The present invention relates to vibration systems and methods for driving elongate members into the earth and, more specifically, to vibration systems that use counter-rotating eccentric weights to generate vibratory forces.
Counter-rotating pairs of eccentric weights are often used to generate vibratory forces for driving elongate members such as piles, caissons, and the like. As is well-known in the art, when eccentric weights are rotated in-phase in opposite directions at the same speed, the transverse force components of each pair of eccentric weights cancel each other, while the longitudinal force components of each pair of eccentric weights are summed together.
Problems may arise when the counter-rotating weights are accelerated and/or decelerated. In particular, the counter-rotating weights are typically used as part of a larger driving system including a vibro housing, a clamp assembly, a suppression assembly, and a support assembly. The counter-rotating weights are mounted within the vibro housing. The vibro housing is secured to the clamp assembly and the suppression assembly. The clamp assembly rigidly secures the vibro housing to the elongate member to be drive, while the suppression assembly inhibits transmission of the vibratory forces from the vibro housing to the support assembly.
The longitudinal vibratory forces have a frequency determined by the rotational speed of the eccentric members. As the counter-rotating weights are accelerated and decelerated, the frequency of longitudinal vibratory forces may move through a range of frequencies that may cause other components of the driving system to resonate. When the driving system or portions thereof resonates, the driving system and the elongate member connected thereto can become unstable and/or become damaged. Ideally, resonant vibration upon starting and stopping of the driving system should be avoided.
The Applicant is aware of a class of eccentric vibration systems that may be used in a manner that avoids resonant vibration during starting and stopping. In particular, variable moment eccentric vibration systems allow the operator to vary the moment of the vibration system during operation. Variable moment eccentric vibration systems can be operated such that resonant frequencies during starting and stopping are avoided.
Variable moment eccentric vibration systems are, however, expensive and complex and require significantly more maintenance than conventional eccentric vibration systems. The need thus exists for eccentric vibration systems that avoid resonant frequencies during starting and stopping but are inexpensive and simple to operate and maintain.
The present invention may be embodied as an eccentric vibration system comprising a major eccentric member, a minor eccentric member, first and second motor assemblies, and a transmission system. The transmission system connects the first and second motor assemblies to the major and minor eccentric members and operates in a first mode when a torque of the first motor assembly is less than a torque of the second motor assembly and a second mode when the torque of the first motor assembly is greater than the torque of the second motor assembly.
When the transmission system operates in the first and second modes, the first and second motor assemblies rotate the major and minor eccentric members through the transmission system such that transverse vibratory forces generated by the major eccentric member substantially cancel transverse vibratory forces generated by the minor eccentric member.
When the transmission system operates in the first mode, the first and second motor assemblies rotate the major and minor eccentric members through the transmission system such that longitudinal vibratory forces generated by the major eccentric member substantially cancel longitudinal vibratory forces generated by the minor eccentric member.
When the transmission system operates in the second mode, the first and second motor assemblies rotate the major and minor eccentric members through the transmission system such that longitudinal vibratory forces generated by the major eccentric member are added to longitudinal vibratory forces generated by the minor eccentric member.
Referring initially to
The transmission system 34 operates in a first mode or a second mode depending on the relative torques applied to the transmission system 34 by the motor assemblies 30 and 32. In particular, when a torque of the first motor assembly 30 is less than the torque of the second motor assembly 32, the transmission assembly operates in the first mode. The transmission assembly operates in the second mode when a torque of the first motor assembly 30 is greater than the torque of the second motor assembly 32.
As is well-known in the art, vibratory forces can be generated by rotating eccentric members with parallel axes of rotation in phase and at the same speed but in opposite directions. As will be described in further detail below, the term “in-phase” as used herein indicates that the centers of gravity of two eccentric members are at all times substantially symmetrically located about a plane of symmetry parallel to and spaced equidistant from the axes about which the eccentric members rotate. The term “counter-rotate” as used herein indicates that eccentric members are rotated at the same speed in opposite directions.
When eccentric members are counter-rotated in-phase about parallel axes, transverse vibratory forces cancel each other and the longitudinal vibratory forces are summed. The result is back and forth movement along a longitudinal system axis and little or no transverse or horizontal movement along an transverse system axis orthogonal to the longitudinal system axis.
In the example eccentric vibration system 20, the transmission system 34 is configured such that, in the second mode, the major and minor eccentric members 24 and 26 are conventionally counter-rotated in-phase. The vibration device 22 thus generates longitudinal vibratory forces along a system longitudinal axis ALS and little or no transverse vibratory forces along a main transverse axis ATM when the transmission system 34 operates in the second mode. As will be described in further detail below, this movement of the eccentric vibration device 22 forms a vibratory force that may be used to drive piles and other elongate members into the earth.
However, in the first mode, the transmission system 34 is configured such that the major and minor eccentric members 24 and 26 are counter-rotated but are approximately 180 degrees out of phase with each other. The result is that both longitudinal and transverse forces are cancelled. Accordingly, in the first mode, the eccentric vibration device 22 does not move or vibrate along either the longitudinal or transverse axes ALS and ATM.
The transmission system 34 is selectively placed in either the first mode or the second mode by altering the relative torques of the first and second motor assemblies 30 and 32. In particular, the transmission system 34 operates in the first mode when a torque of the first motor assembly 30 is less than a torque of the second motor assembly 32. The transmission system 34 operates in the second mode when the torque of the first motor assembly 30 is greater than the torque of the second motor assembly 32.
In use, the relative torques of the first and second motor assemblies 30 and 32 are set such that the transmission system 34 is in the first mode during system start-up and system shut-down. The term “system start-up” refers to the acceleration of the eccentric members 24 and 26 from zero revolutions per minute to a predetermined desired operating speed. The term “system shut-down” refers to the deceleration of the eccentric members 24 and 26 from the predetermined desired operating speed back to zero revolutions per minute. Because the eccentric vibration device 22 does not vibrate when the transmission system 34 is in the first mode, the system 20 is unlikely to cause resonant vibration of components attached thereto during system start-up and system-shut down.
However, once the eccentric members 24 and 26 reach the predetermined desired operating speed, the relative torques of the first and second motor assemblies 30 and 32 are set such that the transmission system 34 operates in the second mode. The term “system operation” will refer to the continuous operation of the eccentric vibration system 20 at the desired operating speed with the transmission assembly 34 in the second mode.
During system operation, the eccentric vibration device 22 vibrates along the longitudinal axis ALS defined by the device 22. The desired operating speed is predetermined such that, when the eccentric vibration device 22 vibrates at a frequency associated with the desired operating speed, resonant vibration of components attached to the device 22 does not occur.
Accordingly, by altering the relative torques of the first and second motors and appropriately selecting the desired operating speed, the eccentric vibration system 20 may be operated to avoid resonant vibration of components attached thereto during system start-up, system operation, and system shut-down.
Given the foregoing general understanding of the present invention, the details of construction and operation of the example vibration system 20 will now be described in further detail.
Referring again to
The first transmission assembly 40 comprises a major pin gear 50, a major direct gear 52, and a major drive pin 54. Axes AJP and AJD defined by the major pin gear 50 and major direct gear 52, respectively, are aligned along a first transverse axis AT1 defined by the first transmission assembly 40. The second transmission assembly 42 similarly comprises a minor pin gear 60, a minor direct gear 62, and a minor drive pin 64. Axes ANP and AND defined by the minor pin gear 60 and minor direct gear 62, respectively, are also aligned along a second transverse axis AT2 defined by the second transmission assembly 40.
As will be described in further detail below, a plurality of major and minor eccentric members 24 and 26 may be used. Subscripted letters will be used in conjunction with reference characters herein to refer to components that are replicated when more than one major eccentric member 24 and more than one minor eccentric member 26 are used.
In the example eccentric vibration device 22 illustrated in
The major and minor eccentric members 24 and 26 are rigidly connected to the direct gears 62 and 64, respectively. In particular, the eccentric members 24 and 26 can be integrally formed with the direct gears 52 and 62 by milling or casting or can be bolted, welded, or otherwise attached to the direct gears 52 and 62.
The eccentric members 24 and 26, motor assemblies 30 and 32, and transmission system 34 are all supported by a housing assembly 84. The housing assembly 84 comprises a housing structure 86 and a plurality of housing bearing assemblies 88. The housing bearing assemblies 88 rotatably support shafts 90 and 92. The bearing assemblies 88 allow the shafts 90 and 92 to rotate relative to the housing structure 86.
The pin gears 50 and 60 are rotatably supported on the shafts 90 and 92 by ring bearing assemblies 94. The example direct gears 52 and 62 are secured to the shafts 90 and 92. The axes AJPa and ANDa are aligned with the shaft 90a, the axes AJDa and ANpa are aligned with the shaft 92a, the axes AJDb and ANPb are aligned with the shaft 92b, and the axes AJPb and ANDb are aligned with the shaft 90b.
While
The drive pins 54 and 64 extend from the pin gears 50 and 60 towards the main transverse axis ATM and in a direction that is substantially parallel to the axes AJP and ANP associated with the pin gears 50 and 60. The eccentric members 24 and 26 extend from the direct gears 52 and 62 towards the pin gear 50 or 60 corresponding thereto. The centers of gravity of the eccentric members 24 and 26 substantially lie along the main transverse axis ATM.
The pin gears 50 and 60 and the direct gears 52 and 62 corresponding thereto define eccentric regions 96 and 98 in which the eccentric members 24 and 26, respectively, rotate. The eccentric members 24 and 26 occupy approximately one half of the eccentric regions 96 and 98. The drive pins 54 and 64 extend into portions of the eccentric regions 96 and 98, respectively, which are not occupied by the eccentric members 24 and 26.
Accordingly, as shown in
As will be discussed in further detail below with reference to
Given that the example eccentric vibration device 22 comprises two major eccentric members 24a and 24b and two minor eccentric members 26a and 26b, the transmission system 34 further includes first and second major pin gears 50a and 50b, first and second major direct gears 52a and 52b, first and second major drive pins 54a and 54b, first and second minor pin gears 60a and 60b, first and second minor direct gears 62a and 62b, and first and second minor drive pins 54a and 54b.
As shown in
Accordingly, the operation of the first and second motors 70 and 72 causes rotation of the gears 50a,b and 52a,b and 60a,b and 62a,b in each of the gear sequences formed by the first and second transmission assemblies 40 and 42.
In addition, the drive pins 54a,b and 64a,b interconnect the two transmission assemblies 40 and 42 as will now be described in further detail with reference to
The operation of the transmission system 34 in its first mode is represented in
As generally described above, when the system 20 is initially activated, the first and second motors 70 and 72 are both operated, but the second motor 72 is operated at a higher torque than the first motor 72. The minor gears 60a,b and 62a,b of the second transmission assembly 42 will thus initially rotate at a higher speed than the major gears 50a,b and 52a,b of the first transmission assembly 40.
The minor eccentric members 26a,b will thus initially rotate until the major drive pin 54a is received by the second pin pocket 102 of the first minor eccentric member 26a and the major drive pin 54b is received by the first pin pocket 100 of the second minor eccentric member 26b. Similarly, the minor drive pins 64a,b will initially rotate until the first minor drive pin 64a is received by the first pin pocket 100 of the first major eccentric member 24a and second the minor drive pin 64b is received by the second pin pocket 102 of the second major eccentric member 24b.
Accordingly, as shown in
Continued operation of the motors 70 and 72 increases the rotational speed of the eccentric members 24a,b and 26a,b. But because the lateral and longitudinal forces are cancelled, the eccentric vibration device 22 does not vibrate. The eccentric vibration device 22 thus is unlikely to cause resonant vibration of any components attached thereto when the transmission system 34 operates in the first mode.
After the rotational speed of the eccentric members 24a,b and 26a,b reaches the desired operating speed, the operating conditions of at least one of the first and second motors 70 and 72 is altered such that the torque of the first motor 70 exceeds the torque of the second motor 72. The transmission assembly 34 then enters the third or intermediate mode as shown in
Because the torque of the first motor 70 now exceeds the torque of the second motor 72, the rotational speed of the major gears 50a,b and 52a,b exceeds the rotational speed of the minor gears 60a,b and 62a,b during the intermediate mode. Accordingly, as shown in
Referring again now to
The output 134 of the first motor 70 is indirectly connected to the reservoir 122 through a flow restrictor 140. The output 136 of the second motor 72 is directly connected to the reservoir 122. A control valve 142 is configured to place the flow restrictor 140 in a first configuration or in a second configuration. In the first configuration, the flow restrictor 140 restricts the flow of fluid through the first motor 70. In the second configuration, the flow restrictor 140 does not restrict the flow of fluid through the first motor 70.
In the example hydraulic system 120, the first motor 70 is sized such that the torque of the first motor 70 is greater than the torque of the second motor 72 at an equivalent flow rate of hydraulic fluid. The flow restrictor 140 is sized and dimensioned such that, in its first configuration, the torque of the first motor 70 is reduced to a level below the torque of the second motor 72. The transmission system 34 is thus placed in the first mode when the flow restrictor 140 is in its first configuration. When the flow restrictor 140 is in the second configuration, the torque of the first motor 70 is greater than that of the second motor 72 and the transmission system 34 is placed in the second mode.
The hydraulic system 120 is advantageous in that a single engine 124 and pump 126 may be used with simple hydraulic parts to operate the eccentric vibration device 22 as described above. Hydraulic systems such as the hydraulic system 120 have further proven to be reliable when used with eccentric vibration systems. However, other hydraulic systems and other power and control systems such as electric or pneumatic may be used to operate the vibration device 22 of the present invention.
Referring now to
The driving system 220 comprises a support structure 230 and a support cable 232 suspended from the support structure 230. The example support structure 230 is depicted as a crane, but other support structures may be used.
The driving system 220 further comprises a suppressor system 240 and a clamping system 242. The suppressor system 240 is rigidly connected to the support cable 232 and the vibratory device 22 and inhibits transmission of vibratory forces to the support structure 230 through the support cable 232. The clamping system 242 rigidly connected to the vibratory device 22 and the elongate member 222 such that vibratory forces are transmitted to the member 222. The reservoir 122, engine 124, pump 126, flow restrictor 140, control valve 142, and check valve 150 are typically remotely located from the vibratory device 22 in what is commonly referred to as a power pack (not shown in
As shown in
Given the foregoing, the present invention may be embodied in forms other than those shown and described herein. The scope of the present invention should thus be determined by the claims appended hereto and not the foregoing detailed description of the invention.
This application claims priority of U.S. Provisional Application Ser. No. 60/537,586 filed on Jan. 20, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5253542 | Houze | Oct 1993 | A |
RE34460 | Ishiguro et al. | Nov 1993 | E |
5410879 | Houze | May 1995 | A |
6039508 | White | Mar 2000 | A |
6431795 | White | Aug 2002 | B2 |
6543966 | White | Apr 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
60537586 | Jan 2004 | US |