1. Technical Field
The present disclosure relates to biomedical electrodes, and in particular, to a biomedical electrode connector for attaching a lead wire to an electrocardiogram (ECG) electrode placed on a patient's body.
2. Background of Related Art
Electrocardiograph (ECG) monitors are widely used to obtain medical (i.e. biopotential) signals containing information indicative of the electrical activity associated with the heart and pulmonary system. To obtain medical signals, ECG electrodes are applied to the skin of a patient in various locations. The electrodes, after being positioned on the patient, connect to an ECG monitor by a set of ECG lead wires. The distal end of the ECG lead wire, or portion closest to the patient, may include a connector which is adapted to operably connect to the electrode to receive medical signals from the body. The proximal end of the ECG lead set is operably coupled to the ECG monitor and supplies the medical signals received from the body to the ECG monitor.
A typical ECG electrode assembly may include an electrically conductive layer and a backing layer, the assembly having a patient contact side and a connector side. The contact side of the electrode pad may include biocompatible conductive gel or adhesive for affixing the electrode to a patient's body for facilitating an appropriate electrical connection between a patient's body and the electrode assembly. The connector side of the pad may incorporate a metallic press stud having a bulbous profile for coupling the electrode pad to the ECG lead wire. In use, the clinician removes a protective covering from the electrode side to expose the gel or adhesive, affixes the electrode pad to the patient's body, and attaches the appropriate ECG lead wire connector to the press stud by pressing or “snapping” the lead wire connector onto the bulbous press stud to achieve mechanical and electrical coupling of the electrode and lead wire. After use, a clinician then removes the ECG lead wire connector from the pad by pulling or “unsnapping” the connector from the pad.
The described ECG lead wire connector may have drawbacks. A clinician must apply considerable downward force on the lead wire connector to achieve positive engagement of the connector to the press stud. This high connecting force may cause additional and unnecessary discomfort or pain to the patient, whose existing medical condition may already be a source of discomfort or pain. A patient's discomfort may be compounded by the need to connect multiple electrodes which are customarily employed during ECG procedures.
Upon completion of the ECG procedure, a clinician must unsnap the ECG lead wire connector from the pad, which may further cause discomfort to the patient. In some instances, the connector does not readily disengage from the press stud thus requiring the clinician to use considerable upward force to unseat the connector. Often, these attempts to decouple the ECG lead wire connector from the electrode press stud will instead cause the pad to be suddenly and painfully torn from the patient's skin In other instances, attempts to detach the ECG lead wire will cause the pad to become partially dislodged from the patient, which may impair the electrode's ability to receive biopotential signals. This is undesirable when, for example, the clinician wishes to detach the lead wires temporarily yet wishes to leave the pads in place to perform ECG testing on the patient at a future time.
In yet other instances, a snap lock connector may engage the press stud with insufficient force, which may cause suboptimal signal transmission from the electrode to the lead wire, as well as allowing the connector to be disengaged inadvertently by, for example, a slight tug on the lead wire. These effects are undesirable, because they may invalidate the ECG procedure, requiring time-consuming re-testing of the patient, or may lead to delayed, inaccurate or unreliable test results.
Additionally, the process of snapping and unsnapping lead wire connectors from ECG pads, while simultaneously striving to avoid the above-mentioned adverse effects, requires considerable manual dexterity on the part of the ECG clinician. Since clinicians typically repeat the electrode connection/disconnection routine many times each day, the described drawbacks may lead to clinician discontentment and fatigue.
In an embodiment in accordance with the present disclosure, there is provided an ECG lead wire connector which includes a housing and a thumb cam lever having an open and a closed position. In the open position, the press stud of an ECG electrode assembly may be inserted into a mating receptacle provided in the housing, optionally using insignificant or no insertion force. Once placed in position, the thumb cam lever may be moved to the closed position, thereby positively coupling the press stud and connector without imparting undesirable force to the ECG electrode pad or to the patient. Detents may be provided by the disclosed lever to provide positive locking of the connector in the closed position to achieve optimal electrical coupling between the press stud and the connector, and additionally to provide tactile feedback to the clinician that the thumb cam lever is properly locked.
The connector may include a spring member which biases the thumb cam lever in the direction of the open position when the lever is unlocked. The spring member is configured to operably engage the narrow “waist” portion of the bulbous press stud when the thumb cam lever is in the closed position. When the thumb cam lever is in the closed position, the spring member biases the press stud against a mating electrical contact member provided within the connector housing to electrically couple the press stud and the contact member, and to achieve positive mechanical coupling of the press stud and the connector housing. The electrical contact member is operably coupled to the distal end of a lead wire by any suitable means, such as soldering, crimping, welding, or wire bonding. The proximal end of the lead wire may terminate in any suitable manner, such as to a connector, for operably coupling the lead wire to an ECG monitor. The lead wire may be supported at its exit point from the housing by a strain relief.
In another embodiment according to the present disclosure, an ECG lead wire connector is provided which includes a housing, and a pushbutton having an external face and an internal engaging surface. The pushbutton is biased by a spring member toward a locked position when released (i.e., when no pressure is applied to the pushbutton), and having an unlocked position when depressed (i.e., when sufficient pressure is applied to the face of the pushbutton by, for example, a clinician). A receptacle adapted to accept an electrode pad press stud is provided within the connector housing. When the pushbutton is depressed, the engaging surface thereof is configured to allow the insertion of a press stud into the receptacle, optionally using insignificant or no insertion force. Once the press stud is inserted, the pushbutton may be released, which causes the spring member to bias the engaging surface of the pushbutton against the press stud, engaging the press stud and a mating electrical contact member provided within the connector housing, to electrically couple the press stud and the contact member, and to achieve positive mechanical coupling of the press stud and the connector housing.
In one embodiment envisioned within the scope of the present disclosure, the pushbutton face may be positioned at the distal end of the connector housing. The spring member may be a coil spring positioned between the proximal end of the pushbutton and a corresponding saddle provided within the connector housing. The engaging surface is defined by an opening provided within the central portion of the pushbutton.
In another embodiment contemplated by the present disclosure, the pushbutton is a pivoting lever having at one end an external face positioned at the central region of the connector housing, and at the opposite end an engaging surface for engaging the press stud. The spring member may be a leaf spring positioned at the face end of the lever, between the housing and the lever, such that the lever face end is biased outwardly from the housing. Additionally or alternatively, the leaf spring may be positioned at the clamping end of the lever.
In the various embodiments, it is envisioned the electrical contact member provides a contact opening to receive the press stud. The opening may have narrow end and a wide end. For example, the opening may have an ovoid shape exhibiting one axis of symmetry (“egg-shaped”). Alternatively, the contact opening may be pear-shaped, keyhole-shaped, circular, or described by the intersection of two partially-coincident circles of differing radii. The opening may be dimensioned at its wide end to accept the bulbous press stud, optionally with insignificant or no interference. Conversely, the narrow end of the opening may be dimensioned to capture the narrow waist portion of the press stud. The contact opening may be configured such that, when engaged, the press stud is biased and/or clamped against the narrow end of the contact opening.
It should be understood that the spring members disclosed herein are not limited to coil and/or leaf springs, and may include any suitable source of biasing force, including without limitation gas springs, pressure- or vacuum-actuated devices, elastomeric springs, magnetic or electromagnetic devices, shape memory alloy motors, and other sources of biasing force as will be familiar to the skilled practitioner. Additionally or alternatively, the spring members may be integrally formed with, for example, the housing, lever, or pushbutton.
Other embodiments are envisioned within the present disclosure, such as an ECG lead wire connector having a plurality of pushbuttons, for example, that are disposed on opposite sides of the housing, wherein at least one button is operable to engage and disengage the press stud of an ECG pad.
Alternative modalities of press stud engagement are envisioned wherein, for example, the pushbutton operates in a push-on/push off fashion. In this arrangement, the connector is initially provided in an open or unlocked configuration. The press stud may then be inserted into the receptacle, optionally with insignificant or no insertion force. Once in place, the press stud may be engaged by pressing the pushbutton in a first push-on step. To disengage the press stud, the pushbutton is depressed a second time to release the press stud in a second push-off step and to reset the connector to the initial state, thereby readying the connector for subsequent use. In another modality of press stud engagement, the connector includes a source of biasing force, such as a spring member, that is configured to automatically engage a press stud upon detection of a triggering event, such as the insertion of a press stud into the connector. To disengage the press stud, a release control, such as a pushbutton or lever, is provided such that when said release control is actuated (i.e., pressed or moved), the press stud is released and/or ejected from the housing. It is further contemplated that actuating the release control resets the connector to the initial state, thereby readying the connector for subsequent use. Still other modalities of disengagement are contemplated where, for example, the press stud may be disengaged by pushing, pulling, twisting or otherwise moving the connector housing.
Various embodiments of the presently disclosed ECG electrode connector are disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed ECG electrode connector and method are described herein in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the term “proximal” refers to the end of the apparatus which is closer to the monitor and the term “distal” refers to the end of the apparatus which is further from the monitor. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
Referring to
A V-spring 120 having a coil base 130, a fixed leg 131 and a movable leg 132 is coupled to housing 110 within cavity 106. Coil base 130 of V-spring 120 may be multi-turn, single-turn, or a V-shaped apex without a coil. V-spring 120 is retained at its base by pin 117 and is joined to housing 105 at its fixed end by saddle 125 such that movable leg 132 is biased in a distal direction, i.e., towards pivot pin 115. Additionally or alternatively, V-spring 120 may be joined to saddle 125 or cavity 106 by any suitable manner of bonding, such as by adhesive or heat welding. A stop 135 limits the outward flexure of movable leg 132. Thumb cam lever 110 includes a cam 102 which communicates with a detent 140 of spring member 120 when thumb cam lever 120 moves to a closed position, as shown in
Connector 100 further includes an electrical contact member 155 which is disposed upon cavity 106. Contact member 155 may be constructed from any suitable electrically conductive material, including without limitation stainless steel or low-carbon steel. It is also envisioned contact member 155 may be constructed of a non-conductive material having a conductive coating. Contact member 155 is electrically coupled to a lead wire 175 by any suitable manner of connection, such as a crimp 156, or additionally or alternatively, soldering or wire bonding. Lead wire 175 may optionally be supported at its exit point from housing 105 by a strain relief 170. Contact member 155 provides a contact opening 145 defined therein to accept an electrical contact, such as a bulbous press stud of an ECG pad. In the embodiment, the contact opening 145 may be asymmetrical in shape, such as, for example, an ovoid shape dimensioned at its wide end 151 to accept the bulbous press stud, and dimensioned at its narrow end 150 to capture the narrow waist portion of the press stud. Referring now to
Engaging a press stud into connector 100 may be accomplished by positioning lever 110 to an open position as shown in
Turning now to
Pushbutton 410 is slidably disposed within housing 405 and is biased in a distal direction by a coil spring 420 that is retained at its distal (pushbutton) end by a saddle 426 provided by pushbutton 410, and at its proximal (housing) end by a saddle 425 provided by housing 405. Pushbutton 410 includes at least one stop member 436 which cooperates with stop members 435 and 437 provided within housing 405 to define the distal and proximal limits of travel, respectively, of pushbutton 410. Pushbutton 410 includes an opening 430 disposed therein having an engaging surface 432 for coupling the connector 400 to a press stud as will be further described below.
Connector 400 further includes an electrical contact member 455 which is disposed upon cavity 406. Contact member 455 is electrically coupled to a lead wire 475 by any suitable manner of connection as previously disclosed herein. Lead wire 475 may optionally be supported at its exit point from housing 405 by a strain relief 470. Contact member 455 provides a contact opening 445 defined therein to accept an electrical contact, such as a press stud, and may be an asymmetrical in shape as previously described herein, having a distal narrow end 450 and a proximal wide end 451. The bottom surface 630 of housing 405 provides an aperture 620 disposed therein which exposes contact opening 445 to the exterior of connector 400 to facilitate insertion of a press stud into the connector.
Engaging a press stud into connector 400 may be accomplished by depressing pushbutton 410, by, for example, applying sufficient finger pressure to pushbutton face 411 so as to overcome the bias of coil spring 420, thereby moving pushbutton 410 from a distal locked position as shown in
Yet another embodiment in accordance with the present disclosure is described with reference to
As shown in
Connector 700 further includes an electrical contact member 755 which is disposed upon cavity 706. Contact member 755 is electrically coupled to a lead wire 775 by any suitable manner of connection as previously disclosed herein. Lead wire 775 may optionally be supported at its exit point from housing 705 by a strain relief 770. Contact member 755 provides a contact opening 745 defined therein to accept an electrical contact, such as a press stud, and may be an asymmetrical in shape as previously described herein, having a narrow end 750 and a wide end 751 as best illustrated in
Engaging a press stud into connector 700 may be accomplished by depressing pushbutton face 711, by, for example, applying sufficient finger pressure thereto so as to overcome the bias of leaf spring 720, thereby causing engaging region 716 of lever 710 to swing from a closed position as shown in
With reference now to
Housing 1322 includes a lead wire terminal 1330 which is electrically connected to a respective end of lead wire 1304 by any suitable method of connection, including without limitation, crimping, soldering, or welding. Housing 1322 supports a contact member 1332 that is electrically connected to lead wire terminal 1330. Contact member 1332 and lead wire terminal 1330 may be integrally formed. Contact member 1332 defines a contact opening 1334 formed therein and in communication with internal cavity 1328 of housing 1322. Contact opening 1334 includes first contact opening portion 1334a and second contact opening portion 1334b. First contact opening portion 1334a defines an internal dimension or diameter which is greater than the corresponding internal dimension or diameter of second contact opening portion 1334b.
Housing 1322 further includes a lever 1340 pivotably connected thereto. Lever 1340 includes an actuating end 1336. Lever 1340 is biased to a first position by a biasing member 1338. Lever 1340 includes an engaging region 1336a projecting therefrom so as to extend across first contact opening portion 1334a of contact opening 1334 when lever 1340 is in the first position. In use, lever 1340 is actuatable to a second position wherein engaging region 1336a thereof does not obstruct or extend across first contact opening portion 1334a of contact opening 1334. For example, a clinician may apply finger pressure to actuating end 1336 that is sufficient to overcome the biasing force of biasing member 1338, thereby causing engaging region 1336a to move to a second position as herein described.
ECG electrode connector 1320 is adapted for connection to a conventional snap-type biomedical electrode (not explicitly shown). A typical snap-type biomedical electrode incorporates an electrode flange or base and male press stud or terminal extending in transverse relation to the electrode base. The male press stud terminal may have a bulbous head whereby an upper portion of the terminal has a greater cross-sectional dimension than a lower portion of the terminal. Accordingly, in use, when lever 1340 of electrode connector 1320 is in the second position, the head of the male press stud terminal of the snap-type biomedical electrode may be inserted into first contact opening portion 1334a of contact opening 1334 and actuating end 1336, and thus, lever 1340, may be released so that biasing member 1338 moves engaging region 1336a of lever 1340 against the head of the male press stud (not explicitly shown) to push or force the lower portion of the press stud into a second contact opening portion 1334b of contact opening 1334. The biasing force of biasing member 1338 helps to maintain the press stud within second contact opening portion 1334b of contact opening 1334 and thus inhibits removal or disconnection of the biomedical electrode from ECG connector 1320.
It will be understood that various modifications may be made to the embodiments disclosed herein. Further variations of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems, instruments and applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
This application is a Continuation of U.S. patent application Ser. No. 13/785,713, filed on Mar. 5, 2013, which is a Continuation of U.S. patent application Ser. No. 13/443,096, filed on Apr. 10, 2012, now U.S. Pat. No. 8,408,948, which is a Continuation of U.S. patent application Ser. No. 13/182,656, filed on Jul. 14, 2011, now U.S. Pat. No. 8,152,571, which is a Continuation of U.S. patent application Ser. No. 12/330,550, filed on Dec. 9, 2008, now U.S. Pat. No. 8,038,484, which claims the benefit of and priority to U.S. Provisional Application No. 61/012,825, filed Dec. 11, 2007, the entirety of each of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3606881 | Woodson | Sep 1971 | A |
3752151 | Robichaud | Aug 1973 | A |
3805769 | Sessions | Apr 1974 | A |
3828766 | Krasnow | Aug 1974 | A |
3829826 | Brown et al. | Aug 1974 | A |
3842394 | Bolduc | Oct 1974 | A |
3868946 | Hurley | Mar 1975 | A |
3888240 | Reinhold, Jr. et al. | Jun 1975 | A |
3895635 | Justus et al. | Jul 1975 | A |
3901218 | Buchalter | Aug 1975 | A |
3997225 | Horwinski | Dec 1976 | A |
3998213 | Price | Dec 1976 | A |
4027664 | Heavner, Jr. et al. | Jun 1977 | A |
4034854 | Bevilacqua | Jul 1977 | A |
4077397 | Ellis et al. | Mar 1978 | A |
4112941 | Larimore | Sep 1978 | A |
4166465 | Esty et al. | Sep 1979 | A |
4220390 | Cobaugh et al. | Sep 1980 | A |
4303293 | Grunwald | Dec 1981 | A |
4353372 | Ayer | Oct 1982 | A |
4365634 | Bare et al. | Dec 1982 | A |
4498480 | Mortensen | Feb 1985 | A |
4674817 | Olms | Jun 1987 | A |
4729377 | Granek et al. | Mar 1988 | A |
4763660 | Kroll et al. | Aug 1988 | A |
4781200 | Baker | Nov 1988 | A |
4785822 | Wallace | Nov 1988 | A |
4815964 | Cohen et al. | Mar 1989 | A |
4842557 | Muz | Jun 1989 | A |
4850356 | Heath | Jul 1989 | A |
4909260 | Salem et al. | Mar 1990 | A |
4947846 | Kitagawn et al. | Aug 1990 | A |
4957109 | Groeger et al. | Sep 1990 | A |
5080604 | Rider et al. | Jan 1992 | A |
5083238 | Bousman | Jan 1992 | A |
5083933 | Colleran et al. | Jan 1992 | A |
5104253 | Zielinski et al. | Apr 1992 | A |
5104334 | Honma et al. | Apr 1992 | A |
5131854 | Jose et al. | Jul 1992 | A |
5137466 | Endo et al. | Aug 1992 | A |
5154646 | Shoup | Oct 1992 | A |
5158469 | Martin | Oct 1992 | A |
5160276 | Marsh et al. | Nov 1992 | A |
5173059 | Sato et al. | Dec 1992 | A |
5176343 | Cheney et al. | Jan 1993 | A |
5178556 | Chen | Jan 1993 | A |
5180312 | Martin | Jan 1993 | A |
5190467 | Ohta | Mar 1993 | A |
5192226 | Wang | Mar 1993 | A |
5197901 | Hashiguchi | Mar 1993 | A |
5199897 | Hashiguchi | Apr 1993 | A |
5201669 | Lin | Apr 1993 | A |
5203715 | Yamamoto | Apr 1993 | A |
5203719 | Kozono | Apr 1993 | A |
5207594 | Olson | May 1993 | A |
5224479 | Sekine | Jul 1993 | A |
5232383 | Barnick | Aug 1993 | A |
5234357 | Yamaguchi | Aug 1993 | A |
5243510 | Cheney, II | Sep 1993 | A |
5263481 | Axelgaard | Nov 1993 | A |
5276443 | Gates et al. | Jan 1994 | A |
5278759 | Berra et al. | Jan 1994 | A |
5279308 | DiSabito et al. | Jan 1994 | A |
5293013 | Takahashi | Mar 1994 | A |
5320621 | Gordon et al. | Jun 1994 | A |
5326272 | Harhen et al. | Jul 1994 | A |
5332330 | Kaneko | Jul 1994 | A |
5338219 | Hiramoto | Aug 1994 | A |
5341806 | Gadsby et al. | Aug 1994 | A |
5341812 | Allaire et al. | Aug 1994 | A |
5353793 | Bornn | Oct 1994 | A |
5362249 | Carter | Nov 1994 | A |
5370116 | Rollman et al. | Dec 1994 | A |
5370550 | Alwine et al. | Dec 1994 | A |
5376016 | Inaba et al. | Dec 1994 | A |
5378168 | Sumida | Jan 1995 | A |
5380223 | Marsh et al. | Jan 1995 | A |
5382176 | Norden | Jan 1995 | A |
5383794 | Davis et al. | Jan 1995 | A |
5387116 | Wang | Feb 1995 | A |
5387127 | Wang | Feb 1995 | A |
5399045 | Yoneda et al. | Mar 1995 | A |
5405269 | Stupecky | Apr 1995 | A |
5415164 | Faupel et al. | May 1995 | A |
5429526 | Ann | Jul 1995 | A |
5431166 | Macur | Jul 1995 | A |
5454739 | Strand | Oct 1995 | A |
5462448 | Kida et al. | Oct 1995 | A |
5484739 | Lee et al. | Jan 1996 | A |
5486117 | Chang | Jan 1996 | A |
5507290 | Kelly et al. | Apr 1996 | A |
5507665 | Oda | Apr 1996 | A |
5507668 | Lambrinos et al. | Apr 1996 | A |
5509822 | Negus et al. | Apr 1996 | A |
5511553 | Segalowitz | Apr 1996 | A |
5546950 | Schoeckert et al. | Aug 1996 | A |
5558535 | Saka et al. | Sep 1996 | A |
5564939 | Maitani et al. | Oct 1996 | A |
5582180 | Manset et al. | Dec 1996 | A |
5584719 | Tsuji et al. | Dec 1996 | A |
5599199 | Wright | Feb 1997 | A |
5603632 | Johannes et al. | Feb 1997 | A |
5611708 | Mizunuma et al. | Mar 1997 | A |
5613870 | Traver, Jr. | Mar 1997 | A |
5615674 | Maurer | Apr 1997 | A |
5622168 | Keusch et al. | Apr 1997 | A |
5624271 | Childs et al. | Apr 1997 | A |
5624281 | Christensson | Apr 1997 | A |
5626135 | Sanfilippo | May 1997 | A |
5632274 | Quedens et al. | May 1997 | A |
5651689 | Plyler et al. | Jul 1997 | A |
5653606 | Chrysostomou | Aug 1997 | A |
5674088 | Roche et al. | Oct 1997 | A |
5676694 | Boser et al. | Oct 1997 | A |
5679022 | Cappa | Oct 1997 | A |
5679029 | Saunier et al. | Oct 1997 | A |
5685303 | Rollman et al. | Nov 1997 | A |
5695355 | Hasenfratz et al. | Dec 1997 | A |
5702265 | Yamaguchi | Dec 1997 | A |
5704351 | Mortara et al. | Jan 1998 | A |
5711684 | Inoue et al. | Jan 1998 | A |
5718596 | Inaba et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5724984 | Arnold et al. | Mar 1998 | A |
5725525 | Kordis | Mar 1998 | A |
5741155 | Herman | Apr 1998 | A |
5749746 | Tan et al. | May 1998 | A |
5769650 | Aoyama et al. | Jun 1998 | A |
5772591 | Cram | Jun 1998 | A |
5775953 | Yamanashi et al. | Jul 1998 | A |
5782647 | Okura et al. | Jul 1998 | A |
5782761 | Gusakov | Jul 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5788527 | Sanders et al. | Aug 1998 | A |
5791918 | Pierce | Aug 1998 | A |
5797854 | Hedgecock | Aug 1998 | A |
5806152 | Saitou et al. | Sep 1998 | A |
5813404 | Devlin et al. | Sep 1998 | A |
5813979 | Wolfer | Sep 1998 | A |
5827086 | Fukuda | Oct 1998 | A |
5830000 | Shifflett et al. | Nov 1998 | A |
5836783 | Morisawa et al. | Nov 1998 | A |
5843141 | Bischoff et al. | Dec 1998 | A |
5848456 | Sjoqvist | Dec 1998 | A |
5865740 | Kelly et al. | Feb 1999 | A |
5865741 | Kelly et al. | Feb 1999 | A |
5871451 | Unger et al. | Feb 1999 | A |
5873747 | Tsuji | Feb 1999 | A |
5876232 | Matsushita et al. | Mar 1999 | A |
5895284 | Kocher et al. | Apr 1999 | A |
5904579 | McLean et al. | May 1999 | A |
5913834 | Francais | Jun 1999 | A |
5916159 | Kelly et al. | Jun 1999 | A |
5931689 | Patel | Aug 1999 | A |
5931861 | Werner et al. | Aug 1999 | A |
5934926 | Gabrisko, Jr. et al. | Aug 1999 | A |
5937950 | Adams et al. | Aug 1999 | A |
5938470 | Kashiyama | Aug 1999 | A |
5938597 | Starbucker | Aug 1999 | A |
5941725 | Brennan et al. | Aug 1999 | A |
5944562 | Christensson | Aug 1999 | A |
5951316 | Kawano et al. | Sep 1999 | A |
5964624 | Pernelle | Oct 1999 | A |
5968087 | Hess et al. | Oct 1999 | A |
5971790 | Rohde | Oct 1999 | A |
5971799 | Swade | Oct 1999 | A |
5980332 | Tsuji et al. | Nov 1999 | A |
5984717 | Lee | Nov 1999 | A |
5997334 | Goto | Dec 1999 | A |
6006125 | Kelly et al. | Dec 1999 | A |
6027359 | Aoki et al. | Feb 2000 | A |
6032063 | Hoar et al. | Feb 2000 | A |
6032064 | Devlin et al. | Feb 2000 | A |
6038479 | Werner et al. | Mar 2000 | A |
6038481 | Werner et al. | Mar 2000 | A |
6050838 | Norizuki et al. | Apr 2000 | A |
6055448 | Anderson et al. | Apr 2000 | A |
6062902 | Buckles et al. | May 2000 | A |
6066093 | Kelly et al. | May 2000 | A |
6074234 | Hasegawa | Jun 2000 | A |
6098127 | Kwang | Aug 2000 | A |
6109948 | Kuo | Aug 2000 | A |
6115623 | McFee | Sep 2000 | A |
6116940 | Bertens et al. | Sep 2000 | A |
6122536 | Sun et al. | Sep 2000 | A |
6122544 | Organ | Sep 2000 | A |
6129666 | DeLuca et al. | Oct 2000 | A |
6132233 | Fukuda | Oct 2000 | A |
6139350 | Mathesius | Oct 2000 | A |
6139360 | Hayashi | Oct 2000 | A |
6152778 | Dalton | Nov 2000 | A |
6155864 | Yoshiura | Dec 2000 | A |
6157851 | Kelly et al. | Dec 2000 | A |
6165017 | Kuo | Dec 2000 | A |
6168453 | Kuo | Jan 2001 | B1 |
6171139 | Sato et al. | Jan 2001 | B1 |
6190385 | Tom et al. | Feb 2001 | B1 |
6203354 | Kuwahara | Mar 2001 | B1 |
6219568 | Kelly et al. | Apr 2001 | B1 |
6219569 | Kelly et al. | Apr 2001 | B1 |
6223088 | Scharnberg et al. | Apr 2001 | B1 |
6232366 | Wang et al. | May 2001 | B1 |
6234827 | Nishio et al. | May 2001 | B1 |
6236874 | Devlin et al. | May 2001 | B1 |
6240323 | Calenzo, Sr. et al. | May 2001 | B1 |
6247963 | Rattner | Jun 2001 | B1 |
6250955 | Archuleta | Jun 2001 | B1 |
6254425 | Shchervinsky | Jul 2001 | B1 |
6257914 | Comerci et al. | Jul 2001 | B1 |
6257925 | Jones | Jul 2001 | B1 |
6280209 | Bassler et al. | Aug 2001 | B1 |
6280227 | Terada et al. | Aug 2001 | B1 |
6280243 | Liu et al. | Aug 2001 | B1 |
6283789 | Tsai | Sep 2001 | B1 |
6290530 | Chang | Sep 2001 | B1 |
6298255 | Cordero et al. | Oct 2001 | B1 |
6304783 | Lyster et al. | Oct 2001 | B1 |
6324432 | Rigaux et al. | Nov 2001 | B1 |
6339720 | Anzellini et al. | Jan 2002 | B1 |
6340306 | Daoud | Jan 2002 | B1 |
6356779 | Katzenmaier et al. | Mar 2002 | B1 |
6358083 | Kraft | Mar 2002 | B1 |
6360119 | Roberts | Mar 2002 | B1 |
6364685 | Manning | Apr 2002 | B1 |
6383010 | Mayo et al. | May 2002 | B1 |
6383011 | Chen | May 2002 | B2 |
6383036 | Steinhauser et al. | May 2002 | B1 |
6386917 | Sakaguchi | May 2002 | B1 |
6393317 | Fukuda | May 2002 | B1 |
6394953 | Devlin et al. | May 2002 | B1 |
6398575 | Bresson | Jun 2002 | B1 |
6398577 | Simmel et al. | Jun 2002 | B1 |
6400977 | Kelly et al. | Jun 2002 | B1 |
6411834 | Nagai | Jun 2002 | B1 |
6413112 | Semmeling et al. | Jul 2002 | B2 |
6415169 | Kornrumpf et al. | Jul 2002 | B1 |
6419636 | Young et al. | Jul 2002 | B1 |
6434410 | Cordero et al. | Aug 2002 | B1 |
6447170 | Takahashi et al. | Sep 2002 | B1 |
6453186 | Lovejoy et al. | Sep 2002 | B1 |
6454577 | Yi | Sep 2002 | B1 |
6454590 | Goodrich et al. | Sep 2002 | B1 |
6454605 | Bassler et al. | Sep 2002 | B1 |
6456872 | Faisander | Sep 2002 | B1 |
6461179 | Sullivan et al. | Oct 2002 | B1 |
6487430 | Henderson et al. | Nov 2002 | B1 |
6494744 | Lee | Dec 2002 | B1 |
6514099 | Endo | Feb 2003 | B2 |
6517372 | Jones | Feb 2003 | B1 |
6531657 | Jones, Jr. et al. | Mar 2003 | B1 |
6533600 | Kashiyama et al. | Mar 2003 | B1 |
6540549 | Rupert | Apr 2003 | B2 |
6551117 | Poplawski et al. | Apr 2003 | B2 |
6553246 | Wenger | Apr 2003 | B1 |
6553250 | Rantala | Apr 2003 | B2 |
6558189 | Groebe et al. | May 2003 | B2 |
6561834 | Chen | May 2003 | B2 |
6564079 | Cory et al. | May 2003 | B1 |
6565388 | Van Woensel et al. | May 2003 | B1 |
6567680 | Swetlik et al. | May 2003 | B2 |
6575759 | Ollivier | Jun 2003 | B1 |
6575794 | Nakamura | Jun 2003 | B1 |
6582252 | Lin | Jun 2003 | B1 |
6589066 | Wu | Jul 2003 | B1 |
6592391 | Wu | Jul 2003 | B1 |
6592404 | Endo | Jul 2003 | B2 |
6604963 | Lin | Aug 2003 | B2 |
6607397 | Zhang et al. | Aug 2003 | B1 |
6609018 | Cory et al. | Aug 2003 | B2 |
6609833 | Miyachi et al. | Aug 2003 | B1 |
6611705 | Hopman et al. | Aug 2003 | B2 |
6612860 | Droesbeke | Sep 2003 | B2 |
6619976 | Huetter et al. | Sep 2003 | B2 |
6619989 | Yi | Sep 2003 | B1 |
6623312 | Merry et al. | Sep 2003 | B2 |
6636754 | Baura et al. | Oct 2003 | B1 |
6647286 | Kato et al. | Nov 2003 | B1 |
6648665 | Wu | Nov 2003 | B1 |
6648666 | Wu | Nov 2003 | B1 |
6654626 | Devlin et al. | Nov 2003 | B2 |
6655979 | Lee | Dec 2003 | B1 |
6659790 | Wi | Dec 2003 | B1 |
6663412 | Aramoto et al. | Dec 2003 | B2 |
6663419 | Vaden | Dec 2003 | B2 |
6663420 | Xiao | Dec 2003 | B1 |
6663570 | Mott et al. | Dec 2003 | B2 |
6669510 | Yamawaki et al. | Dec 2003 | B2 |
6688894 | Knox, Jr. et al. | Feb 2004 | B2 |
6688907 | Yamaoka et al. | Feb 2004 | B2 |
6702602 | Wu | Mar 2004 | B2 |
6702603 | Wu | Mar 2004 | B2 |
6702616 | Chang et al. | Mar 2004 | B1 |
6709284 | Avlonitis | Mar 2004 | B1 |
6716165 | Flanders et al. | Apr 2004 | B1 |
6722912 | Wu | Apr 2004 | B2 |
6736650 | Chen | May 2004 | B1 |
6743053 | Wu | Jun 2004 | B2 |
6748797 | Breed et al. | Jun 2004 | B2 |
6751493 | Wenger | Jun 2004 | B2 |
6755689 | Zhang et al. | Jun 2004 | B2 |
6768921 | Organ et al. | Jul 2004 | B2 |
6773293 | Lee | Aug 2004 | B1 |
6780065 | Schwarz | Aug 2004 | B2 |
6786755 | Dambach et al. | Sep 2004 | B2 |
6786764 | Sivertsen | Sep 2004 | B2 |
6816744 | Garfield et al. | Nov 2004 | B2 |
6832928 | Suzuki et al. | Dec 2004 | B2 |
6837734 | Ushlo et al. | Jan 2005 | B2 |
6847836 | Sujdak | Jan 2005 | B1 |
6848926 | Ling et al. | Feb 2005 | B2 |
6851969 | Archuletta | Feb 2005 | B2 |
6860750 | Wu | Mar 2005 | B1 |
6866535 | Uchida | Mar 2005 | B2 |
6881098 | Jeansonne et al. | Apr 2005 | B2 |
6891379 | Kelly et al. | May 2005 | B2 |
6913482 | Wu | Jul 2005 | B1 |
6939158 | Moffett et al. | Sep 2005 | B2 |
6939345 | Knight et al. | Sep 2005 | B2 |
6945796 | Bassler et al. | Sep 2005 | B2 |
6945807 | Wu | Sep 2005 | B1 |
6948973 | Hsu et al. | Sep 2005 | B1 |
6970731 | Jayaraman et al. | Nov 2005 | B1 |
6973341 | Watson | Dec 2005 | B2 |
6973343 | Wenger | Dec 2005 | B2 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
6984143 | Roese | Jan 2006 | B2 |
6997733 | Peng | Feb 2006 | B2 |
7004787 | Milan | Feb 2006 | B2 |
7008255 | Wang | Mar 2006 | B1 |
7025618 | Fukuda | Apr 2006 | B2 |
7025628 | LaMeres et al. | Apr 2006 | B2 |
7029286 | Hall et al. | Apr 2006 | B2 |
7033207 | Nimura | Apr 2006 | B2 |
7041918 | Wu | May 2006 | B1 |
7056134 | Martin et al. | Jun 2006 | B2 |
7056141 | Moffett et al. | Jun 2006 | B2 |
7081008 | Tan | Jul 2006 | B2 |
7081026 | Schwarz | Jul 2006 | B2 |
7083480 | Silber | Aug 2006 | B2 |
7085598 | Sato | Aug 2006 | B2 |
7104801 | Brodnick et al. | Sep 2006 | B1 |
7110804 | Baumer et al. | Sep 2006 | B2 |
7117590 | Koenig et al. | Oct 2006 | B2 |
7118411 | Huang et al. | Oct 2006 | B2 |
7127279 | Finneran et al. | Oct 2006 | B2 |
7128600 | Osypka | Oct 2006 | B2 |
7134908 | Wu | Nov 2006 | B2 |
7137839 | Dilliner et al. | Nov 2006 | B2 |
7144268 | Koenig et al. | Dec 2006 | B2 |
7150655 | Mastrototaro et al. | Dec 2006 | B2 |
7160136 | Zhang et al. | Jan 2007 | B2 |
7169107 | Jersey-Willuhn et al. | Jan 2007 | B2 |
7179111 | Van Der Mee et al. | Feb 2007 | B2 |
7179113 | Koenig et al. | Feb 2007 | B2 |
7182630 | Su | Feb 2007 | B1 |
7184820 | Jersey-Willuhn et al. | Feb 2007 | B2 |
7189097 | Benham | Mar 2007 | B2 |
7197357 | Istvan et al. | Mar 2007 | B2 |
7198502 | Koenig et al. | Apr 2007 | B2 |
7201599 | Holub | Apr 2007 | B2 |
7207825 | Le Gallic et al. | Apr 2007 | B2 |
7214107 | Powell et al. | May 2007 | B2 |
7236825 | Wang | Jun 2007 | B2 |
7252542 | Chen | Aug 2007 | B2 |
7252556 | Anbo et al. | Aug 2007 | B2 |
7252565 | Hunter | Aug 2007 | B2 |
7255609 | Epstein | Aug 2007 | B1 |
7258566 | Koenig et al. | Aug 2007 | B2 |
7264510 | Koenig et al. | Sep 2007 | B2 |
7270568 | Osypka | Sep 2007 | B2 |
7272427 | Ristolainen | Sep 2007 | B2 |
7272428 | Hopman et al. | Sep 2007 | B2 |
7275951 | Shigeta et al. | Oct 2007 | B2 |
7281937 | Reed et al. | Oct 2007 | B2 |
7287998 | Masai | Oct 2007 | B2 |
7303430 | Butcher | Dec 2007 | B2 |
7318740 | Henry et al. | Jan 2008 | B1 |
7319895 | Klefstad-Sillinville et al. | Jan 2008 | B2 |
7322849 | Sutton | Jan 2008 | B2 |
7329139 | Benham | Feb 2008 | B2 |
7333850 | Marossero et al. | Feb 2008 | B2 |
7347710 | Ohtaka et al. | Mar 2008 | B2 |
7347826 | Karicherla et al. | Mar 2008 | B1 |
7359751 | Erickson et al. | Apr 2008 | B1 |
7361058 | Lien et al. | Apr 2008 | B1 |
7364440 | Gobron et al. | Apr 2008 | B2 |
7371102 | Sakamoto et al. | May 2008 | B2 |
7373196 | Ryu et al. | May 2008 | B2 |
7374448 | Jepsen et al. | May 2008 | B1 |
7381082 | Lai | Jun 2008 | B2 |
7390224 | Sodemann et al. | Jun 2008 | B2 |
7396246 | Okada et al. | Jul 2008 | B2 |
7399195 | Kim et al. | Jul 2008 | B2 |
7401946 | Laukhuf | Jul 2008 | B2 |
7402071 | Ohtaka et al. | Jul 2008 | B2 |
7413461 | Dawiedczyk et al. | Aug 2008 | B2 |
7413485 | Lappoehn | Aug 2008 | B2 |
7416440 | Homyk et al. | Aug 2008 | B2 |
7422437 | Lin et al. | Sep 2008 | B1 |
7422452 | Achtner et al. | Sep 2008 | B2 |
7445512 | Lai | Nov 2008 | B1 |
7445522 | Burnes et al. | Nov 2008 | B2 |
7462074 | Devlin et al. | Dec 2008 | B1 |
7473141 | Liao | Jan 2009 | B2 |
7488187 | Wolf | Feb 2009 | B2 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7497738 | Kuo | Mar 2009 | B2 |
7503807 | Martin et al. | Mar 2009 | B2 |
7556535 | Liao | Jul 2009 | B2 |
7581992 | Liu et al. | Sep 2009 | B1 |
7585182 | Asante et al. | Sep 2009 | B2 |
7591673 | Chan et al. | Sep 2009 | B2 |
7604511 | Johnson | Oct 2009 | B1 |
7618377 | McAtamney et al. | Nov 2009 | B2 |
7632130 | Sami | Dec 2009 | B2 |
7666028 | Meleck | Feb 2010 | B2 |
8038484 | Selvitelli et al. | Oct 2011 | B2 |
8152571 | Selvitelli et al. | Apr 2012 | B2 |
8255041 | Istvan et al. | Aug 2012 | B2 |
8408948 | Selvitelli et al. | Apr 2013 | B2 |
20020133069 | Roberts | Sep 2002 | A1 |
20020138011 | Rantala | Sep 2002 | A1 |
20020188216 | Kayyali et al. | Dec 2002 | A1 |
20030068914 | Merry et al. | Apr 2003 | A1 |
20030068918 | Christensson | Apr 2003 | A1 |
20040073127 | Istvan et al. | Apr 2004 | A1 |
20040127802 | Istvan et al. | Jul 2004 | A1 |
20040176674 | Nazeri | Sep 2004 | A1 |
20040203273 | Schwarz | Oct 2004 | A1 |
20050164551 | Wlos | Jul 2005 | A1 |
20050177052 | Istvan et al. | Aug 2005 | A1 |
20050203349 | Nanikashvili | Sep 2005 | A1 |
20060073728 | Zaiken et al. | Apr 2006 | A1 |
20060286861 | Avevor et al. | Dec 2006 | A1 |
20070038057 | Nam et al. | Feb 2007 | A1 |
20070260133 | Meyer | Nov 2007 | A1 |
20080132106 | Burnes | Jun 2008 | A1 |
20090099423 | Al-Ali et al. | Apr 2009 | A1 |
20110092833 | Farrior | Apr 2011 | A1 |
20130189881 | Selvitelli et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
101491437 | Jul 2009 | CN |
101491438 | Jul 2009 | CN |
9002539 | May 1990 | DE |
10225621 | Jan 2004 | DE |
102004032410 | Jan 2006 | DE |
0 766 946 | Apr 1997 | EP |
0 799 628 | Oct 1997 | EP |
1 050 269 | Nov 2000 | EP |
1 932 470 | Jun 2008 | EP |
2 070 474 | Jun 2009 | EP |
162804 | May 1921 | GB |
10248820 | Sep 1998 | JP |
2003010138 | Jan 2003 | JP |
2004282608 | Oct 2004 | JP |
WO 03 047 427 | Jun 2003 | WO |
WO 2008092098 | Jul 2008 | WO |
WO 2008092098 | Jul 2008 | WO |
WO 2013013370 | Jan 2013 | WO |
Entry |
---|
A&D Company, Limited, “Vital Sensor Graphic Model”, No. TM-2560G/TM2564GTM-2564GP/TM2564GP, Jan. 1, 2004; pp. 1-62. |
Andreas Boos et al.; “A New Lightweight Fetal Telemetry System”, Dec. 1995; Hewlett-Packard Journal; pp. 82-93. |
European Search Report corresponding to European Application No. EP 07 25 3850, date of completion is Dec. 21, 2007; 2 pages. |
Response dated Jan. 27, 2014 to Extended EP Search Report dated Oct. 8, 2013 for EP Application No. 12187209.7, filed Dec. 10, 2008, 16 pages. |
Notification re Notice of Allowance dated Feb. 5, 2014 for Mexican Application No. MX/a/2012/009542, filed Aug. 16, 2012, 2 pages. |
U.S. Appl. No. 13/785,713, filed Mar. 5, 2013. |
Response to Chinese Office Action in Chinese Application No. 201010624971.5 filed on May 4, 2011, 21 pages. |
Notification of Entry into Examination Procedure for Chinese Patent Application No. 201010624971.5 dated Oct. 11, 2012, 2 pages, (with English translation). |
Notification of Entry into Examination Procedure for Chinese Patent Application No. 201010624971.5 dated Nov. 28, 2013, 134 pages. |
Extended European Search Report for European Patent Application No. 10013624.1-2319/2314215 dated Apr. 4, 2011, 14 pages. |
Response to Communication dated May 10, 2011 in European Patent Application No. 10013624.1-2319/2314215 filed on Nov. 2, 2011, 5 pages. |
Examination report dated Nov. 12, 2013 in European Patent Application No. 10013624.12319/2314215 filed on Nov. 12, 2013, 6 pages. |
U.S. Appl. No. 12/876,316, filed Sep. 7, 2010. |
U.S. Appl. No. 12/876,316, filed Sep. 7, 201. |
U.S. Appl. No. 12/330,550, filed Dec. 9, 2008. |
U.S. Appl. No. 13/182,656, filed Jul. 14, 2011. |
U.S. Appl. No. 13/443,096, filed Apr. 10, 2012. |
Tyco Healthcare Kendall: ECG Electrodes Where Quality Leads, 2003, 8 pages. |
Notification of First Office Action dated Jul. 26, 2011 for Chinese Application No. 200810191090.1, 6 pages. |
Notification of Response to Office Action dated Dec. 12, 2011 for Chinese Application No. 200810191090.1, 19 pages. |
Letter dated Nov. 22, 2011 re Response to Office Action dated Nov. 22, 2011 for Chinese Application No. 200810191090.1, 4 pages. |
Notification of Second Office Action dated May 11, 2012 for Chinese Application No. 200810191090.1, 6 pages. |
Notification of Response to Second Office Action dated Jun. 11, 2012 for Chinese Application No. 200810191090.1, 5 pages. |
Grant Notification dated Dec. 19, 2012 for Chinese Application No. 200810191090.1, 4 pages. |
Notification dated Mar. 6, 2013 with Chinese Divisional Application No. 201310064924.3 as filed, 38 pages. |
EP Office Action dated Nov. 19, 2010 for EP Application No. 08171185.5 filed Dec. 10, 2008, 1 page. |
Letter dated Dec. 22, 2010 in response to EP Office Action dated Nov. 19, 2010 for EP Application No. 08171185.5 filed Dec. 10, 2008, 1 page. |
EP Search Report dated Mar. 7, 2012 for EP Application No. 08171185.5 filed Dec. 10, 2008, 8 pages. |
Response dated Oct. 3 2012 to Extended EP Search Report dated Mar. 7, 2012 for EP Application No. 08171185.5 filed Dec. 10, 2008, 2 pages. |
Letter dated Oct. 4, 2012 and copy of Divisional application filed Oct. 4, 2012 divided from EP Application No. 08171185.5 filed Dec. 10, 2008, 20 pages. |
Letter dated Apr. 2, 2012 and Office Action for Mexican Application No. MX/a/2008/015927, filed Dec. 11, 2008, 3 pages. |
Letter dated May 15, 2012 and Response for Mexican Application No. MX/a/2008/015927, filed Dec. 11, 2008, 9 pages. |
Letter dated Jun. 26, 2012 re Notice of Allowance with allowed claims for Mexican Application No. MX/a/2008/015927, filed Dec. 11, 2008, 7 pages. |
Letter dated Feb. 25, 2013 and Office Action for Mexican Application No. MX/a/2012/009542, filed Aug. 16, 2012, 3 pages. |
Letter dated Apr. 23, 2013 and Response for Mexican Application No. MX/a/2012/009542, filed Aug. 16, 2012, 20 pages. |
Examination Report dated Jun. 24, 2013 for EP Application No. 08171185.5, filed Dec. 10, 2008, 4 pages. |
Extended EP Search Report dated Aug. 10, 2013 for EP Application No. 12187209.7, filed Dec. 10, 2008, 6 pages. |
Request for Continued Examination (RCE) and related papers filed Oct. 1, 2013 for U.S. Appl. No. 13/785,713, filed Mar. 5, 2013, 6 pages. |
Notice of Allowance dated Dec. 17, 2013 for U.S. Appl. No. 13/785,713, filed Mar. 5, 2013, 8 pages. |
Letter dated Dec. 16, 2013 in response to Communication Pursuant to Article 94(3) dated Jun. 24, 2013 for EP Application No. 08171185.5, filed Dec. 10, 2008, 4 pages. |
Office Action dated Mar. 25, 2014 for U.S. Appl. No. 14/041,484, filed Sep. 30, 2013, 8 pages. |
Examination Report dated Mar. 11, 2014 for EP Application No. 12187209.7, filed Dec. 10, 2008, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20140170896 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61012825 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13785713 | Mar 2013 | US |
Child | 14041471 | US | |
Parent | 13443096 | Apr 2012 | US |
Child | 13785713 | US | |
Parent | 13182656 | Jul 2011 | US |
Child | 13443096 | US | |
Parent | 12330550 | Dec 2008 | US |
Child | 13182656 | US |