MDI terminated liquid
50




polybutadiene, second




unsaturated polymers



Ricon 130
Non-functional liquid
6.1




polybutadiene, second




viscosity reducer





Subtotal
56.1











[0073] The mixing of the first and second components were performed using the same equipment and following a similar procedure to that used in example 2. The viscosity of the first and second components were 75,500 cps and 900 cps at 27° C. respectively, which were measured by using similar equipment with those used in Example 2.


[0074] First and second components were then mixed with a mass ratio of 2.57 to 1. The two-component mixture was then spread on a silicone release paper for forming an ebonite tape having dimensions 12″×3″×0.020″. The mixture gelled in 10 minutes and became a soft elastic tape in about four to eight hours at ambient condition. The ebonite tape had a tensile stress at 100% elongation of 30 psi, a Young's modulus of 390 psi, a maximum tensile strength of 63 psi, and an elongation of 354%.


[0075] The ebonite tape was then wrapped around a sand-blasted steel pipe having 1 inch outside diameter. The surface of the ebonite tape had slight tack for facilitating bonding between the ebonite tape and the pipe or between the ebonite tape itself during wrapping, but was not too sticky to make the wrapping difficult. The coated pipe was baked at 150° C. for 30 minutes for vulcanization. The ebonite tape became a tough coating after the vulcanization with a Shore D hardness of 79D, a tensile strength of 5211.5 psi, a Young's modulus of 12,913 psi, and an elongation of 6.0%. The bonding between the ebonite tape and the steel surface was excellent.


[0076] It will be clear to one skilled in the art that the above embodiment may be altered in many ways without departing from the scope of the invention. Accordingly, the scope of the invention should be determined by the following claims and their legal equivalents.


Claims
  • 1. An ebonite preform comprising a single component mixture having low modulus, high elongation and substantially tack free surface, the single component mixture comprising: a) unsaturated polymers with mass parts of 100; b) a sulfur vulcanization agent with mass parts of approximately 15-50; c) a vulcanization activator with mass parts of approximately 5-35; d) a solubilizer with mass parts of approximately 1.5-6 for the sulfur vulcanization agent; and e) a vulcanization accelerator of mass parts of approximately 3-5, wherein the unsaturated polymers contain sufficient unsaturation in the backbones for forming linkage with the sulfur vulcanization agent and wherein the mixture gels at ambient condition.
  • 2. The ebonite preform of claim 1, wherein the preform is characterized as a tape, block, brick, insert, sheet or laminate.
  • 3. The ebonite preform of claim 1, wherein the unsaturated polymers are selected from the group consisting of polybutadiene, polyisoprene, and poly(butadiene-co-acrylonitrile).
  • 4. The ebonite preform of claim 3, wherein the unsaturated polymers do not contain functional groups.
  • 5. The ebonite preform of claim 3, wherein the unsaturated polymers contain functional groups.
  • 6. The ebonite preform of claim 5, wherein the unsaturated polymers are partially epoxidized.
  • 7. The ebonite preform of claim 5, wherein the functional groups are selected from the group consisting of hydroxyl, epoxy, anhydride and acrylic.
  • 8. The ebonite preform of claim 1, wherein the mass parts of the sulfur vulcanization agent in the mixture is approximately 30-50.
  • 9. The ebonite preform of claim 1, wherein the solubilizer contains polyamine.
  • 10. The ebonite preform of claim 9, wherein the polyamine is selected from the group consisting of aliphatic, cycloaliphatic, amidoamide, and polyamide amine.
  • 11. The ebonite preform of claim 1, wherein the vulcanization accelerator is selected from the group consisting of thiuram disulfide, diphenlguanidine, diorthotolylguanidine, mercaptobenzothiazoles, benzothiazo-2-sulfenmides, metal dialkyldithiocarbamides, thioureas, thiurams, xanthates, and thiadiazines.
  • 12. The ebonite preform of claim 11, wherein the thiuram disulfide is selected from the group consisting of tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetraisobutylthiuram disulfide, tetraaklylthiuram and tetrabenzylthiuram disulfide.
  • 13. The ebonite preform of claim 1, wherein the solubilizer contains polyamine and the vulcanization accelerator contains thiuram disulfide, which reacts with the polyamine, causing the mixture to gel at ambient condition.
  • 14. The ebonite preform of claim 1, wherein the vulcanization activator is selected from the group consisting of zinc oxide, magnesium oxide, and zinc stearate.
  • 15. The ebonite preform of claim 1, wherein the mixture further comprises a viscosity reducer with mass parts of approximately 0-30 for adjusting viscosity of the mixture and surface tack of the ebonite preform, the viscosity reducer is thermodynamically compatible with the unsaturated polymers.
  • 16. The ebonite preform of claim 15, wherein the viscosity reducer is a liquid rubber having a viscosity lower than that of an unsaturated liquid rubber.
  • 17. The ebonite preform of claim 15, wherein the viscosity reducer is non-volatile so that no significant weight loss occurs during vulcanization.
  • 18. The ebonite preform of claim 1, wherein the mixture further comprises a thixotropic agent with mass parts of approximately 0-10.
  • 19. The ebonite preform of claim 18, wherein the thixotropic agent is selected from the group consisting of fume silica and bentonite.
  • 20. The ebonite preform of claim 1, wherein the mixture further comprises a reinforcing agent with mass parts of approximately 0-10.
  • 21. The ebonite preform of claim 20, wherein the reinforcing agent comprises carbon black.
  • 22. The ebonite preform of claim 1, wherein the ebonite preform is characterized as an ebonite tape and wherein the mixture is mixed and cast on a release paper at ambient conditions.
  • 23. The ebonite preform of claim 22, wherein the release paper is selected from the group consisting of silicone release paper, polypropylene release paper, and polyethylene terephthalate release paper.
  • 24. The ebonite preform of claim 22, wherein the ebonite preform is wrapped around a substrate and baked at elevated temperature for vulcanization, whereby a coating is formed on the substrate.
  • 25. The ebonite preform of claim 1, wherein the mixture gels in approximately four days and turns into a soft elastic ebonite tape.
  • 26. The ebonite preform of claim 25, wherein the ebonite tape has a tensile strength at 100% elongation less than 100 psi.
  • 27. The ebonite preform of claim 25, wherein the ebonite tape has an elongation greater than 50%.
  • 28. The ebonite preform of claim 1, wherein the ebonite preform is cast in a mold at ambient temperature.
  • 29. The ebonite preform of claim 28, wherein the ebonite preform gels in 1 to 7 days and can be removed cleanly from the mold while retaining a molded shape.
  • 30. The ebonite perform of claim 29, wherein the ebonite preform can stand alone in an oven and can be vulcanized at elevated temperature without significant distortion of the molded shape.
  • 31. The ebonite preform of claim 30, wherein the ebonite preform is vulcanized by gradually raising temperature from ambient temperature to 115° C. at approximately less than 1° C./min and held at 115° C. for at least 4 hours.
  • 32. The ebonite preform of claim 31, wherein the ebonite preform is characterized as having a thickness of greater than 0.030 inch and substantially free of porosity.
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation-in-part patent application of U.S. patent application Ser. No. 09/724,715, filed Nov. 28, 2000, now allowed. This application is related to U.S. patent application Ser. No. 09/724,698, filed Nov. 28, 2000, now allowed, which is incorporated herein by reference.

Continuation in Parts (1)
Number Date Country
Parent 09724715 Nov 2000 US
Child 10269839 Oct 2002 US