ECG belt systems to interoperate with IMDs

Information

  • Patent Grant
  • 12023503
  • Patent Number
    12,023,503
  • Date Filed
    Monday, July 26, 2021
    3 years ago
  • Date Issued
    Tuesday, July 2, 2024
    2 months ago
Abstract
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Description

The disclosure herein relates to systems and methods for a portable diagnostic system using a plurality of external electrodes.


Implantable medical devices (IMDs), such as implantable pacemakers, cardioverters, defibrillators, or pacemaker-cardioverter-defibrillators, provide therapeutic electrical stimulation to the heart. IMDs may provide pacing to address bradycardia, or pacing or shocks in order to terminate tachyarrhythmia, such as tachycardia or fibrillation. In some cases, the medical device may sense intrinsic depolarizations of the heart, detect arrhythmia based on the intrinsic depolarizations (or absence thereof), and control delivery of electrical stimulation to the heart if arrhythmia is detected based on the intrinsic depolarizations.


IMDs may also provide cardiac resynchronization therapy (CRT), which is a form of pacing. CRT involves the delivery of pacing to the left ventricle, or both the left and right ventricles. The timing and location of the delivery of pacing pulses to the ventricle(s) may be selected to improve the coordination and efficiency of ventricular contraction.


Systems for implanting medical devices may include workstations or other equipment in addition to the implantable medical device itself. In some cases, these other pieces of equipment assist the physician or other technician with placing the intracardiac leads at particular locations on the heart. In some cases, the equipment provides information to the physician about the electrical activity of the heart and the location of the intracardiac lead. The equipment may perform similar functions as the medical device, including delivering electrical stimulation to the heart and sensing the depolarizations of the heart. In some cases, the equipment may include equipment for obtaining an electrocardiogram (ECG) via electrodes on the surface, or skin, of the patient. More specifically, the patient may have a plurality of electrodes on an ECG belt or vest that surrounds the torso of the patient. After the belt or vest has been secured to the torso, a physician can perform a series of tests to evaluate a patient's cardiac response. The evaluation process can include detection of a baseline rhythm in which no electrical stimuli is delivered to cardiac tissue and another rhythm after electrical stimuli is delivered to the cardiac tissue.


The ECG electrodes placed on the body surface of the patient may be used for various therapeutic purposes (e.g., cardiac resynchronization therapy) including optimizing lead location, pacing parameters, etc. based on one or more metrics derived from the signals captured by the ECG electrodes. For example, electrical heterogeneity information may be derived from electrical activation times computed from multiple electrodes on the body surface.


SUMMARY

The exemplary systems and methods described herein may be configured to assist users (e.g., physicians and/or nurses) in configuring cardiac therapy (e.g., cardiac therapy being performed on a patient during and/or after implantation of cardiac therapy apparatus). According to various configurations, the systems and methods herein are configured to be performed in an at least partially autonomous or a fully autonomous manner such that a user (e.g., a physician and/or a patient) may not be involved in the process. The systems and methods may be described as being noninvasive. For example, the systems and methods may not need implantable devices such as leads, probes, sensors, catheters, etc. to evaluate and configure the cardiac therapy. Instead, the systems and methods may use electrical measurements taken noninvasively using, e.g., a plurality of external electrodes attached to the skin of a patient about the patient's torso.


One exemplary system for use in cardiac evaluation may include an electrode apparatus comprising a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.


One exemplary method for use in cardiac evaluation may include monitoring electrical activity from tissue of a patient using a plurality of external electrodes to generate a plurality of electrical signals over time. A portable computing apparatus is operably coupled to the plurality of electrodes. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.


One exemplary system for use in cardiac evaluation comprises an electrode apparatus comprising a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus comprising processing circuitry, the computing apparatus is operably coupled to the electrode apparatus and is configured to be operably coupled to an implantable pacing device of the patient. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. One or more parameters of the patient are measured based on the plurality of electrical signals. One or more metrics of the patient are determined based on the one or more parameters. The one or more metrics are transmitted to a smart device. According to various embodiments, the one or more transmitted metrics are used to configure the implantable device to another configuration.


One exemplary method for use in cardiac evaluation comprises monitoring electrical activity from tissue of a patient using a plurality of external electrodes to generate a plurality of electrical signals over time. Using a portable computing apparatus operably coupled to the plurality of electrodes, one or more parameters of the patient are measured based on the plurality of electrical signals. One or more metrics of the patient are determined based on the one or more parameters. The one or more metrics are transmitted to a smart device.


Embodiments described herein comprise an ECG belt and an amplifier. With a reusable belt integrated with miniaturized smart amplifier system, this could be an external smart portable diagnostic system that can be used for in-home monitoring in patients with or without implantable cardiac devices. Such a system communicates with a tablet, smart phone, smart watch or other smart devices with requisite amount of security encryption to display diagnostic data on cardiac dyssynchrony and pacing (for patients with implantable cardiac pacing devices) or can transfer device and ECG and electrical dyssynchrony data through a secure medical medium. In some cases, the system described herein may be used in a clinical setting and/or for hospital monitoring.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an exemplary system including electrode apparatus, display apparatus, and computing apparatus.



FIGS. 2-3 are diagrams of exemplary external electrode apparatus for measuring torso-surface potentials.



FIGS. 4A-4C show exemplary systems having an ECG belt and a portable amplifier.



FIG. 5 shows an exemplary method for optimizing pacing parameters.



FIG. 6 illustrates another exemplary method for optimizing pacing parameters.



FIG. 7 shows an example of determining if capture has occurred at different pacing outputs.



FIG. 8 shows an exemplary system for collecting cardiac dyssynchrony data using a portable ECG belt and a portable amplifier.



FIG. 9 illustrates an exemplary method for using an ECG belt with a portable amplifier to collect cardiac dyssynchrony data.



FIG. 10 illustrates an example of a QRS complex



FIG. 11 is a diagram of an illustrative system including an illustrative implantable medical device (IMD).



FIG. 12A is a diagram of the illustrative IMD of FIG. 11.



FIG. 12B is a diagram of an enlarged view of a distal end of the electrical lead disposed on the left ventricle of FIG. 12A.



FIG. 13A is a block diagram of an illustrative IMD, e.g., of the systems of FIGS. 11-12.



FIG. 13B is another block diagram of an illustrative IMD (e.g., an implantable pulse generator) circuitry and associated leads employed in the systems of FIGS. 11-12).





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In the following detailed description of illustrative embodiments, reference is made to the accompanying figures of the drawing which form a part hereof, and in which are shown, by way of illustration, specific embodiments which may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from (e.g., still falling within) the scope of the disclosure presented hereby.


Illustrative systems and methods shall be described with reference to FIGS. 1-12. It will be apparent to one skilled in the art that elements or processes from one embodiment may be used in combination with elements or processes of the other embodiments, and that the possible embodiments of such systems, methods, and devices using combinations of features set forth herein is not limited to the specific embodiments shown in the Figures and/or described herein. Further, it will be recognized that the embodiments described herein may include many elements that are not necessarily shown to scale. Still further, it will be recognized that timing of the processes and the size and shape of various elements herein may be modified but still fall within the scope of the present disclosure, although certain timings, one or more shapes and/or sizes, or types of elements, may be advantageous over others.


A plurality of electrocardiogram (ECG) signals (e.g., torso-surface potentials) may be measured, or monitored, using a plurality of external electrodes positioned about the surface, or skin, of a patient. The ECG signals may be used to evaluate and configure cardiac therapy such as, e.g., cardiac therapy provide by an implantable medical device performing cardiac resynchronization therapy (CRT). As described herein, the ECG signals may be gathered or obtained noninvasively since, e.g., implantable electrodes may not be used to measure the ECG signals. Further, the ECG signals may be used to determine cardiac electrical activation times, which may be used to generate various metrics (e.g., electrical heterogeneity information) that may be used by a user (e.g., physician) to optimize one or more settings, or parameters, of cardiac therapy (e.g., pacing therapy) such as CRT.


Various illustrative systems, methods, and graphical user interfaces may be configured to use electrode apparatus including external electrodes, display apparatus, and computing apparatus to noninvasively assist a user (e.g., a physician) in the evaluation of cardiac health and/or the configuration (e.g., optimization) of cardiac therapy. An illustrative system 100 including electrode apparatus 110, computing apparatus 140, and a remote computing device 160 is depicted in FIG. 1.


The electrode apparatus 110 as shown includes a plurality of electrodes incorporated, or included, within a band wrapped around the chest, or torso, of a patient 14. The electrode apparatus 110 is operatively coupled to the computing apparatus 140 (e.g., through one or wired electrical connections, wirelessly, etc.) to provide electrical signals from each of the electrodes to the computing apparatus 140 for analysis, evaluation, etc. Illustrative electrode apparatus may be described in U.S. Pat. No. 9,320,446 entitled “Bioelectric Sensor Device and Methods” filed Mar. 27, 2014 and issued on Mar. 26, 2016, which is incorporated herein by reference in its entirety. Further, illustrative electrode apparatus 110 will be described in more detail in reference to FIGS. 2-3.


Although not described herein, the illustrative system 100 may further include imaging apparatus. The imaging apparatus may be any type of imaging apparatus configured to image, or provide images of, at least a portion of the patient in a noninvasive manner. For example, the imaging apparatus may not use any components or parts that may be located within the patient to provide images of the patient except noninvasive tools such as contrast solution. It is to be understood that the illustrative systems, methods, and interfaces described herein may further use imaging apparatus to provide noninvasive assistance to a user (e.g., a physician) to locate, or place, one or more pacing electrodes proximate the patient's heart in conjunction with the configuration of cardiac therapy.


For example, the illustrative systems and methods may provide image guided navigation that may be used to navigate leads including electrodes, leadless electrodes, wireless electrodes, catheters, etc., within the patient's body while also providing noninvasive cardiac therapy configuration including determining an effective, or optimal, pre-excitation intervals such as A-V and V-V intervals, etc. Illustrative systems and methods that use imaging apparatus and/or electrode apparatus may be described in U.S. Pat. App. Pub. No. 2014/0371832 to Ghosh published on Dec. 18, 2014, U.S. Pat. App. Pub. No. 2014/0371833 to Ghosh et al. published on Dec. 18, 2014, U.S. Pat. App. Pub. No. 2014/0323892 to Ghosh et al. published on Oct. 30, 2014, U.S. Pat. App. Pub. No. 2014/0323882 to Ghosh et al. published on Oct. 20, 2014, each of which is incorporated herein by reference in its entirety.


Illustrative imaging apparatus may be configured to capture x-ray images and/or any other alternative imaging modality. For example, the imaging apparatus may be configured to capture images, or image data, using isocentric fluoroscopy, bi-plane fluoroscopy, ultrasound, computed tomography (CT), multi-slice computed tomography (MSCT), magnetic resonance imaging (MRI), high frequency ultrasound (HIFU), optical coherence tomography (OCT), intra-vascular ultrasound (IVUS), two dimensional (2D) ultrasound, three dimensional (3D) ultrasound, four dimensional (4D) ultrasound, intraoperative CT, intraoperative MRI, etc. Further, it is to be understood that the imaging apparatus may be configured to capture a plurality of consecutive images (e.g., continuously) to provide video frame data. In other words, a plurality of images taken over time using the imaging apparatus may provide video frame, or motion picture, data. An exemplary system that employs ultrasound can be found in U.S. Pat. App. Pub. No. 2017/0303840 entitled NONINVASIVE ASSESSMENT OF CARDIAC RESYNCHRONIZATION THERAPY to Stadler et al., incorporated by reference in its entirety. Additionally, the images may also be obtained and displayed in two, three, or four dimensions. In more advanced forms, four-dimensional surface rendering of the heart or other regions of the body may also be achieved by incorporating heart data or other soft tissue data from a map or from pre-operative image data captured by MRI, CT, or echocardiography modalities. Image datasets from hybrid modalities, such as positron emission tomography (PET) combined with CT, or single photon emission computer tomography (SPECT) combined with CT, could also provide functional image data superimposed onto anatomical data, e.g., to be used to navigate implantable apparatus to target locations within the heart or other areas of interest.


Systems and/or imaging apparatus that may be used in conjunction with the illustrative systems and method described herein are described in U.S. Pat. App. Pub. No. 2005/0008210 to Evron et al. published on Jan. 13, 2005, U.S. Pat. App. Pub. No. 2006/0074285 to Zarkh et al. published on Apr. 6, 2006, U.S. Pat. No. 8,731,642 to Zarkh et al. issued on May 20, 2014, U.S. Pat. No. 8,861,830 to Brada et al. issued on Oct. 14, 2014, U.S. Pat. No. 6,980,675 to Evron et al. issued on Dec. 27, 2005, U.S. Pat. No. 7,286,866 to Okerlund et al. issued on Oct. 23, 2007, U.S. Pat. No. 7,308,297 to Reddy et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,308,299 to Burrell et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,321,677 to Evron et al. issued on Jan. 22, 2008, U.S. Pat. No. 7,346,381 to Okerlund et al. issued on Mar. 18, 2008, U.S. Pat. No. 7,454,248 to Burrell et al. issued on Nov. 18, 2008, U.S. Pat. No. 7,499,743 to Vass et al. issued on Mar. 3, 2009, U.S. Pat. No. 7,565,190 to Okerlund et al. issued on Jul. 21, 2009, U.S. Pat. No. 7,587,074 to Zarkh et al. issued on Sep. 8, 2009, U.S. Pat. No. 7,599,730 to Hunter et al. issued on Oct. 6, 2009, U.S. Pat. No. 7,613,500 to Vass et al. issued on Nov. 3, 2009, U.S. Pat. No. 7,742,629 to Zarkh et al. issued on Jun. 22, 2010, U.S. Pat. No. 7,747,047 to Okerlund et al. issued on Jun. 29, 2010, U.S. Pat. No. 7,778,685 to Evron et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,778,686 to Vass et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,813,785 to Okerlund et al. issued on Oct. 12, 2010, U.S. Pat. No. 7,996,063 to Vass et al. issued on Aug. 9, 2011, U.S. Pat. No. 8,060,185 to Hunter et al. issued on Nov. 15, 2011, and U.S. Pat. No. 8,401,616 to Verard et al. issued on Mar. 19, 2013, each of which is incorporated herein by reference in its entirety.


The computing apparatus 140 and the remote computing device 160 may each include display apparatus 130, 170, respectively, that may be configured to display and analyze data such as, e.g., electrical signals (e.g., electrocardiogram data), electrical activation times, electrical heterogeneity information, etc. For example, one cardiac cycle, or one heartbeat, of a plurality of cardiac cycles, or heartbeats, represented by the electrical signals collected or monitored by the electrode apparatus 110 may be analyzed and evaluated for one or more metrics including activation times and electrical heterogeneity information that may be pertinent to the therapeutic nature of one or more parameters related to cardiac therapy such as, e.g., pacing parameters, lead location, etc. More specifically, for example, the QRS complex of a single cardiac cycle may be evaluated for one or more metrics such as, e.g., QRS onset, QRS offset, QRS peak, electrical heterogeneity information (EHI), electrical activation times referenced to earliest activation time, left ventricular or thoracic standard deviation of electrical activation times (LVED), standard deviation of activation times (SDAT), average left ventricular or thoracic surrogate electrical activation times (LVAT), QRS duration (e.g., interval between QRS onset to QRS offset), difference between average left surrogate and average right surrogate activation times, relative or absolute QRS morphology, difference between a higher percentile and a lower percentile of activation times (higher percentile may be 90%, 80%, 75%, 70%, etc. and lower percentile may be 10%, 15%, 20%, 25% and 30%, etc.), other statistical measures of central tendency (e.g., median or mode), dispersion (e.g., mean deviation, standard deviation, variance, interquartile deviations, range), etc. Further, each of the one or more metrics may be location specific. For example, some metrics may be computed from signals recorded, or monitored, from electrodes positioned about a selected area of the patient such as, e.g., the left side of the patient, the right side of the patient, etc.


In at least one embodiment, one or both of the computing apparatus 140 and the remote computing device 160 may be a server, a personal computer, a tablet computer, a mobile device, and a cellular telephone. The computing apparatus 140 may be configured to receive input from input apparatus 142 (e.g., a keyboard) and transmit output to the display apparatus 130, and the remote computing device 160 may be configured to receive input from input apparatus 162 (e.g., a touchscreen) and transmit output to the display apparatus 170. One or both of the computing apparatus 140 and the remote computing device 160 may include data storage that may allow for access to processing programs or routines and/or one or more other types of data, e.g., for analyzing a plurality of electrical signals captured by the electrode apparatus 110, for determining QRS onsets, QRS offsets, medians, modes, averages, peaks or maximum values, valleys or minimum values, for determining electrical activation times, for driving a graphical user interface configured to noninvasively assist a user in configuring one or more pacing parameters, or settings, such as, e.g., pacing rate, atrial pacing rate ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing vector (e.g., left ventricular vector quad lead), pacing voltage, pacing configuration (e.g., biventricular pacing, right ventricle only pacing, left ventricle only pacing, etc.), and arrhythmia detection and treatment, rate adaptive settings and performance, etc.


The computing apparatus 140 may be operatively coupled to the input apparatus 142 and the display apparatus 130 to, e.g., transmit data to and from each of the input apparatus 142 and the display apparatus 130, and the remote computing device 160 may be operatively coupled to the input apparatus 162 and the display apparatus 170 to, e.g., transmit data to and from each of the input apparatus 162 and the display apparatus 170. For example, the computing apparatus 140 and the remote computing device 160 may be electrically coupled to the input apparatus 142, 162 and the display apparatus 130, 170 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc. As described further herein, a user may provide input to the input apparatus 142, 162 to view and/or select one or more pieces of configuration information related to the cardiac therapy delivered by cardiac therapy apparatus such as, e.g., an implantable medical device.


Although as depicted the input apparatus 142 is a keyboard and the input apparatus 162 is a touchscreen, it is to be understood that the input apparatus 142, 162 may include any apparatus capable of providing input to the computing apparatus 140 and the computing device 160 to perform the functionality, methods, and/or logic described herein. For example, the input apparatus 142, 162 may include a keyboard, a mouse, a trackball, a touchscreen (e.g., capacitive touchscreen, a resistive touchscreen, a multi-touch touchscreen, etc.), etc. Likewise, the display apparatus 130, 170 may include any apparatus capable of displaying information to a user, such as a graphical user interface 132, 172 including electrode status information, graphical maps of electrical activation, a plurality of signals for the external electrodes over one or more heartbeats, QRS complexes, various cardiac therapy scenario selection regions, various rankings of cardiac therapy scenarios, various pacing parameters, electrical heterogeneity information (EHI), textual instructions, graphical depictions of anatomy of a human heart, images or graphical depictions of the patient's heart, graphical depictions of locations of one or more electrodes, graphical depictions of a human torso, images or graphical depictions of the patient's torso, graphical depictions or actual images of implanted electrodes and/or leads, etc. Further, the display apparatus 130, 170 may include a liquid crystal display, an organic light-emitting diode screen, a touchscreen, a cathode ray tube display, etc.


The processing programs or routines stored and/or executed by the computing apparatus 140 and the remote computing device 160 may include programs or routines for computational mathematics, matrix mathematics, decomposition algorithms, compression algorithms (e.g., data compression algorithms), calibration algorithms, image construction algorithms, signal processing algorithms (e.g., various filtering algorithms, Fourier transforms, fast Fourier transforms, etc.), standardization algorithms, comparison algorithms, vector mathematics, or any other processing used to implement one or more illustrative methods and/or processes described herein. Data stored and/or used by the computing apparatus 140 and the remote computing device 160 may include, for example, electrical signal/waveform data from the electrode apparatus 110 (e.g., a plurality of QRS complexes), electrical activation times from the electrode apparatus 110, cardiac sound/signal/waveform data from acoustic sensors, graphics (e.g., graphical elements, icons, buttons, windows, dialogs, pull-down menus, graphic areas, graphic regions, 3D graphics, etc.), graphical user interfaces, results from one or more processing programs or routines employed according to the disclosure herein (e.g., electrical signals, electrical heterogeneity information, etc.), or any other data that may be used for carrying out the one and/or more processes or methods described herein.


In one or more embodiments, the illustrative systems, methods, and interfaces may be implemented using one or more computer programs executed on programmable computers, such as computers that include, for example, processing capabilities, data storage (e.g., volatile or non-volatile memory and/or storage elements), input devices, and output devices. Program code and/or logic described herein may be applied to input data to perform functionality described herein and generate desired output information. The output information may be applied as input to one or more other devices and/or methods as described herein or as would be applied in a known fashion.


The one or more programs used to implement the systems, methods, and/or interfaces described herein may be provided using any programmable language, e.g., a high-level procedural and/or object orientated programming language that is suitable for communicating with a computer system. Any such programs may, for example, be stored on any suitable device, e.g., a storage media, that is readable by a general or special purpose program running on a computer system (e.g., including processing apparatus) for configuring and operating the computer system when the suitable device is read for performing the procedures described herein. In other words, at least in one embodiment, the illustrative systems, methods, and interfaces may be implemented using a computer readable storage medium, configured with a computer program, where the storage medium so configured causes the computer to operate in a specific and predefined manner to perform functions described herein. Further, in at least one embodiment, the illustrative systems, methods, and interfaces may be described as being implemented by logic (e.g., object code) encoded in one or more non-transitory media that includes code for execution and, when executed by a processor or processing circuitry, is operable to perform operations such as the methods, processes, and/or functionality described herein.


The computing apparatus 140 and the remote computing device 160 may be, for example, any fixed or mobile computer system (e.g., a controller, a microcontroller, a personal computer, minicomputer, tablet computer, etc.). The exact configurations of the computing apparatus 140 and the remote computing device 160 are not limiting, and essentially any device capable of providing suitable computing capabilities and control capabilities (e.g., signal analysis, mathematical functions such as medians, modes, averages, maximum value determination, minimum value determination, slope determination, minimum slope determination, maximum slope determination, graphics processing, etc.) may be used. As described herein, a digital file may be any medium (e.g., volatile or non-volatile memory, a CD-ROM, a punch card, magnetic recordable tape, etc.) containing digital bits (e.g., encoded in binary, trinary, etc.) that may be readable and/or writeable by the computing apparatus 140 and the remote computing device 160 described herein. Also, as described herein, a file in user-readable format may be any representation of data (e.g., ASCII text, binary numbers, hexadecimal numbers, decimal numbers, graphically, etc.) presentable on any medium (e.g., paper, a display, etc.) readable and/or understandable by a user.


In view of the above, it will be readily apparent that the functionality as described in one or more embodiments according to the present disclosure may be implemented in any manner as would be known to one skilled in the art. As such, the computer language, the computer system, or any other software/hardware which is to be used to implement the processes described herein shall not be limiting on the scope of the systems, processes, or programs (e.g., the functionality provided by such systems, processes, or programs) described herein.


The illustrative electrode apparatus 110 may be configured to measure body-surface potentials of a patient 14 and, more particularly, torso-surface potentials of a patient 14. As shown in FIG. 2, the illustrative electrode apparatus 110 may include a set, or array, of external electrodes 112, a strap 113, and interface/amplifier circuitry 116. The electrodes 112 may be attached, or coupled, to the strap 113 and the strap 113 may be configured to be wrapped around the torso of a patient 14 such that the electrodes 112 surround the patient's heart. As further illustrated, the electrodes 112 may be positioned around the circumference of a patient 14, including the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 14.


The illustrative electrode apparatus 110 may be further configured to measure, or monitor, sounds from at least one or both the patient 14. As shown in FIG. 2, the illustrative electrode apparatus 110 may include a set, or array, of acoustic sensors 120 attached, or coupled, to the strap 113. The strap 113 may be configured to be wrapped around the torso of a patient 14 such that the acoustic sensors 120 surround the patient's heart. As further illustrated, the acoustic sensors 120 may be positioned around the circumference of a patient 14, including the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 14.


Further, the electrodes 112 and the acoustic sensors 120 may be electrically connected to interface/amplifier circuitry 116 via wired connection 118. The interface/amplifier circuitry 116 may be configured to amplify the signals from the electrodes 112 and the acoustic sensors 120 and provide the signals to one or both of the computing apparatus 140 and the remote computing device 160. Other illustrative systems may use a wireless connection to transmit the signals sensed by electrodes 112 and the acoustic sensors 120 to the interface/amplifier circuitry 116 and, in turn, to one or both of the computing apparatus 140 and the remote computing device 160, e.g., as channels of data. In one or more embodiments, the interface/amplifier circuitry 116 may be electrically coupled to the computing apparatus 140 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc.


Although in the example of FIG. 2 the electrode apparatus 110 includes a strap 113, in other examples any of a variety of mechanisms, e.g., tape or adhesives, may be employed to aid in the spacing and placement of electrodes 112 and the acoustic sensors 120. In some examples, the strap 113 may include an elastic band, strip of tape, or cloth. Further, in some examples, the strap 113 may be part of, or integrated with, a piece of clothing such as, e.g., a t-shirt. In other examples, the electrodes 112 and the acoustic sensors 120 may be placed individually on the torso of a patient 14. Further, in other examples, one or both of the electrodes 112 (e.g., arranged in an array) and the acoustic sensors 120 (e.g., also arranged in an array) may be part of, or located within, patches, vests, and/or other manners of securing the electrodes 112 and the acoustic sensors 120 to the torso of the patient 14. Still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be part of, or located within, two sections of material or two patches. One of the two patches may be located on the anterior side of the torso of the patient 14 (to, e.g., monitor electrical signals representative of the anterior side of the patient's heart, measure surrogate cardiac electrical activation times representative of the anterior side of the patient's heart, monitor or measure sounds of the anterior side of the patient, etc.) and the other patch may be located on the posterior side of the torso of the patient 14 (to, e.g., monitor electrical signals representative of the posterior side of the patient's heart, measure surrogate cardiac electrical activation times representative of the posterior side of the patient's heart, monitor or measure sounds of the posterior side of the patient, etc.). And still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be arranged in a top row and bottom row that extend from the anterior side of the patient 14 across the left side of the patient 14 to the posterior side of the patient 14. Yet still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be arranged in a curve around the armpit area and may have an electrode/sensor-density that less dense on the right thorax that the other remaining areas.


The electrodes 112 may be configured to surround the heart of the patient 14 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of a patient 14. Each of the electrodes 112 may be used in a unipolar configuration to sense the torso-surface potentials that reflect the cardiac signals. The interface/amplifier circuitry 116 may also be coupled to a return or indifferent electrode (not shown) that may be used in combination with each electrode 112 for unipolar sensing.


In some examples, there may be about 12 to about 50 electrodes 112 and about 12 to about 50 acoustic sensors 120 spatially distributed around the torso of a patient. Other configurations may have more or fewer electrodes 112 and more or fewer acoustic sensors 120. It is to be understood that the electrodes 112 and acoustic sensors 120 may not be arranged or distributed in an array extending all the way around or completely around the patient 14. Instead, the electrodes 112 and acoustic sensors 120 may be arranged in an array that extends only part of the way or partially around the patient 14. For example, the electrodes 112 and acoustic sensors 120 may be distributed on the anterior, posterior, and left sides of the patient with less or no electrodes and acoustic sensors proximate the right side (including posterior and anterior regions of the right side of the patient).


The computing apparatus 140 may record and analyze the torso-surface potential signals sensed by electrodes 112 and the sound signals sensed by the acoustic sensors 120, which are amplified/conditioned by the interface/amplifier circuitry 116. The computing apparatus 140 may be configured to analyze the electrical signals from the electrodes 112 to provide electrocardiogram (ECG) signals, information, or data from the patient's heart as will be further described herein. The computing apparatus 140 may be configured to analyze the electrical signals from the acoustic sensors 120 to provide sound signals, information, or data from the patient's body and/or devices implanted therein (such as a left ventricular assist device).


Additionally, the computing apparatus 140 and the remote computing device 160 may be configured to provide graphical user interfaces 132, 172 depicting various information related to the electrode apparatus 110 and the data gathered, or sensed, using the electrode apparatus 110. For example, the graphical user interfaces 132, 172 may depict ECGs including QRS complexes obtained using the electrode apparatus 110 and sound data including sound waves obtained using the acoustic sensors 120 as well as other information related thereto. Illustrative systems and methods may noninvasively use the electrical information collected using the electrode apparatus 110 and the sound information collected using the acoustic sensors 120 to evaluate a patient's cardiac health and to evaluate and configure cardiac therapy being delivered to the patient.


Further, the electrode apparatus 110 may further include reference electrodes and/or drive electrodes to be, e.g. positioned about the lower torso of the patient 14, that may be further used by the system 100. For example, the electrode apparatus 110 may include three reference electrodes, and the signals from the three reference electrodes may be combined to provide a reference signal. Further, the electrode apparatus 110 may use of three caudal reference electrodes (e.g., instead of standard references used in a Wilson Central Terminal) to get a “true” unipolar signal with less noise from averaging three caudally located reference signals.



FIG. 3 illustrates another illustrative electrode apparatus 110 that includes a plurality of electrodes 112 configured to surround the heart of the patient 14 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of the patient 14 and a plurality of acoustic sensors 120 configured to surround the heart of the patient 14 and record, or monitor, the sound signals associated with the heart after the signals have propagated through the torso of the patient 14. The electrode apparatus 110 may include a vest 114 upon which the plurality of electrodes 112 and the plurality of acoustic sensors 120 may be attached, or to which the electrodes 112 and the acoustic sensors 120 may be coupled. In at least one embodiment, the plurality, or array, of electrodes 112 may be used to collect electrical information such as, e.g., surrogate electrical activation times. Similar to the electrode apparatus 110 of FIG. 2, the electrode apparatus 110 of FIG. 3 may include interface/amplifier circuitry 116 electrically coupled to each of the electrodes 112 and the acoustic sensors 120 through a wired connection 118 and be configured to transmit signals from the electrodes 112 and the acoustic sensors 120 to computing apparatus 140. As illustrated, the electrodes 112 and the acoustic sensors 120 may be distributed over the torso of a patient 14, including, for example, the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 14.


The vest 114 may be formed of fabric with the electrodes 112 and the acoustic sensors 120 attached to the fabric. The vest 114 may be configured to maintain the position and spacing of electrodes 112 and the acoustic sensors 120 on the torso of the patient 14. Further, the vest 114 may be marked to assist in determining the location of the electrodes 112 and the acoustic sensors 120 on the surface of the torso of the patient 14. In some examples, there may be about 25 to about 256 electrodes 112 and about 25 to about 256 acoustic sensors 120 distributed around the torso of the patient 14, though other configurations may have more or fewer electrodes 112 and more or fewer acoustic sensors 120.


The illustrative systems and methods may be used to provide noninvasive assistance to a user in the evaluation of a patient's cardiac health and/or evaluation and configuration of cardiac therapy being presently delivered to the patient (e.g., by an implantable medical device delivering pacing therapy, by a LVAD, etc.). Further, it is to be understood that the computing apparatus 140 and the remote computing device 160 may be operatively coupled to each other in a plurality of different ways so as to perform, or execute, the functionality described herein. For example, in the embodiment depicted, the computing device 140 may be wireless operably coupled to the remote computing device 160 as depicted by the wireless signal lines emanating therebetween. Additionally, as opposed to wireless connections, one or more of the computing apparatus 140 and the remoting computing device 160 may be operably coupled through one or wired electrical connections.


According to embodiments described herein, the illustrative system 100, which may be referred to as an ECG belt system, may be used with cardiac therapy systems and devices (e.g., CRT pacing devices) to calculate various metrics related to the cardiac health of a patient (e.g., the standard deviation of activation times (SDAT)) across one or more cardiac cycles (or heart beats), and in particular, based on activation times or other data gathered during each QRS event of the cardiac cycle (heart beat). According to various embodiments, the illustrative system 100 may be used to calculate, or generate, electrical heterogeneity information such as, e.g., SDAT, of cardiac cycles during delivery of CRT (e.g., the SDAT for cardiac cycles where CRT paces are delivered). For example, the illustrative system 100 may be used to calculate electrical heterogeneity information for cardiac cycles during biventricular and/or left ventricular pacing. Further, embodiments described herein may be used to evaluate a patient's cardiac health and/or non-CRT pacing. If electrical heterogeneity information is inaccurate, the output of the illustrative system 100 could be misleading, which could potentially impact lead placement (e.g., an implantable lead not being placed at an optimal spot) and/or optimal device programming. For example, if the SDAT is inaccurate, the SDAT may be artificially low, which may cause a clinician to not relocate currently positioned lead as opposed to repositioning the lead to obtain a better response


According to various configurations, the ECG belt and an associated miniaturized amplifier can be portable such that a patient does not have to be at a clinic to measure electrical activity and to optimize various parameters of an implantable medical device (IMD). The ECG belt and portable amplifier system may be used as an external smart portable diagnostic system that can be used to in-home monitoring in patients with or without implantable devices. In some cases, the portable amplifier may be able to communicate directly with an IMD to optimize pacing parameters and/or to check parameters to flag potential issues for further follow-up. The portable amplifier may be able to perform tasks automatically without the need for a programmer.


An exemplary system with a portable amplifier is shown in FIG. 4A. In this example, the patient 410 has an ECG belt 430 and an optional IMD 420. The ECG belt has an associated portable amplifier 440 that is operatively coupled to the ECG belt 430 and the IMD 420. The portable amplifier 440 has an optimization module that may be used to optimize parameters of the pacing device. A device check module 444 may be used to check device parameters of one or more of the IMD and the ECG belt.



FIGS. 4B and 4C illustrate another example of an ECG belt with a portable amplifier in accordance with embodiments described herein. In this example, the ECG belt 460 has a C-shaped design vest and/or belt with a portable amplifier 465. FIG. 4B illustrates a front view of the ECG belt 460 and FIG. 4C shows a rear view. In this example, the ECG belt 460 wraps around the left side of the torso from the sternum on the front to the spine on the rear. According to various embodiments, the vest and/or belt is made with a flexible and/or stretchable material with the electrodes 462 are sewn on or incorporated by other means (e.g., adhesive). The flexible material allows for fitting bodies of different shapes and/or sizes. The ECG band 460 may include anatomic markers such as left anterior, posterior, sternum, and/or spine to help the patient and/or user to orient the belt 460 correctly.


According to carious embodiments, the ECG belt 460 may include at least two rows of reusable electrodes 462. There may be 10 electrodes in each row (e.g., five on the front of the body from the sternum to the left posterior axillary line and five on the back of the body from the left posterior axillary line to the spine). The built-in amplifier may be configured to record at least 5 seconds of ECG data and transmitting the data to a cloud for processing of left heart electrical dyssynchrony (e.g., LVAT) or other diagnostic metrics described herein.


An exemplary method 500 for using an ECG belt with a portable amplifier in accordance with embodiments described herein is shown in FIG. 5. Electrical activity from tissue of a patient is monitored 510 using a plurality of external electrodes to generate a plurality of electrical signals over time. The plurality of electrodes may be external surface electrodes configured in a band or a vest similar to what is described herein with respect to FIGS. 1-3. Each of the electrodes may be positioned or located about the torso of the patient so as to monitor electrical activity (e.g., acquire torso-potentials) from a plurality of different locations about the torso of the patient. Each of the different locations where the electrodes are located may correspond to the electrical activation of different portions or regions of cardiac tissue of the patient's heart.


At least one of optimizing device parameters and determining cardiac synchrony is performed 520. The device parameters may comprise one or more of pacing parameters such as pacing rate, atrial pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing timings, and pacing voltage. While an optimization process and a cardiac synchrony assessment are performed in this example, it is to be understood that other tests may be performed. In some cases, the portable amplifier system performs tests in a predetermined sequence. The tests may be conducted at predetermined times.


According to various configurations, determining cardiac synchrony is performed automatically without a programmer. For example, the cardiac synchrony assessment may be done at predetermined intervals of time and/or at predetermined times of day. In some cases, the cardiac synchrony assessment is performed based on a detected physiological parameter and/or based on patient indicated symptoms. The physiological parameter may include one or more of a heart rate, a breathing rate, indication of fluid retention status (thoracic impedance, pressure, etc), blood pressure, arrhythmia status, changes in heart sounds, indicators of phrenic nerve stimulation (e.g. via acoustic/heart sounds sensors), a possible fall, posture, a respiration rate, and/or activity level.


According to various configurations, the portable amplifier is configured to transmit a summary of the findings of all the routine tests on a display device. The display device may include a smart device having security encryption. For example, the display device may include a smart phone, a tablet, and/or a smart watch. In some cases, an option is provided to print out a report. The report may contain flags on issues (e.g. battery life, problems with lead impedances and/or capture). It may also provide feedback to the patient via his or her smart phone, smart watch or other smart devices with proper security encryption. With an in home portable smart amplifier system, such checks can be done periodically at home or during various ambulatory conditions, and/or during exercise. The information may be transmitted automatically when an associated smart device is available and/or the transmission may be initiated by a user. The transmission may occur via a wired connection and/or via a wireless connection. In some cases, the portable amplifier is configured to transmit the information to a display device at a clinic.



FIG. 6 shows a more detailed method for using an ECG belt with a portable amplifier in accordance with embodiments described herein is shown. Electrical activity from tissue of a patient is monitored 550.


As described in conjunction with FIG. 5, an optimization process may be performed based in the monitored electrical activity. The optimization process may comprise scanning 570 parameter values of one or more parameters. A value is selected 580 for each scanned parameter that results in the highest electrical synchrony.


The cardiac synchrony assessment may include automatically determining 590 one or more pacing device metrics based on one or more measured parameters. The pacing device metrics comprise one or more of pacing thresholds, pacing timings, lead impedances, and a determination of effective capture. According to various configurations, metrics determined using electrical activity sensed from the ECG belt may provide independent confirmation of electrical events like basic capture of RV/LV leads, for example. QRS templates from multiple ECGs (based on standard deviation of some or all of the 40 ECG signals) may be collected for baseline/intrinsic rhythm. Parameters such as ventricular rates may be determined from time-intervals between successive QRS complexes.


According to various configurations, if the one or more pacing metrics are outside of a threshold range, the portable amplifier may issue an alert and/or a note to follow/up. The alert and/or follow-up note may be transmitted directly to a patient smart device and/or to an associated medical institution. Depending on the value of the metric, the alert may be issued immediately to a medical institution. According to various configurations, an alert may be sent if progressively worsening dyssynchrony is detected as this may be an indicator of heart failure. In some cases, the alert may be sent if indicators of arrhythmias are detected such as QT dispersion increasing.


The ECG belt and portable amplifier system may determine lack of capture for a pacing lead when QRS templates during pacing has a high degree of correlation with previously collected baseline/intrinsic QRS templates. For example, a lack of pace capture may be determined if the rate from successive QRS intervals during pacing lags behind the overdrive pacing rate. This avoids manual testing or testing with an additional programmer device.



FIG. 7 show an example of determining if capture has occurred at different pacing outputs. The intrinsic surface QRS template measured with the ECG belt is shown in 610. The intrinsic surface QRS template is collected at a time when there is no pacing therapy. A paced surface QRS template is determined at different pacing outputs. In this example, the templates are determined at pacing outputs of 2.5 V 620, 2.0 V 630, and 1.5V 640. Each of the paced templates 620, 630, 640 are compared to the intrinsic template 610. As can be observed, the templates resulting from the 2.5V pace 620 and the 2.0 V pace 630 do not match the intrinsic template 610. It is thus determined that capture has occurred for the 2.5 V pace 620 and the 2.0 V pace. The template resulting from the 1.5V pace 640 does match the intrinsic QRS template 610. It is determined that the 1.5V pace 640 does not result in capture because it matches the intrinsic QRS template 610.


According to various configurations, the ECG belt and portable amplifier system may be used for collecting cardiac dyssynchrony data. The dyssynchrony data can be transmitted to a smart device with a requisite amount of security encryption and/or can be transmitted directly to a medical institution.


An exemplary system for collecting cardiac dyssynchrony data using a portable ECG belt and a portable amplifier is shown in FIG. 8. In this example, the patient 710 has an ECG belt 730 and an optional IMD 720. The ECG belt has an associated portable amplifier 740 that is operatively coupled to the ECG belt 730 and the IMD 720. The portable amplifier 740 may be coupled to a smart device 760 of the patient, for example. In some cases, the portable amplifier 740 and/or the IMD 720 is configured to transmit collected data to a secure medical device 750. The secure medical device 750 may be configured to store intrinsic and/or paced maps that are produced using the data collected from the ECG belt. 730. The portable amplifier 740 and/or the secure medical device 750 may be configured to transmit collected data to a medical institution for follow-up.


An exemplary method 800 for using an ECG belt with a portable amplifier to collect cardiac dyssynchrony data in accordance with embodiments described herein is shown in FIG. 9. Electrical activity from tissue of a patient is monitored 810 using a plurality of external electrodes to generate a plurality of electrical signals.


One or more parameters of the patient are measured 820 based on the plurality of electrical signals. Examples of such parameters may include metrics related to cardiac dyssynchrony based on dispersion metrics of electrical activation and repolarization times or average of such times measured over all electrodes or a subset of electrodes proximate a specific anatomic region or related measures including QRS duration, QRS area.


One or more metrics of the patient are determined 830 based on the one or more parameters. The one or more metrics may comprise one or more indicators of cardiac dyssynchrony, one or more indicators of a risk of arrhythmias, and/or one or more indicators of development of new conduction blocks and/or disturbances. The one or more metrics may be calculated by determining if one or more of the measured parameters is beyond a predetermined threshold and/or beyond a previous measurement under substantially the same conditions. In some cases, the one or more metrics comprise one or more of standard deviation of activation times (SDAT), average of left ventricular activation times (LVAT), standard deviation of left ventricular activation times, standard deviation of right ventricular activation times, QT dispersion, activation recovery interval over multiple ECG electrodes, and recovery time. According to various configurations, the ECG belt and the portable amplifier system is configured to do stress testing while the patient exercises (e.g., climbing stairs). In this example, the system can detect markers of ischemia like ST segment elevation, for example.


The portable amplifier may be configured to issue an alert to the smart device and/or to the secure medical device if indicators of cardiac dyssynchrony and/or a risk of arrhythmias is detected. In some cases, the system may be configured to send alerts to one or more nearest clinics if thresholds predictive of an impending event are triggered.


In some cases, the portable amplifier communicates with the IMD to change one or more device parameters. The amplifier may optimize the one or more device parameters to reduce and/or minimize electrical dyssynchrony


A summary of the one more metrics may be transmitted 840 to a smart device with security encryption. The smart device may include one or more secure medical devices.



FIG. 10 illustrates an example of a QRS complex. The QT interval 920 may be determined by the portable amplifier for diagnostic purposes. Similarly the activation-recovery interval 910 may be determined. The activation time corresponds to the minimum change over time in the QRS complex. The recovery time corresponds to the time where the maximum change over time occurs during the T wave. These parameters may be determined by the portable amplifier for diagnostic purposes and/or as a part of an optimization process.


Illustrative cardiac therapy systems and devices may be further described herein with reference to FIGS. 11-13 that may utilizes the illustrative systems, interfaces, methods, and processes described herein with respect to FIGS. 1-10.



FIG. 11 is a conceptual diagram illustrating an illustrative therapy system 10 that may be used to deliver pacing therapy to a patient 14. Patient 14 may, but not necessarily, be a human. The therapy system 10 may include an implantable medical device 16 (IMD), which may be coupled to leads 18, 20, 22. The IMD 16 may be, e.g., an implantable pacemaker, cardioverter, and/or defibrillator, that delivers, or provides, electrical signals (e.g., paces, etc.) to and/or senses electrical signals from the heart 12 of the patient 14 via electrodes coupled to one or more of the leads 18, 20, 22.


The leads 18, 20, 22 extend into the heart 12 of the patient 14 to sense electrical activity of the heart 12 and/or to deliver electrical stimulation to the heart 12. In the example shown in FIG. 11, the right ventricular (RV) lead 18 extends through one or more veins (not shown), the superior vena cava (not shown), and the right atrium 26, and into the right ventricle 28. The left ventricular (LV) coronary sinus lead 20 extends through one or more veins, the vena cava, the right atrium 26, and into the coronary sinus 30 to a region adjacent to the free wall of the left ventricle 32 of the heart 12. The right atrial (RA) lead 22 extends through one or more veins and the vena cava, and into the right atrium 26 of the heart 12.


The IMD 16 may sense, among other things, electrical signals attendant to the depolarization and repolarization of the heart 12 via electrodes coupled to at least one of the leads 18, 20, 22. In some examples, the IMD 16 provides pacing therapy (e.g., pacing pulses) to the heart 12 based on the electrical signals sensed within the heart 12. The IMD 16 may be operable to adjust one or more parameters associated with the pacing therapy such as, e.g., A-V delay and other various timings, pulse width, amplitude, voltage, burst length, pacing vector, etc. Further, the IMD 16 may be operable to use various electrode configurations to deliver pacing therapy, which may be unipolar, bipolar, quadripolar, or further multipolar. For example, a multipolar lead may include several electrodes that can be used for delivering pacing therapy. Hence, a multipolar lead system may provide, or offer, multiple electrical vectors to pace from. A pacing vector may include at least one cathode, which may be at least one electrode located on at least one lead, and at least one anode, which may be at least one electrode located on at least one lead (e.g., the same lead, or a different lead) and/or on the casing, or can, of the IMD. While improvement in cardiac function as a result of the pacing therapy may primarily depend on the cathode, the electrical parameters like impedance, pacing threshold voltage, current drain, longevity, etc. may be more dependent on the pacing vector, which includes both the cathode and the anode. The IMD 16 may also provide defibrillation therapy and/or cardioversion therapy via electrodes located on at least one of the leads 18, 20, 22. Further, the IMD 16 may detect arrhythmia of the heart 12, such as fibrillation of the ventricles 28, 32, and deliver defibrillation therapy to the heart 12 in the form of electrical pulses. In some examples, IMD 16 may be programmed to deliver a progression of therapies, e.g., pulses with increasing energy levels, until a fibrillation of heart 12 is stopped.



FIGS. 12A-12B are conceptual diagrams illustrating the IMD 16 and the leads 18, 20, 22 of therapy system 10 of FIG. 11 in more detail. The leads 18, 20, 22 may be electrically coupled to a therapy delivery module (e.g., for delivery of pacing therapy), a sensing module (e.g., for sensing one or more signals from one or more electrodes), and/or any other modules of the IMD 16 via a connector block 34. In some examples, the proximal ends of the leads 18, 20, 22 may include electrical contacts that electrically couple to respective electrical contacts within the connector block 34 of the IMD 16. In addition, in some examples, the leads 18, 20, 22 may be mechanically coupled to the connector block 34 with the aid of set screws, connection pins, or another suitable mechanical coupling mechanism.


Each of the leads 18, 20, 22 includes an elongated insulative lead body, which may carry a number of conductors (e.g., concentric coiled conductors, straight conductors, etc.) separated from one another by insulation (e.g., tubular insulative sheaths). In the illustrated example, bipolar electrodes 40, 42 are located proximate to a distal end of the lead 18. In addition, bipolar electrodes 44, 45, 46, 47 are located proximate to a distal end of the lead 20 and bipolar electrodes 48, 50 are located proximate to a distal end of the lead 22.


The electrodes 40, 44, 45, 46, 47, 48 may take the form of ring electrodes, and the electrodes 42, 50 may take the form of extendable helix tip electrodes mounted retractably within the insulative electrode heads 52, 54, 56, respectively. In some cases, the electrodes 42, 50 are fixed helix and/or passive lead electrodes. Each of the electrodes 40, 42, 44, 45, 46, 47, 48, 50 may be electrically coupled to a respective one of the conductors (e.g., coiled and/or straight) within the lead body of its associated lead 18, 20, 22, and thereby coupled to a respective one of the electrical contacts on the proximal end of the leads 18, 20, 22.


Additionally, electrodes 44, 45, 46 and 47 may have an electrode surface area of about 5.3 mm2 to about 5.8 mm2. Electrodes 44, 45, 46, and 47 may also be referred to as LV1, LV2, LV3, and LV4, respectively. The LV electrodes (i.e., left ventricle electrode 1 (LV1) 44, left ventricle electrode 2 (LV2) 45, left ventricle electrode 3 (LV3) 46, and left ventricle 4 (LV4) 47 etc.) on the lead 20 can be spaced apart at variable distances. For example, electrode 44 may be a distance of, e.g., about 21 millimeters (mm), away from electrode 45, electrodes 45 and 46 may be spaced a distance of, e.g. about 1.3 mm to about 1.5 mm, away from each other, and electrodes 46 and 47 may be spaced a distance of, e.g. 20 mm to about 21 mm, away from each other.


The electrodes 40, 42, 44, 45, 46, 47, 48, 50 may further be used to sense electrical signals (e.g., morphological waveforms within electrograms (EGM)) attendant to the depolarization and repolarization of the heart 12. The electrical signals are conducted to the IMD 16 via the respective leads 18, 20, 22. In some examples, the IMD 16 may also deliver pacing pulses via the electrodes 40, 42, 44, 45, 46, 47, 48, 50 to cause depolarization of cardiac tissue of the patient's heart 12. In some examples, as illustrated in FIG. 12A, the IMD 16 includes one or more housing electrodes, such as housing electrode 58, which may be formed integrally with an outer surface of a housing 60 (e.g., hermetically-sealed housing) of the IMD 16 or otherwise coupled to the housing 60. Any of the electrodes 40, 42, 44, 45, 46, 47, 48, 50 may be used for unipolar sensing or pacing in combination with the housing electrode 58. It is generally understood by those skilled in the art that other electrodes can also be selected to define, or be used for, pacing and sensing vectors. Further, any of electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, when not being used to deliver pacing therapy, may be used to sense electrical activity during pacing therapy.


As described in further detail with reference to FIG. 12A, the housing 60 may enclose a therapy delivery module that may include a stimulation generator for generating cardiac pacing pulses and defibrillation or cardioversion shocks, as well as a sensing module for monitoring the electrical signals of the patient's heart (e.g., the patient's heart rhythm). The leads 18, 20, 22 may also include elongated electrodes 62, 64, 66, respectively, which may take the form of a coil. The IMD 16 may deliver defibrillation shocks to the heart 12 via any combination of the elongated electrodes 62, 64, 66 and the housing electrode 58. The electrodes 58, 62, 64, 66 may also be used to deliver cardioversion pulses to the heart 12. Further, the electrodes 62, 64, 66 may be fabricated from any suitable electrically conductive material, such as, but not limited to, platinum, platinum alloy, and/or other materials known to be usable in implantable defibrillation electrodes. Since electrodes 62, 64, 66 are not generally configured to deliver pacing therapy, any of electrodes 62, 64, 66 may be used to sense electrical activity and may be used in combination with any of electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58. In at least one embodiment, the RV elongated electrode 62 may be used to sense electrical activity of a patient's heart during the delivery of pacing therapy (e.g., in combination with the housing electrode 58, or defibrillation electrode-to-housing electrode vector).


The configuration of the illustrative therapy system 10 illustrated in FIGS. 11-13 is merely one example. In other examples, the therapy system may include epicardial leads and/or patch electrodes instead of or in addition to the transvenous leads 18, 20, 22 illustrated in FIG. 11. Additionally, in other examples, the therapy system 10 may be implanted in/around the cardiac space without transvenous leads (e.g., leadless/wireless pacing systems) or with leads implanted (e.g., implanted transvenously or using approaches) into the left chambers of the heart (in addition to or replacing the transvenous leads placed into the right chambers of the heart as illustrated in FIG. 11). Further, in one or more embodiments, the IMD 16 need not be implanted within the patient 14. For example, the IMD 16 may deliver various cardiac therapies to the heart 12 via percutaneous leads that extend through the skin of the patient 14 to a variety of positions within or outside of the heart 12. In one or more embodiments, the system 10 may utilize wireless pacing (e.g., using energy transmission to the intracardiac pacing component(s) via ultrasound, inductive coupling, RF, etc.) and sensing cardiac activation using electrodes on the can/housing and/or on subcutaneous leads.


In other examples of therapy systems that provide electrical stimulation therapy to the heart 12, such therapy systems may include any suitable number of leads coupled to the IMD 16, and each of the leads may extend to any location within or proximate to the heart 12. For example, other examples of therapy systems may include three transvenous leads located as illustrated in FIGS. 11-13. Still further, other therapy systems may include a single lead that extends from the IMD 16 into the right atrium 26 or the right ventricle 28, or two leads that extend into a respective one of the right atrium 26 and the right ventricle 28.



FIG. 13A is a functional block diagram of one illustrative configuration of the IMD 16. As shown, the IMD 16 may include a control module 81, a therapy delivery module 84 (e.g., which may include a stimulation generator), a sensing module 86, and a power source 90.


The control module, or apparatus, 81 may include a processor 80, memory 82, and a telemetry module, or apparatus, 88. The memory 82 may include computer-readable instructions that, when executed, e.g., by the processor 80, cause the IMD 16 and/or the control module 81 to perform various functions attributed to the IMD 16 and/or the control module 81 described herein. Further, the memory 82 may include any volatile, non-volatile, magnetic, optical, and/or electrical media, such as a random-access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, and/or any other digital media. An illustrative capture management module may be the left ventricular capture management (LVCM) module described in U.S. Pat. No. 7,684,863 entitled “LV THRESHOLD MEASUREMENT AND CAPTURE MANAGEMENT” and issued Mar. 23, 2010, which is incorporated herein by reference in its entirety.


The processor 80 of the control module 81 may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and/or equivalent discrete or integrated logic circuitry. In some examples, the processor 80 may include multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, and/or one or more FPGAs, as well as other discrete or integrated logic circuitry. The functions attributed to the processor 80 herein may be embodied as software, firmware, hardware, or any combination thereof.


The control module 81 may control the therapy delivery module 84 to deliver therapy (e.g., electrical stimulation therapy such as pacing) to the heart 12 according to a selected one or more therapy programs, which may be stored in the memory 82. More, specifically, the control module 81 (e.g., the processor 80) may control various parameters of the electrical stimulus delivered by the therapy delivery module 84 such as, e.g., A-V delays, V-V delays, pacing pulses with the amplitudes, pulse widths, frequency, or electrode polarities, etc., which may be specified by one or more selected therapy programs (e.g., A-V and/or V-V delay adjustment programs, pacing therapy programs, pacing recovery programs, capture management programs, etc.). As shown, the therapy delivery module 84 is electrically coupled to electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66, e.g., via conductors of the respective lead 18, 20, 22, or, in the case of housing electrode 58, via an electrical conductor disposed within housing 60 of IMD 16. Therapy delivery module 84 may be configured to generate and deliver electrical stimulation therapy such as pacing therapy to the heart 12 using one or more of the electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66.


For example, therapy delivery module 84 may deliver pacing stimulus (e.g., pacing pulses) via ring electrodes 40, 44, 45, 46, 47, 48 coupled to leads 18, 20, 22 and/or helical tip electrodes 42, 50 of leads 18, 22. Further, for example, therapy delivery module 84 may deliver defibrillation shocks to heart 12 via at least two of electrodes 58, 62, 64, 66. In some examples, therapy delivery module 84 may be configured to deliver pacing, cardioversion, or defibrillation stimulation in the form of electrical pulses. In other examples, therapy delivery module 84 may be configured deliver one or more of these types of stimulation in the form of other signals, such as sine waves, square waves, and/or other substantially continuous time signals.


The IMD 16 may further include a switch module 85 and the control module 81 (e.g., the processor 80) may use the switch module 85 to select, e.g., via a data/address bus, which of the available electrodes are used to deliver therapy such as pacing pulses for pacing therapy, or which of the available electrodes are used for sensing. The switch module 85 may include a switch array, switch matrix, multiplexer, or any other type of switching device suitable to selectively couple the sensing module 86 and/or the therapy delivery module 84 to one or more selected electrodes. More specifically, the therapy delivery module 84 may include a plurality of pacing output circuits. Each pacing output circuit of the plurality of pacing output circuits may be selectively coupled, e.g., using the switch module 85, to one or more of the electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66 (e.g., a pair of electrodes for delivery of therapy to a bipolar or multipolar pacing vector). In other words, each electrode can be selectively coupled to one of the pacing output circuits of the therapy delivery module using the switching module 85.


The sensing module 86 is coupled (e.g., electrically coupled) to sensing apparatus, which may include, among additional sensing apparatus, the electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66 to monitor electrical activity of the heart 12, e.g., electrocardiogram (ECG)/electrogram (EGM) signals, etc. The ECG/EGM signals may be used to measure or monitor activation times (e.g., ventricular activations times, etc.), heart rate (HR), heart rate variability (HRV), heart rate turbulence (HRT), deceleration/acceleration capacity, deceleration sequence incidence, T-wave alternans (TWA), P-wave to P-wave intervals (also referred to as the P-P intervals or A-A intervals), R-wave to R-wave intervals (also referred to as the R-R intervals or V-V intervals), P-wave to QRS complex intervals (also referred to as the P-R intervals, A-V intervals, or P-Q intervals), QRS-complex morphology, ST segment (i.e., the segment that connects the QRS complex and the T-wave), T-wave changes, QT intervals, electrical vectors, etc.


The switch module 85 may also be used with the sensing module 86 to select which of the available electrodes are used, or enabled, to, e.g., sense electrical activity of the patient's heart (e.g., one or more electrical vectors of the patient's heart using any combination of the electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66). Likewise, the switch module 85 may also be used with the sensing module 86 to select which of the available electrodes are not to be used (e.g., disabled) to, e.g., sense electrical activity of the patient's heart (e.g., one or more electrical vectors of the patient's heart using any combination of the electrodes 40, 42, 44, 45, 46, 47, 48, 50, 58, 62, 64, 66), etc. In some examples, the control module 81 may select the electrodes that function as sensing electrodes via the switch module within the sensing module 86, e.g., by providing signals via a data/address bus.


In some examples, sensing module 86 includes a channel that includes an amplifier with a relatively wider pass band than the R-wave or P-wave amplifiers. Signals from the selected sensing electrodes may be provided to a multiplexer, and thereafter converted to multi-bit digital signals by an analog-to-digital converter for storage in memory 82, e.g., as an electrogram (EGM). In some examples, the storage of such EGMs in memory 82 may be under the control of a direct memory access circuit.


In some examples, the control module 81 may operate as an interrupt-driven device and may be responsive to interrupts from pacer timing and control module, where the interrupts may correspond to the occurrences of sensed P-waves and R-waves and the generation of cardiac pacing pulses. Any necessary mathematical calculations may be performed by the processor 80 and any updating of the values or intervals controlled by the pacer timing and control module may take place following such interrupts. A portion of memory 82 may be configured as a plurality of recirculating buffers, capable of holding one or more series of measured intervals, which may be analyzed by, e.g., the processor 80 in response to the occurrence of a pace or sense interrupt to determine whether the patient's heart 12 is presently exhibiting atrial or ventricular tachyarrhythmia.


The telemetry module 88 of the control module 81 may include any suitable hardware, firmware, software, or any combination thereof for communicating with another device, such as a programmer. For example, under the control of the processor 80, the telemetry module 88 may receive downlink telemetry from and send uplink telemetry to a programmer with the aid of an antenna, which may be internal and/or external. The processor 80 may provide the data to be uplinked to a programmer and the control signals for the telemetry circuit within the telemetry module 88, e.g., via an address/data bus. In some examples, the telemetry module 88 may provide received data to the processor 80 via a multiplexer.


The various components of the IMD 16 are further coupled to a power source 90, which may include a rechargeable or non-rechargeable battery. A non-rechargeable battery may be selected to last for several years, while a rechargeable battery may be inductively charged from an external device, e.g., on a daily or weekly basis.



FIG. 13B is another embodiment of a functional block diagram for IMD 16 that depicts bipolar RA lead 22, bipolar RV lead 18, and bipolar LV CS lead 20 without the LA CS pace/sense electrodes and coupled with an implantable pulse generator (IPG) circuit 31 having programmable modes and parameters of a biventricular DDD/R type known in the pacing art. In turn, the sensor signal processing circuit 91 indirectly couples to the timing circuit 43 and via data and control bus to microcomputer circuitry 33. The IPG circuit 31 is illustrated in a functional block diagram divided generally into a microcomputer circuit 33 and a pacing circuit 21. The pacing circuit 21 includes the digital controller/timer circuit 43, the output amplifiers circuit 51, the sense amplifiers circuit 55, the RF telemetry transceiver 41, the activity sensor circuit 35 as well as a number of other circuits and components described below.


Crystal oscillator circuit 89 provides the basic timing clock for the pacing circuit 21 while battery 29 provides power. Power-on-reset circuit 87 responds to initial connection of the circuit to the battery for defining an initial operating condition and similarly, resets the operative state of the device in response to detection of a low battery condition. Reference mode circuit 37 generates stable voltage reference and currents for the analog circuits within the pacing circuit 21. Analog-to-digital converter (ADC) and multiplexer circuit 39 digitize analog signals and voltage to provide, e.g., real time telemetry of cardiac signals from sense amplifiers 55 for uplink transmission via RF transmitter and receiver circuit 41. Voltage reference and bias circuit 37, ADC and multiplexer 39, power-on-reset circuit 87, and crystal oscillator circuit 89 may correspond to any of those used in illustrative implantable cardiac pacemakers.


If the IPG is programmed to a rate responsive mode, the signals output by one or more physiologic sensors are employed as a rate control parameter (RCP) to derive a physiologic escape interval. For example, the escape interval is adjusted proportionally to the patient's activity level developed in the patient activity sensor (PAS) circuit 35 in the depicted, illustrative IPG circuit 31. The patient activity sensor 27 is coupled to the IPG housing and may take the form of a piezoelectric crystal transducer. The output signal of the patient activity sensor 27 may be processed and used as an RCP. Sensor 27 generates electrical signals in response to sensed physical activity that are processed by activity circuit 35 and provided to digital controller/timer circuit 43. Activity circuit 35 and associated sensor 27 may correspond to the circuitry disclosed in U.S. Pat. No. 5,052,388 entitled “METHOD AND APPARATUS FOR IMPLEMENTING ACTIVITY SENSING IN A PULSE GENERATOR” and issued on Oct. 1, 1991 and U.S. Pat. No. 4,428,378 entitled “RATE ADAPTIVE PACER” and issued on Jan. 31, 1984, each of which is incorporated herein by reference in its entirety. Similarly, the illustrative systems, apparatus, and methods described herein may be practiced in conjunction with alternate types of sensors such as oxygenation sensors, pressure sensors, pH sensors, and respiration sensors, for use in providing rate responsive pacing capabilities. Alternately, QT time may be used as a rate indicating parameter, in which case no extra sensor is required. Similarly, the illustrative embodiments described herein may also be practiced in non-rate responsive pacemakers.


Data transmission to and from the external programmer is accomplished by way of the telemetry antenna 57 and an associated RF transceiver 41, which serves both to demodulate received downlink telemetry and to transmit uplink telemetry. Uplink telemetry capabilities may include the ability to transmit stored digital information, e.g., operating modes and parameters, EGM histograms, and other events, as well as real time EGMs of atrial and/or ventricular electrical activity and marker channel pulses indicating the occurrence of sensed and paced depolarizations in the atrium and ventricle.


Microcomputer 33 contains a microprocessor 80 and associated system clock and on-processor RAM and ROM chips 82A and 82B, respectively. In addition, microcomputer circuit 33 includes a separate RAM/ROM chip 82C to provide additional memory capacity. Microprocessor 80 normally operates in a reduced power consumption mode and is interrupt driven. Microprocessor 80 is awakened in response to defined interrupt events, which may include A-TRIG, RV-TRIG, LV-TRIG signals generated by timers in digital timer/controller circuit 43 and A-EVENT, RV-EVENT, and LV-EVENT signals generated by sense amplifiers circuit 55, among others. The specific values of the intervals and delays timed out by digital controller/timer circuit 43 are controlled by the microcomputer circuit 33 by way of data and control bus from programmed-in parameter values and operating modes. In addition, if programmed to operate as a rate responsive pacemaker, a timed interrupt, e.g., every cycle or every two seconds, may be provided in order to allow the microprocessor to analyze the activity sensor data and update the basic A-A, V-A, or V-V escape interval, as applicable. In addition, the microprocessor 80 may also serve to define variable, operative A-V delay intervals, V-V delay intervals, and the energy delivered to each ventricle and/or atrium.


In one embodiment, microprocessor 80 is a custom microprocessor adapted to fetch and execute instructions stored in RAM/ROM unit 82 in a conventional manner. It is contemplated, however, that other implementations may be suitable to practice the present disclosure. For example, an off-the-shelf, commercially available microprocessor or microcontroller, or custom application-specific, hardwired logic, or state-machine type circuit may perform the functions of microprocessor 80.


Digital controller/timer circuit 43 operates under the general control of the microcomputer 33 to control timing and other functions within the pacing circuit 21 and includes a set of timing and associated logic circuits of which certain ones pertinent to the present disclosure are depicted. The depicted timing circuits include URI/LRI timers 83A, V-V delay timer 83B, intrinsic interval timers 83C for timing elapsed V-EVENT to V-EVENT intervals or V-EVENT to A-EVENT intervals or the V-V conduction interval, escape interval timers 83D for timing A-A, V-A, and/or V-V pacing escape intervals, an A-V delay interval timer 83E for timing the A-LVp delay (or A-RVp delay) from a preceding A-EVENT or A-TRIG, a post-ventricular timer 83F for timing post-ventricular time periods, and a date/time clock 83G.


The A-V delay interval timer 83E is loaded with an appropriate delay interval for one ventricular chamber (e.g., either an A-RVp delay or an A-LVp) to time-out starting from a preceding A-PACE or A-EVENT. The interval timer 83E triggers pacing stimulus delivery and can be based on one or more prior cardiac cycles (or from a data set empirically derived for a given patient).


The post-event timer 83F times out the post-ventricular time period following an RV-EVENT or LV-EVENT or a RV-TRIG or LV-TRIG and post-atrial time periods following an A-EVENT or A-TRIG. The durations of the post-event time periods may also be selected as programmable parameters stored in the microcomputer 33. The post-ventricular time periods include the PVARP, a post-atrial ventricular blanking period (PAVBP), a ventricular blanking period (VBP), a post-ventricular atrial blanking period (PVARP) and a ventricular refractory period (VRP) although other periods can be suitably defined depending, at least in part, on the operative circuitry employed in the pacing engine. The post-atrial time periods include an atrial refractory period (ARP) during which an A-EVENT is ignored for the purpose of resetting any A-V delay, and an atrial blanking period (ABP) during which atrial sensing is disabled. It should be noted that the starting of the post-atrial time periods and the A-V delays can be commenced substantially simultaneously with the start or end of each A-EVENT or A-TRIG or, in the latter case, upon the end of the A-PACE which may follow the A-TRIG. Similarly, the starting of the post-ventricular time periods and the V-A escape interval can be commenced substantially simultaneously with the start or end of the V-EVENT or V-TRIG or, in the latter case, upon the end of the V-PACE which may follow the V-TRIG. The microprocessor 80 also optionally calculates A-V delays, V-V delays, post-ventricular time periods, and post-atrial time periods that vary with the sensor-based escape interval established in response to the RCP(s) and/or with the intrinsic atrial and/or ventricular rate.


The output amplifiers circuit 51 contains a RA pace pulse generator (and a LA pace pulse generator if LA pacing is provided), a RV pace pulse generator, a LV pace pulse generator, and/or any other pulse generator configured to provide atrial and ventricular pacing. In order to trigger generation of an RV-PACE or LV-PACE pulse, digital controller/timer circuit 43 generates the RV-TRIG signal at the time-out of the A-RVp delay (in the case of RV pre-excitation) or the LV-TRIG at the time-out of the A-LVp delay (in the case of LV pre-excitation) provided by A-V delay interval timer 83E (or the V-V delay timer 83B). Similarly, digital controller/timer circuit 43 generates an RA-TRIG signal that triggers output of an RA-PACE pulse (or an LA-TRIG signal that triggers output of an LA-PACE pulse, if provided) at the end of the V-A escape interval timed by escape interval timers 83D.


The output amplifiers circuit 51 includes switching circuits for coupling selected pace electrode pairs from among the lead conductors and the IND-CAN electrode 20 to the RA pace pulse generator (and LA pace pulse generator if provided), RV pace pulse generator and LV pace pulse generator. Pace/sense electrode pair selection and control circuit 53 selects lead conductors and associated pace electrode pairs to be coupled with the atrial and ventricular output amplifiers within output amplifiers circuit 51 for accomplishing RA, LA, RV and LV pacing.


The sense amplifiers circuit 55 contains sense amplifiers for atrial and ventricular pacing and sensing. High impedance P-wave and R-wave sense amplifiers may be used to amplify a voltage difference signal that is generated across the sense electrode pairs by the passage of cardiac depolarization wavefronts. The high impedance sense amplifiers use high gain to amplify the low amplitude signals and rely on pass band filters, time domain filtering and amplitude threshold comparison to discriminate a P-wave or R-wave from background electrical noise. Digital controller/timer circuit 43 controls sensitivity settings of the atrial and ventricular sense amplifiers 55.


The sense amplifiers may be uncoupled from the sense electrodes during the blanking periods before, during, and after delivery of a pace pulse to any of the pace electrodes of the pacing system to avoid saturation of the sense amplifiers. The sense amplifiers circuit 55 includes blanking circuits for uncoupling the selected pairs of the lead conductors and the IND-CAN electrode 20 from the inputs of the RA sense amplifier (and LA sense amplifier if provided), RV sense amplifier and LV sense amplifier during the ABP, PVABP and VBP. The sense amplifiers circuit 55 also includes switching circuits for coupling selected sense electrode lead conductors and the IND-CAN electrode 20 to the RA sense amplifier (and LA sense amplifier if provided), RV sense amplifier and LV sense amplifier. Again, sense electrode selection and control circuit 53 selects conductors and associated sense electrode pairs to be coupled with the atrial and ventricular sense amplifiers within the output amplifiers circuit 51 and sense amplifiers circuit 55 for accomplishing RA, LA, RV, and LV sensing along desired unipolar and bipolar sensing vectors.


Right atrial depolarizations or P-waves in the RA-SENSE signal that are sensed by the RA sense amplifier result in a RA-EVENT signal that is communicated to the digital controller/timer circuit 43. Similarly, left atrial depolarizations or P-waves in the LA-SENSE signal that are sensed by the LA sense amplifier, if provided, result in a LA-EVENT signal that is communicated to the digital controller/timer circuit 43. Ventricular depolarizations or R-waves in the RV-SENSE signal are sensed by a ventricular sense amplifier result in an RV-EVENT signal that is communicated to the digital controller/timer circuit 43. Similarly, ventricular depolarizations or R-waves in the LV-SENSE signal are sensed by a ventricular sense amplifier result in an LV-EVENT signal that is communicated to the digital controller/timer circuit 43. The RV-EVENT, LV-EVENT, and RA-EVENT, LA-SENSE signals may be refractory or non-refractory and can inadvertently be triggered by electrical noise signals or aberrantly conducted depolarization waves rather than true R-waves or P-waves.


The techniques described in this disclosure, including those attributed to the IMD 16, the computing apparatus 140, and/or various constituent components, may be implemented, at least in part, in hardware, software, firmware, or any combination thereof. For example, various aspects of the techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components, embodied in programmers, such as physician or patient programmers, stimulators, image processing devices, or other devices. The term “module,” “processor,” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry.


Such hardware, software, and/or firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules, or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components or integrated within common or separate hardware or software components.


When implemented in software, the functionality ascribed to the systems, devices and techniques described in this disclosure may be embodied as instructions on a computer-readable medium such as RAM, ROM, NVRAM, EEPROM, FLASH memory, magnetic data storage media, optical data storage media, or the like. The instructions may be executed by processing circuitry and/or one or more processors to support one or more aspects of the functionality described in this disclosure.


Illustrative Embodiments

Embodiment 1. A system for use in cardiac evaluation comprising:

    • an electrode apparatus comprising a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin;
    • a portable computing apparatus comprising processing circuitry, the computing apparatus operably coupled to the electrode apparatus and configured to be operably coupled to an implantable pacing device of the patient, the portable computing apparatus configured to:
    • monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time;
    • perform at least one of:
    • optimizing at least one pacing parameter of the implantable pacing device based on the plurality of electrical signals; and
    • determining cardiac synchrony based on the plurality of electrical signals.


Embodiment 2. The system of embodiment 1, wherein the at least one pacing parameter comprises one or more of pacing rate, atrial pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing timings, and pacing voltage.


Embodiment 3. The system as in any one of embodiments 1-2, wherein optimizing the at least one pacing parameter of the implantable device comprises:

    • scanning different values of the at least one pacing parameter; and
    • selecting at least one of the scanned values of the at least one pacing parameter that provides the highest electrical synchrony.


Embodiment 4. The system as in any one of embodiments 1-3, wherein determining cardiac synchrony comprises automatically determining one or more pacing device metrics.


Embodiment 5. The system of embodiment 4, wherein the pacing device metrics comprise one or more of pacing thresholds and lead impedances.


Embodiment 6. The system of embodiment 4, wherein the portable computing device is further configured to transmit the one or more pacing device metrics to a display device.


Embodiment 7. The system of embodiment 6, wherein the display device comprises one or more of a smart phone, a tablet, and a smart watch.


Embodiment 8. The system as in any one of embodiments 1-7, wherein the portable computing device comprises a portable smart amplifier.


Embodiment 9. The system as in any one of embodiments 1-8, wherein the portable computing apparatus is configured to perform the cardiac synchrony assessment automatically when predetermined conditions are met.


Embodiment 10. The system of embodiment 9, wherein the predefined conditions comprise one or more of a time, a time interval, and a heart rate of the patient.


Embodiment 11. A method for use in cardiac evaluation, comprising:

    • monitoring electrical activity from tissue of a patient using a plurality of external electrodes to generate a plurality of electrical signals over time; and
    • using a portable computing apparatus operably coupled to the plurality of electrodes, performing at least one of:
    • optimizing at least one pacing parameter of the implantable pacing device based on the plurality of electrical signals; and
    • determining cardiac synchrony based on the plurality of electrical signals.


Embodiment 12. The method of embodiment 11, wherein the at least one pacing parameter comprises one or more of pacing rate, atrial pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing timings, and pacing voltage.


Embodiment 13. The method as in any one of embodiments 11-12, wherein optimizing the at least one pacing parameter of the implantable device comprises:

    • scanning different values of the at least one pacing parameter; and
    • selecting at least one of the scanned values of the at least one pacing parameter that provides the highest electrical synchrony.


Embodiment 14. The method as in any one of embodiments 11-13, wherein the cardiac synchrony assessment comprises automatically determining one or more pacing device metrics.


Embodiment 15. A system for use in cardiac evaluation comprising:

    • an electrode apparatus comprising a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin;
    • a portable computing apparatus comprising processing circuitry, the computing apparatus operably coupled to the electrode apparatus and configured to be operably coupled to an implantable pacing device of the patient, the portable computing apparatus configured to:
      • monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time;
      • measure one or more parameters of the patient based on the plurality of electrical signals;
      • determine one or more metrics of the patient based on the one or more parameters; and
      • transmit the one or more metrics to a smart device.


Embodiment 16. The system of embodiment 15, wherein determining the one or more metrics of the patient based on the one or more parameters comprises determining whether the one or more parameters is greater than a predetermined threshold.


Embodiment 17. The system of embodiment 16, wherein the portable computing apparatus is configured to transmit an alert to the smart device based on a determination that the one or more parameters is greater than the predetermined threshold.


Embodiment 18. The system as in any one of embodiments 15-17 wherein the one or more metrics comprise one or more indicators of cardiac dyssynchrony.


Embodiment 19. The system as in any one of embodiments 15-18, wherein the one or more metrics comprise one or more indicators of a risk of arrhythmias.


Embodiment 20. The system as in any one of embodiments 15-19, wherein the one or more metrics comprise one or more of a standard deviation of activation times (SDAT) metric, an average of left ventricular activation times (LVAT) metric, a standard deviation of left ventricular activation times metric, a standard deviation of right ventricular activation times metric, a QT dispersion metric, an activation recovery interval metric, and a recovery time metric.


Embodiment 21. A method for use in cardiac evaluation, comprising:

    • monitoring electrical activity from tissue of a patient using a plurality of external electrodes to generate a plurality of electrical signals over time; and
    • using a portable computing apparatus operably coupled to the plurality of electrodes:
      • measuring one or more parameters of the patient based on the plurality of electrical signals;
      • determining one or more metrics of the patient based on the one or more parameters; and
      • transmitting the one or more metrics to a smart device.

Claims
  • 1. A system for use in cardiac evaluation comprising: an electrode apparatus comprising a portable amplifier and a plurality of external electrodes configured to be disposed proximate a patient's skin;a display device; anda portable computing apparatus comprising processing circuitry, the portable computing apparatus operably coupled to the electrode apparatus, the display device, and configured to be operably coupled to an implantable pacing device of the patient, the portable computing apparatus configured to: monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time;the portable computing apparatus further configured to: perform a plurality of cardiac synchrony assessments to detect progressively worsening dyssynchrony over time, each of the plurality of cardiac synchrony assessments comprising automatically determining cardiac synchrony based on the monitored electrical activity when at least one predetermined condition is met;determine whether progressively worsening dyssynchrony is detected based on the automatically determined cardiac synchrony from each of the plurality of cardiac synchrony assessments over time;issue an alert based on the determination that progressively worsening dyssynchrony is detected;transmit the issued alert to the display device, and display the alert using the display device; andoptimize at least one pacing parameter of the implantable pacing device based on the monitored electrical activity comprising: scanning different values of at least one pacing parameter of the implantable pacing device based on the monitored electrical activity;selecting at least one of the scanned values of the at least one pacing parameter that provides a highest cardiac synchrony,displaying the selected value using the display device, andtransmitting the selected value of the at least one pacing parameter to the implantable pacing device to configure the implantable pacing device to deliver cardiac therapy using the selected value of the at least one pacing parameter.
  • 2. The system of claim 1, wherein the at least one pacing parameter comprises one or more of pacing rate, atrial pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing timings, and pacing voltage.
  • 3. The system of claim 1, wherein the portable computing apparatus is further configured to automatically determine one or more pacing device metrics.
  • 4. The system of claim 3, wherein the pacing device metrics comprise one or more of pacing thresholds and lead impedances.
  • 5. The system of claim 3, wherein the portable computing apparatus is further configured to transmit the one or more pacing device metrics to the display device, and wherein the display device is configured to display the one or more device metrics.
  • 6. The system of claim 5, wherein the display device comprises one or more of a smart phone, a tablet, and a smart watch.
  • 7. The system of claim 1, wherein the portable computing apparatus comprises a portable amplifier.
  • 8. The system of claim 1, wherein the at least one predetermined condition comprises one or more of a time of day, a time interval, a heart rate, a breathing rate, a blood pressure, and a thoracic impedance.
  • 9. The system of claim 1, wherein the system further comprises a C-shaped belt, and wherein the plurality of external electrodes are disposed on the C-shaped belt, and wherein the C-shaped belt is configured to wrap around a left side of a torso from a sternum on a front side to a spine on a back side.
  • 10. A method for use in cardiac evaluation, comprising: monitoring electrical activity from tissue of a patient using a plurality of external electrodes to generate a plurality of electrical signals over time; andusing a portable computing apparatus operably coupled to the plurality of electrodes and configured to be operably coupled to an implantable pacing device to perform: a plurality of cardiac synchrony assessments to detect progressively worsening dyssynchrony over time, each of the plurality of cardiac synchrony assessments comprising automatically determining cardiac synchrony based on the monitored electrical activity when at least one precondition is met;determining whether progressively worsening dyssynchrony is detected based on the automatically determined cardiac synchrony from each of the plurality of cardiac synchrony assessments over time;issuing an alert based on the determination that progressively worsening dyssynchrony is detected;transmitting the issued alert to a display device;displaying the alert using the display device; and optimizing at least one pacing parameter of the implantable pacing device based on the monitored electrical activity comprising: scanning different values of the at least one pacing parameter,selecting at least one of the scanned values of the at least one pacing parameter that provides a highest cardiac synchrony,displaying the selected value using the display device, andtransmitting the selected value of the at least one pacing parameter to the implantable pacing device to configure the implantable pacing device to deliver cardiac therapy using the selected value of the at least one pacing parameter.
  • 11. The method of claim 10, wherein the at least one pacing parameter comprises one or more of pacing rate, atrial pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing timings, and pacing voltage.
  • 12. The method of claim 10, wherein the portable computing apparatus is further configured to automatically determine one or more pacing device metrics.
Parent Case Info

This application claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Application No. 63/058,943, filed Jul. 30, 2020, which is incorporated herein by reference in its entirety.

US Referenced Citations (455)
Number Name Date Kind
3672353 Crovella et al. Jun 1972 A
4233987 Feingold Nov 1980 A
4374382 Markowitz Feb 1983 A
4402323 White Sep 1983 A
4428378 Anderson et al. Jan 1984 A
4497326 Curry Feb 1985 A
4530204 Brooks Jul 1985 A
4566456 Koning et al. Jan 1986 A
4593702 Kepski Jun 1986 A
4674511 Cartmell Jun 1987 A
4763660 Kroll et al. Aug 1988 A
4777955 Brayten et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4979507 Heinz et al. Dec 1990 A
4979598 John Dec 1990 A
5052388 Sivula et al. Oct 1991 A
5054496 Wen et al. Oct 1991 A
5311873 Savard et al. May 1994 A
5331960 Lavine Jul 1994 A
5334220 Sholder Aug 1994 A
5443492 Stokes et al. Aug 1995 A
5485849 Panescu et al. Jan 1996 A
5514163 Markowitz et al. May 1996 A
5552645 Weng Sep 1996 A
5628778 Kruse et al. May 1997 A
5671752 Sinderby et al. Sep 1997 A
5683429 Mehra Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5687737 Branham et al. Nov 1997 A
5810740 Paisner Sep 1998 A
5876336 Swanson et al. Mar 1999 A
5891045 Albrecht et al. Apr 1999 A
5922014 Warman et al. Jul 1999 A
6055448 Anderson et al. Apr 2000 A
6115628 Stadler et al. Sep 2000 A
6128535 Maarse et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6187032 Ohyu et al. Feb 2001 B1
6205357 Ideker et al. Mar 2001 B1
6226542 Reisfeld May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6243603 Ideker et al. Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6301496 Reisfeld Oct 2001 B1
6311089 Mann et al. Oct 2001 B1
6330476 Ben-Haim et al. Dec 2001 B1
6358214 Tereschouk Mar 2002 B1
6377856 Carson Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6418346 Nelson et al. Jul 2002 B1
6442433 Linberg Aug 2002 B1
6456867 Reisfeld Sep 2002 B2
6473638 Ferek-Petric Oct 2002 B2
6480745 Nelson et al. Nov 2002 B2
6484118 Govari Nov 2002 B1
6507756 Heynen et al. Jan 2003 B1
6512949 Combs Jan 2003 B1
6532379 Stratbucker Mar 2003 B2
6584343 Ransbury et al. Jun 2003 B1
6599250 Webb et al. Jul 2003 B2
6625482 Panescu et al. Sep 2003 B1
6640136 Helland et al. Oct 2003 B1
6650927 Keidar Nov 2003 B1
6752765 Jensen Jun 2004 B1
6766189 Yu et al. Jul 2004 B2
6772004 Rudy Aug 2004 B2
6804555 Warkentin Oct 2004 B2
6847836 Sujdak Jan 2005 B1
6856830 He Feb 2005 B2
6882882 Struble et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6915149 Ben-Haim Jul 2005 B2
6968237 Doan et al. Nov 2005 B2
6975900 Rudy et al. Dec 2005 B2
6978184 Marcus et al. Dec 2005 B1
6980675 Evron et al. Dec 2005 B2
7016719 Rudy et al. Mar 2006 B2
7031777 Hine et al. Apr 2006 B2
7033350 Bahk et al. Apr 2006 B2
7058443 Struble Jun 2006 B2
7062315 Kovrakh et al. Jun 2006 B2
7092759 Nehls et al. Aug 2006 B2
7142922 Spinelli et al. Nov 2006 B2
7184835 Kramer et al. Feb 2007 B2
7215998 Wesselink et al. May 2007 B2
7228174 Burnes Jun 2007 B2
7238158 Abend Jul 2007 B2
7286866 Okerlund et al. Oct 2007 B2
7308297 Reddy et al. Dec 2007 B2
7308299 Burrell et al. Dec 2007 B2
7313444 Pianca et al. Dec 2007 B2
7321677 Evron et al. Jan 2008 B2
7346381 Okerlund et al. Mar 2008 B2
7398116 Edwards Jul 2008 B2
7426412 Schecter Sep 2008 B1
7454248 Burrell et al. Nov 2008 B2
7499743 Vass et al. Mar 2009 B2
7509170 Zhang et al. Mar 2009 B2
7565190 Okerlund et al. Jul 2009 B2
7587074 Zarkh et al. Sep 2009 B2
7599730 Hunter et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7613500 Vass et al. Nov 2009 B2
7616993 Müssig et al. Nov 2009 B2
7664550 Eick et al. Feb 2010 B2
7684863 Parikh et al. Mar 2010 B2
7702390 Min Apr 2010 B1
7742629 Zarkh et al. Jun 2010 B2
7747047 Okerlund et al. Jun 2010 B2
7751882 Helland et al. Jul 2010 B1
7769451 Yang et al. Aug 2010 B2
7778685 Evron et al. Aug 2010 B2
7778686 Vass et al. Aug 2010 B2
7787951 Min Aug 2010 B1
7813785 Okerlund et al. Oct 2010 B2
7818040 Spear et al. Oct 2010 B2
7848807 Wang Dec 2010 B2
7860580 Falk et al. Dec 2010 B2
7894889 Zhang Feb 2011 B2
7912544 Min et al. Mar 2011 B1
7917214 Gill et al. Mar 2011 B1
7941205 Jung et al. May 2011 B2
7941213 Markowitz et al. May 2011 B2
7953475 Harlev et al. May 2011 B2
7953482 Hess May 2011 B2
7983743 Rudy et al. Jul 2011 B2
7996063 Vass et al. Aug 2011 B2
7996070 van Dam et al. Aug 2011 B2
8010191 Zhu et al. Aug 2011 B2
8010194 Muller Aug 2011 B2
8019402 Kryzpow et al. Sep 2011 B1
8019409 Rosenberg et al. Sep 2011 B2
8032229 Gerber et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8060185 Hunter et al. Nov 2011 B2
8075486 Tal Dec 2011 B2
8150513 Chinchoy Apr 2012 B2
8160700 Ryu et al. Apr 2012 B1
8175703 Dong et al. May 2012 B2
8180428 Kaiser et al. May 2012 B2
8195292 Rosenberg et al. Jun 2012 B2
8213693 Li Jul 2012 B1
8214041 Van Gelder et al. Jul 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8265738 Min et al. Sep 2012 B1
8285377 Rosenberg et al. Oct 2012 B2
8295943 Eggen et al. Oct 2012 B2
8326419 Rosenberg et al. Dec 2012 B2
8332030 Hess et al. Dec 2012 B2
8380308 Rosenberg et al. Feb 2013 B2
8401616 Verard et al. Mar 2013 B2
8478388 Nguyen et al. Jul 2013 B2
8509896 Doerr et al. Aug 2013 B2
8527051 Hedberg et al. Sep 2013 B1
8583230 Ryu et al. Nov 2013 B2
8615298 Ghosh et al. Dec 2013 B2
8617082 Zhang et al. Dec 2013 B2
8620433 Ghosh et al. Dec 2013 B2
8639333 Stadler et al. Jan 2014 B2
8694099 Ghosh et al. Apr 2014 B2
8731632 Zarkh et al. May 2014 B1
8738132 Ghosh et al. May 2014 B1
8744576 Munsterman et al. Jun 2014 B2
8750998 Ghosh et al. Jun 2014 B1
8768465 Ghosh et al. Jul 2014 B2
8805504 Sweeney Aug 2014 B2
8861830 Brada et al. Oct 2014 B2
8929984 Ghosh et al. Jan 2015 B2
8948869 Ghosh et al. Feb 2015 B2
8965489 Ghosh Feb 2015 B2
8972228 Ghosh et al. Mar 2015 B2
9002454 Ghosh et al. Apr 2015 B2
9031642 Ghosh May 2015 B2
9037238 Stadler et al. May 2015 B2
9060699 Nearing et al. Jun 2015 B2
9119959 Rys et al. Sep 2015 B2
9155897 Ghosh et al. Oct 2015 B2
9199087 Stadler et al. Dec 2015 B2
9215987 Trayanova et al. Dec 2015 B2
9265951 Sweeney Feb 2016 B2
9265954 Ghosh Feb 2016 B2
9265955 Ghosh Feb 2016 B2
9272148 Ghosh Mar 2016 B2
9278219 Ghosh Mar 2016 B2
9278220 Ghosh Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9282907 Ghosh Mar 2016 B2
9320446 Gillberg Apr 2016 B2
9381362 Ghosh et al. Jul 2016 B2
9474457 Ghosh et al. Oct 2016 B2
9486151 Ghosh et al. Nov 2016 B2
9510763 Gosh et al. Dec 2016 B2
9526435 Ghosh Dec 2016 B2
9586050 Ghosh Mar 2017 B2
9586052 Gillberg et al. Mar 2017 B2
9591982 Ghosh et al. Mar 2017 B2
9603651 Ghosh Mar 2017 B2
9610045 Du et al. Apr 2017 B2
9675579 Grubac et al. Jun 2017 B2
9700728 Ghosh Jul 2017 B2
9737223 Du et al. Aug 2017 B2
9750941 Ghosh Sep 2017 B2
9757567 Ghosh et al. Sep 2017 B2
9764143 Ghosh et al. Sep 2017 B2
9776009 Ghosh et al. Oct 2017 B2
9782094 Du et al. Oct 2017 B2
9962097 Ghosh et al. May 2018 B2
9974457 Ghosh et al. May 2018 B2
10022060 Nearing et al. Jul 2018 B2
10064567 Ghosh Sep 2018 B2
10123745 Katra et al. Nov 2018 B1
10154794 Stadler et al. Dec 2018 B2
10206601 Gillberg et al. Feb 2019 B2
10251555 Ghosh et al. Apr 2019 B2
10780279 Ghosh Sep 2020 B2
10850107 Li et al. Dec 2020 B2
10850108 Li et al. Dec 2020 B2
20020072682 Hopman et al. Jun 2002 A1
20020087089 Ben-Haim Jul 2002 A1
20020143264 Ding et al. Oct 2002 A1
20020161307 Yu et al. Oct 2002 A1
20020169484 Mathis et al. Nov 2002 A1
20030018277 He Jan 2003 A1
20030050670 Spinelli et al. Mar 2003 A1
20030105495 Yu et al. Jun 2003 A1
20030236466 Tarjan et al. Dec 2003 A1
20040010201 Korzinov et al. Jan 2004 A1
20040015081 Kramer et al. Jan 2004 A1
20040059237 Narayan et al. Mar 2004 A1
20040097806 Hunter et al. May 2004 A1
20040102812 Yonce et al. May 2004 A1
20040122479 Spinelli et al. Jun 2004 A1
20040162496 Yu et al. Aug 2004 A1
20040172078 Chinchoy Sep 2004 A1
20040172079 Chinchoy Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040215245 Stahmann et al. Oct 2004 A1
20040215252 Verbeek et al. Oct 2004 A1
20040220635 Burnes Nov 2004 A1
20040267321 Boileau et al. Dec 2004 A1
20050008210 Evron et al. Jan 2005 A1
20050027320 Nehls et al. Feb 2005 A1
20050090870 Hine et al. Apr 2005 A1
20050096522 Reddy et al. May 2005 A1
20050107839 Sanders May 2005 A1
20050109339 Stahmann et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050197674 McCabe et al. Sep 2005 A1
20050216068 Lee et al. Sep 2005 A1
20060074285 Zarkh et al. Apr 2006 A1
20060224198 Dong et al. Oct 2006 A1
20060235478 Van Gelder et al. Oct 2006 A1
20060253162 Zhang et al. Nov 2006 A1
20070142871 Libbus et al. Jun 2007 A1
20070167809 Dala-Krishna Jul 2007 A1
20070232943 Harel et al. Oct 2007 A1
20070250129 Van Oort Oct 2007 A1
20070265508 Sheikhzadeh-Nadjar et al. Nov 2007 A1
20080021336 Dobak et al. Jan 2008 A1
20080058656 Costello et al. Mar 2008 A1
20080119903 Arcot-Krishnamurthy et al. May 2008 A1
20080140143 Ettori et al. Jun 2008 A1
20080146954 Bojovic et al. Jun 2008 A1
20080242976 Robertson et al. Oct 2008 A1
20080249585 Lippert et al. Oct 2008 A1
20080269818 Sullivan et al. Oct 2008 A1
20080269823 Burnes et al. Oct 2008 A1
20080281195 Heimdal Nov 2008 A1
20080306567 Park et al. Dec 2008 A1
20080306568 Ding et al. Dec 2008 A1
20090005832 Zhu et al. Jan 2009 A1
20090036947 Westlund et al. Feb 2009 A1
20090043352 Brooke et al. Feb 2009 A1
20090048528 Hopenfeld et al. Feb 2009 A1
20090053102 Rudy et al. Feb 2009 A2
20090054941 Eggen et al. Feb 2009 A1
20090054946 Sommer et al. Feb 2009 A1
20090084382 Jalde et al. Apr 2009 A1
20090093857 Markowitz et al. Apr 2009 A1
20090099468 Thiagalingam et al. Apr 2009 A1
20090099469 Flores Apr 2009 A1
20090099619 Lessmeier et al. Apr 2009 A1
20090112109 Kuklik et al. Apr 2009 A1
20090143838 Libbus et al. Jun 2009 A1
20090157134 Ziglio et al. Jun 2009 A1
20090157136 Yang et al. Jun 2009 A1
20090198298 Kaiser et al. Aug 2009 A1
20090216112 Assis et al. Aug 2009 A1
20090232448 Barmash et al. Sep 2009 A1
20090234414 Sambelashvili et al. Sep 2009 A1
20090254140 Rosenberg et al. Oct 2009 A1
20090270729 Corbucci et al. Oct 2009 A1
20090270937 Yonce et al. Oct 2009 A1
20090299201 Gunderson Dec 2009 A1
20090299423 Min Dec 2009 A1
20090306732 Rosenberg et al. Dec 2009 A1
20090318995 Keel et al. Dec 2009 A1
20100016917 Efimov et al. Jan 2010 A1
20100022873 Hunter et al. Jan 2010 A1
20100049063 Dobak, III Feb 2010 A1
20100069987 Min et al. Mar 2010 A1
20100087888 Maskara Apr 2010 A1
20100094149 Kohut et al. Apr 2010 A1
20100113954 Zhou May 2010 A1
20100114229 Chinchoy May 2010 A1
20100121403 Schecter et al. May 2010 A1
20100145405 Min et al. Jun 2010 A1
20100174137 Shim Jul 2010 A1
20100191131 Revishvili et al. Jul 2010 A1
20100198292 Honeck et al. Aug 2010 A1
20100228138 Chen Sep 2010 A1
20100234916 Turcott et al. Sep 2010 A1
20100249622 Olson Sep 2010 A1
20100254583 Chan et al. Oct 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20110004111 Gill et al. Jan 2011 A1
20110004264 Siejko et al. Jan 2011 A1
20110009918 Bornzin Jan 2011 A1
20110014510 Miyashisa et al. Jan 2011 A1
20110022112 Min Jan 2011 A1
20110054286 Crosby Mar 2011 A1
20110054559 Rosenberg et al. Mar 2011 A1
20110054560 Rosenberg et al. Mar 2011 A1
20110075896 Matsumoto Mar 2011 A1
20110092809 Nguyen et al. Apr 2011 A1
20110112398 Zarkh et al. May 2011 A1
20110118803 Hou et al. May 2011 A1
20110137369 Ryu et al. Jun 2011 A1
20110144510 Ryu et al. Jun 2011 A1
20110172728 Wang Jul 2011 A1
20110184297 Vitali et al. Jul 2011 A1
20110190615 Phillips et al. Aug 2011 A1
20110201915 Gogin et al. Aug 2011 A1
20110213260 Keel et al. Sep 2011 A1
20110264158 Dong et al. Oct 2011 A1
20110319954 Niazi et al. Dec 2011 A1
20120004567 Eberle et al. Jan 2012 A1
20120101543 Demmer et al. Apr 2012 A1
20120101546 Stadler et al. Apr 2012 A1
20120109244 Anderson et al. May 2012 A1
20120158089 Bocek et al. Jun 2012 A1
20120179056 Moulder et al. Jul 2012 A1
20120203090 Min Aug 2012 A1
20120253419 Rosenberg et al. Oct 2012 A1
20120283587 Ghosh et al. Nov 2012 A1
20120284003 Ghosh et al. Nov 2012 A1
20120296387 Zhang et al. Nov 2012 A1
20120296388 Zhang et al. Nov 2012 A1
20120302904 Lian et al. Nov 2012 A1
20120303084 Kleckner et al. Nov 2012 A1
20120310297 Sweeney Dec 2012 A1
20120330179 Yuk et al. Dec 2012 A1
20130006332 Sommer et al. Jan 2013 A1
20130018250 Caprio et al. Jan 2013 A1
20130018251 Caprio et al. Jan 2013 A1
20130030491 Stadler et al. Jan 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130072790 Ludwig et al. Mar 2013 A1
20130096446 Michael et al. Apr 2013 A1
20130116739 Brada et al. May 2013 A1
20130131529 Jia et al. May 2013 A1
20130131749 Sheldon et al. May 2013 A1
20130131751 Stadler et al. May 2013 A1
20130136035 Bange et al. May 2013 A1
20130150913 Bornzin et al. Jun 2013 A1
20130165983 Ghosh et al. Jun 2013 A1
20130165988 Ghosh Jun 2013 A1
20130184697 Han et al. Jul 2013 A1
20130261471 Saha et al. Oct 2013 A1
20130261688 Dong et al. Oct 2013 A1
20130289640 Zhang et al. Oct 2013 A1
20130296726 Niebauer et al. Nov 2013 A1
20130304407 George et al. Nov 2013 A1
20130324828 Nishiwaki et al. Dec 2013 A1
20130325078 Whiting et al. Dec 2013 A1
20140005563 Ramanathan et al. Jan 2014 A1
20140018872 Siejko et al. Jan 2014 A1
20140107507 Ghosh et al. Apr 2014 A1
20140107724 Shuros et al. Apr 2014 A1
20140135866 Ramanathan et al. May 2014 A1
20140135867 Demmer et al. May 2014 A1
20140163633 Ghosh et al. Jun 2014 A1
20140222099 Sweeney Aug 2014 A1
20140236252 Ghosh et al. Aug 2014 A1
20140276125 Hou et al. Sep 2014 A1
20140277233 Ghosh Sep 2014 A1
20140323882 Ghosh et al. Oct 2014 A1
20140323892 Ghosh et al. Oct 2014 A1
20140323893 Ghosh et al. Oct 2014 A1
20140371807 Ghosh et al. Dec 2014 A1
20140371808 Ghosh et al. Dec 2014 A1
20140371832 Ghosh et al. Dec 2014 A1
20140371833 Ghosh et al. Dec 2014 A1
20150032016 Ghosh Jan 2015 A1
20150032171 Ghosh Jan 2015 A1
20150032172 Ghosh Jan 2015 A1
20150032173 Ghosh Jan 2015 A1
20150045849 Ghosh et al. Feb 2015 A1
20150142069 Sambelashvili May 2015 A1
20150157225 Gillberg et al. Jun 2015 A1
20150157231 Gillberg et al. Jun 2015 A1
20150157232 Gillberg et al. Jun 2015 A1
20150157865 Gillberg et al. Jun 2015 A1
20150216434 Ghosh et al. Aug 2015 A1
20150265840 Ghosh et al. Sep 2015 A1
20160022164 Brockway et al. Jan 2016 A1
20160030747 Thakur et al. Feb 2016 A1
20160030751 Ghosh et al. Feb 2016 A1
20160045737 Ghosh et al. Feb 2016 A1
20160045738 Ghosh et al. Feb 2016 A1
20160045744 Gillberg et al. Feb 2016 A1
20160059002 Grubac et al. Mar 2016 A1
20160184590 Ghosh Jun 2016 A1
20160213928 Ghosh Jul 2016 A1
20160220142 Gillberg et al. Aug 2016 A1
20160271393 Yu et al. Sep 2016 A1
20160317840 Stadler et al. Nov 2016 A1
20160339248 Schrock et al. Nov 2016 A1
20170001011 An et al. Jan 2017 A1
20170028205 Ghosh Feb 2017 A1
20170049347 Ghosh et al. Feb 2017 A1
20170071675 Dawoud et al. Mar 2017 A1
20170246460 Ghosh Aug 2017 A1
20170246461 Ghosh Aug 2017 A1
20170273574 Wu et al. Sep 2017 A1
20170303840 Steckler et al. Oct 2017 A1
20180020938 Du et al. Jan 2018 A1
20180140847 Taff et al. May 2018 A1
20180199843 Ghosh et al. Jul 2018 A1
20180250514 Ghosh Sep 2018 A1
20180263522 Ghosh et al. Sep 2018 A1
20180264258 Cheng et al. Sep 2018 A1
20180326215 Ghosh Nov 2018 A1
20190030331 Ghosh et al. Jan 2019 A1
20190111270 Zhou Apr 2019 A1
20190143117 Ghosh May 2019 A1
20190160288 Stegemann et al. May 2019 A1
20190183370 Gillberg et al. Jun 2019 A1
20190192023 Ghosh Jun 2019 A1
20190192860 Ghosh Jun 2019 A1
20190261876 Ghosh et al. Aug 2019 A1
20190269926 Ghosh Sep 2019 A1
20190290905 Yang et al. Sep 2019 A1
20190290909 Ghosh et al. Sep 2019 A1
20190298903 Gillberg et al. Oct 2019 A1
20190366106 Ghosh et al. Dec 2019 A1
20200069949 Ghosh Mar 2020 A1
20200352470 Ghosh Nov 2020 A1
20210085986 Li et al. Mar 2021 A1
20210106245 Ghosh Apr 2021 A1
20210106337 Ghosh Apr 2021 A1
20210106832 Ghosh Apr 2021 A1
20210128925 Ghosh May 2021 A1
20210236038 Hoglund et al. Aug 2021 A1
Foreign Referenced Citations (58)
Number Date Country
1253761 May 2000 CN
1878595 Dec 2006 CN
101073502 Nov 2007 CN
1 072 284 Jan 2001 EP
1 504 713 Feb 2005 EP
2 016 976 Jan 2009 EP
1 925 337 Mar 2012 EP
2 436 309 Apr 2012 EP
2 435 132 Aug 2013 EP
WO 1998026712 Jun 1998 WO
WO 1999006112 Jun 1998 WO
WO 2000045700 Aug 2000 WO
WO 2001067950 Sep 2001 WO
WO 2003005900 Jan 2003 WO
WO 2003070323 Aug 2003 WO
WO 2005056108 Jun 2005 WO
WO 2006069215 Jun 2006 WO
WO 2006105474 Oct 2006 WO
WO 2006115777 Nov 2006 WO
WO 2006117773 Nov 2006 WO
WO 2007013994 Feb 2007 WO
WO 2007027940 Mar 2007 WO
WO 2007013994 Apr 2007 WO
WO 2007027940 Jun 2007 WO
WO 2007139456 Dec 2007 WO
WO 2008151077 Dec 2008 WO
WO 2006069215 Jun 2009 WO
WO 2009079344 Jun 2009 WO
WO 2009139911 Nov 2009 WO
WO 2009148429 Dec 2009 WO
WO 2010019494 Feb 2010 WO
WO 2010071520 Jun 2010 WO
WO 2010088040 Aug 2010 WO
WO 2010088485 Aug 2010 WO
WO 2011070166 Jun 2011 WO
WO 2011090622 Jul 2011 WO
WO 2011099992 Aug 2011 WO
WO 2012037471 Mar 2012 WO
WO 2012037471 Jun 2012 WO
WO 2012106297 Aug 2012 WO
WO 2012109618 Aug 2012 WO
WO 2012110940 Aug 2012 WO
WO 2012109618 Nov 2012 WO
WO 2012151364 Nov 2012 WO
WO 2012151389 Nov 2012 WO
WO 2013006724 Jan 2013 WO
WO 2013010165 Jan 2013 WO
WO 2013010184 Jan 2013 WO
WO 2013006724 Apr 2013 WO
WO 2014179454 Nov 2014 WO
WO 2014179459 Nov 2014 WO
WO 2014179459 Jan 2015 WO
WO 2015013271 Jan 2015 WO
WO 2015013493 Jan 2015 WO
WO 2015013574 Jan 2015 WO
WO 2019173599 Sep 2019 WO
WO 2020058314 Mar 2020 WO
WO 2021123271 Jun 2021 WO
Non-Patent Literature Citations (86)
Entry
U.S. Appl. No. 17/360,643, filed Jun. 28, 2021.
U.S. Appl. No. 17/361,721, filed Jun. 29, 2021.
U.S. Appl. No. 17/363,318, filed Jun. 30, 2021.
U.S. Appl. No. 17/368,260, filed Jul. 6, 2021.
International Search Report and Written Opinion dated May 3, 2012 for International Application No. PCT/US2012/036262; 9 pages.
International Search Report and Written Opinion dated May 3, 2012 for International Application No. PCT/US2012/036302; 9 pages.
International Search Report and Written Opinion dated Sep. 3, 2012 for International Application No. PCT/US2012/036262 9 pages.
International Search Report and Written Opinion dated Aug. 6, 2014 for International Application No. PCT/US2014/036153; 14 pages.
International Search Report and Written Opinion dated Nov. 7, 2014 for International Application No. PCT/US2014/036163; 12 pages.
International Search Report and Written Opinion dated Oct. 24, 2014 for International Application No. PCT/US2014/041929; 14 pages.
International Search Report and Written Opinion dated Oct. 28, 2014 for International Application No. PCT/US2014/041928; 15 pages.
International Search Report and Written Opinion dated Nov. 4, 2014 for International Application No. PCT/US2014/0247583; 7 pages.
International Search Report and Written Opinion dated Nov. 12, 2014 for International Application No. PCT/US2014/047971; 7 pages.
International Search Report and Written Opinion dated Nov. 12, 2014 for International Application No. PCT/US2014/048120; 7 pages.
International Search Report and Written Opinion dated Mar. 9, 2015 for International Application No. PCT/US2014/069214; 11 pages.
International Search Report and Written Opinion dated Mar. 16, 2015 for International Application No. PCT/US2014/069182; 11 pages.
International Search Report and Written Opinion dated Mar. 17, 2015, for International Application No. PCT/US2014/069192; 11 pages.
International Search Report and Written Opinion dated Apr. 8, 2015 for International Application No. PCT/US2014/069070; 11 pages.
International Search Report and Written Opinion dated Jun. 11, 2015 for International Application No. PCT/US2015/021442; 13 pages.
International Search Report and Written Opinion dated May 27, 2019 for International Application No. PCT/US2019/023549; 15 pages.
International Search Report and Written Opinion dated Jun. 4, 2020 for International Application No. PCT/US2020/019589; 11 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053474 dated Jan. 13, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053472 dated Jan. 12, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/058627 dated Jan. 28, 2021, 9 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053794 dated Feb. 15, 2021, 11 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/033046 dated Aug. 9, 2021, 16 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/040992 dated Oct. 15, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/041208 dated Oct. 8, 2021, 11 pages.
Aquilina, “A Brief History of Cardiac Pacing”, Images Paediatr Cardiol. 8 (2), Apr.-Jun. 2006, 117 pages.
Biffi et al., “Occurrence of Phrenic Nerve Stimulation in Cardiac Resynchronization Therapy Patients: the Role of Left Ventricular Lead Type and Placement Site,” Europace, 2013; 15:77-82.
Bortolotto et al., “Pre-implantation interlead EKG heterogeneity is superior to QRS complex duration in predicting mechanical super-response and survival in patients receiving cardiac resynchronization therapy”, Heart Rhythm, Mar. 10, 2020, 35 pages.
Botker MD, PhD., et al., “Electromechanical Mapping for Detection of Myocardial Viability in Patients with ischemia Cardiomyopathy,” Circulation, Mar. 2001; vol. 103, No. 12, pp.
“CardioGuide System Enables Real-Time Navigation of Left Ventricular Leads During Medtronic CRT Implants,” Press Release, Apr. 9, 2013, Medtronic, Inc., 2 pgs.
Cuculich, P.S., et al., “The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infection” J. Am. Coll. Cardiol. 2011; 58:1893-1902.
Czerwinska et al., “Method of Segmentation of Thorax Organs Images Applied to Modeling the Cardiac Electrical Field,” Engineering in Medicine and Biology Society, Proceedings of the 22nd Annual International Conference of the IEEE, vol. 1, 23, Jul. 23, 2000.; pp. 402-405.
Dawoud, F. et al., “Inverse Electrocardiographic Imaging to Assess Electrical Dyssynchrony in Cardiac Resynchronization Therapy Patients,” Computing in Cardiology, 2012; 39:993-996.
Freund et al., “A Decision-Theoretic Generalization of Online Learning and an Application to Boosting,” Journal of Computer and System Sciences, 1997; 55(1):119-139.
Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, 2001; 29(5):1189-1232.
Friedman, “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis, 2002; 38(4):367-378.
Friedman et al., “Additive Logistic Regression: a Statistical View of Boosting,” Annals of Statistics, 2000; 28(2):337-374.
Fung et al., Chapter 20, Optimization of Cardiac Resynchronization Therapy, Cardiac Resynchronization Therapy, Second Edition, Copyright 2008, Blackwell Publishing Ltd., pp. 356-373.
Ghosh et al. “Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiogramaging (ECGI),” Annuals of Biomedical Engineering, vol. 33, No. 9. Sep. 2005; pp. 1187-1201.
Ghosh et al., “Cardiac Memory in Patents with Wolff-Parkinson-White Syndrome: Noninvasive Imaging of Activation and Repolarization Before and After Catheter Ablation” Circulation, 2008; 118:907-915. Published online Aug. 12, 2008.
Ghosh et al. “Application of L1-Norm Regularization to Epicardial Potential Solution of the Inverse Electrocardiogram,” Annuals of Biomedical Engineering, vol. 37, No. 5, May 2009; pp. 902-912.
Ghosh et al., “Electrophysiological Substrate and Intraventricular LV Dyssynchrony in Non-ischemic Heart Failure Patients Undergoing Cardiac Resynchronization Therapy,” Heart rhythm : the official journal of the Heart Rhythm Society, 2011; 8(5):692-699.
Gold et al., “Comparison of Stimulation Sites within Left Ventricular Veins on the Acute Hemodynamic Effects of Cardiac Resynchronization Therapy” Heart Rhythm, Apr. 2005; 2(4):376-381.
Gulrajani, “The Forward and Inverse Problems of Electrocardiography,” IEEE Engineering in Medicine and Biology, IEEE Service Center, vol. 17, No. 5, Sep. 1, 1988; pp. 84-101, 122.
Hansen, “Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems,” Version 4.1 for Matlab 7.3; Mar. 2008; 128 pages. Retrieved from the Internet: Jun. 19, 2014 http://www.mathworks.com/matlabcentral/fileexchange/52-regtools.
Hayes et al., “Cardiac Resynchronization Therapy and the Relationship of Percent Biventricular Pacing to Symptoms and Survival,” Heart Rhythm, Sep. 2011; 8(9):1469-1475.
“Heart Failure Management” datasheet [online]. Medtronic, Minneapolis, Minnesota, [Last updated on Jun. 3, 2013].Retrieved from the Internet: www.medtronic.com; 9 pages.
Hopenfeld et al., “The Effect of Conductivity on ST-Segment Epicardial Potentials Arising from Subendocardial Ischemia,” Annals of Biomedical Eng., Jun. 2005; vol. 33, No. 6, pp. 751-763.
Hurtado, “Electrical and Anatomical Modeling of the Specialized Cardiac Conduction System, A Simulation Study”, Universitat Politecnica de Valenica, March 211, 96 pp.
Jia et al., “Electrocardiographic of Cardiac Resynchronization Therapy in Heart Failure: Observation of Variable Electrophysiologic Responses,” Heart Rhythm, vol. 3, No. 3; Mar. 1, 2006, pp. 296-310.
Kentta et al., “Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms”, Heart Rhythm Societ, 2016, 8 pages.
Kornreich, “Body Surface Potential Mapping of ST Segment Changes in Acute Myocardial Infarction,” Circulation, 1993; 87: 773-782.
Liu et al., “Three-Dimensional Imaging of Ventricular Activation and Electrograms from Intercavitary Recordings”, IEEE 2011, vol. 58, No. Apr. 2011, pp. 868-875.
Medtronic Vitatron Carelink Encore® Programmer Model 29901 Reference Manual, 2013, Medtronic, Inc., Minneapolis, MN.
Miri et al., “Applicability of body surface potential map in computerized optimization of biventricular pacing,” Annals of Biomedical Engineering, vol. 38, No. 3, Mar. 2010, pp. 865-875.
Miri et al., “Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment,” 30th Annual International IEEE EMBS Conference, Aug. 2008, pp. 1741-1744.
Miri et al., “Computerized Optimization of Biventricular Pacing Using Body Surface Potential Map,” 31st Annual International Conference of the IEEE EMBS, Sep. 2009, pp. 2815-2818.
Miri et al., “Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study,” IEEE Transactions on Biomedical Engineering, Nov. 2009, pp. 2573-2582.
Modre et al., “Noninvasive Myocardial Activation Time Imaging: A Novel Inverse Algorithm Applied to Clinical ECG Mapping Data” IEEE Transactions on Biomedical Engineering, vol. 49; No. 10, Oct. 2002; pp. 1153-1161.
Nash et al., “An Experimental-Computational Framework for Validating in-vivo ECG Inverse Algorithms,” International Journal of Bioelectromagnetism, vol. 2, No. 2, Dec. 31, 2000, 9 pp.
Potse et al., “Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy,” J. of Cardiovasc. Trans. Res., 2012; 5:146-158.
Prinzen et al., “Cardiac Resynchronization Therapy State-of-the-Art of Current Applications, Guidelines, Ongoing Trials, and Areas of Controversy” Circulation, 2013; 128: 2407-2418.
Rickard et al., “The ECG Belt for CRT response trial: Design and clinical protocol”, PACE, vol. 43, No. 10, Jun. 14, 2020, pp. 1063-1071.
Ridgeway, “The State of Boosting,” Computing Science and Statistics, 1999; 31:172-181.
Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010; 21(2):219-22.
Silva et al., “Cardiac Resynchronization Therapy in Pediatric Congenital Heart Disease: Insights from Noninvasive Electrocardiographic Imaging” Heart Rhythm, vol. 6, No. 8. Aug. 1, 2009; pp. 1178-1185.
Singh et al., “Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT) Trial,” Circulation, 2011; 123:1159-1166.
Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—A Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012; 35(2):189-96.
Steinhaus BM., “Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study,” Circulation Research, 1989, 64:449-462.
Strik et al., “Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization,” J. of Cardiovasc. Trans. Res., 2012; 5:117-126.
Svendsen et al., “Computational Models of Cardiac Electrical Activation,” Chapter 5, Computational Nov. 2010, pp. 73-88.
Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiography to Predict Left Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010; 121(5):626-34. Available online Jan. 25, 2010.
Sweeney et al., QRS Fusion Complex Analysis Using Wave Interference to Predict Reverse Remodeling During Cardiac Resynchronization Therapy, heart Rhythm, 2014, 11:806-813.
Tan et al., “Interlead heterogeneit of R- and T-wave morphology in standard 12-lead ECGs predicts sustained ventricular tachycardia/fibrillation and arrhythmic death in patients with cardiomyopathy”, J. Cardiovasc Electrophysiol. 2017, 28, pp. 1324-1333.
Turner et al, “Electrical and Mechanical Components of Dyssynchrony in Heart Failure Patients with Normal QRS Duration and Left Bundle-Branch Block,” Circulation 2004; 109: 2544-2549.
Van Deursen et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012; 5(3):544-52. Available online Apr. 24, 2012.
Van Deursen et al., “Vectorcardiography for Optimization of Stimulation Intervals in Cardiac Resynchronization Therapy”, J. of Cardiovasc. Trans. Res., vol. 8, No. 2, Mar. 6, 2015, pp. 128-137.
Vardas et al., The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in Collaboration with the European Heart Rhythm Association, European Heart Journal, 2007; 28:2256-2295.
Varma et al., “Placebo CRT,” Journal of Cardiovascular Electrophysiology, vol. 19, Aug. 2008; p. 878.
Wang et al., “Application of the Method of Fundamental Solutions to Potential-based Inverse Electrocardiography,” Annals of Biomedical Engineering, Aug. 2006, pp. 1272-1288.
Wellens, MD et al., “The Electrocardiogram 102 Years After Einthoven,” Circulation, Feb. 2004; vol. 109, No. 5, pp. 562-564.
Williams et al., “Short-Term Hemodynamic Effects of Cardiac Resynchronization Therapy in Patients With Heart Failure, a Narrow QRS Duration, and No Dyssynchrony,” Circulation, Oct. 27, 2009; 120: 1687-1694.
International Search Report and Written Opinion from PCT Application No. PT/US2021/070964 dated Nov. 16, 2021, 10 pages.
Related Publications (1)
Number Date Country
20220032069 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
63058943 Jul 2020 US