This invention relates generally to echo cancellers, and more particularly to an H-register echo canceller incorporating a register for storing default coefficients for use in the event that the echo canceller diverges.
Echo cancellers (ECs) are well known in the art for providing cancellation of echoes resulting from imperfect impedance matching by hybrids in two-to-four wire signal conversion or in the case of Acoustic Echo Cancellers, providing cancellation of echoes resulting from acoustic coupling from the handsfree speaker to the handsfree microphone. Prior art adaptive line echo cancellers (LECs) and acoustic echo cancellers (AEC) employing the Least Mean Square (LMS) algorithm are useful in quickly adapting to changes in the echo path response. However, such echo cancellers suffer from poor performance in the presence of “double talk” (a condition that occurs when the near end and far end speakers are talking at the same time). Several approaches have attempted to overcome the problem of poor echo cancellation in the presence of “double talk” by incorporating a dual-H architecture wherein a first filter having non-adaptive coefficients simulates the echo response in conjunction with a second adaptive filter. Both filters provide filtering and the residual echo generated by both filters is compared. If the residual echo from the second filter is smaller than the residual echo from the first filter then the adaptive filter coefficients are transferred into the first filter. Examples of such prior art systems are described in the following patents:
According to the present invention, the echo canceller EC coefficients are captured and stored once the EC is converged, for use as default coefficients in the event that the EC diverges in the presence of double talk or while tracking the statistical variations of the signal. A novel method is set forth for controlling the criteria for capturing these coefficients for use by the active EC, thereby resulting in highly stable EC operation under many different signal conditions.
More particularly, according to the present invention, an adaptive filter is used in conjunction with a temporary register in which coefficients and an echo return loss enhancement (ERLE) are stored. A controller monitors ERLE and selectively enables and disables the adaptation process and transfers the default coefficients into the filter. In contrast with the prior art, a single adaptive filter carries out the filtering process, thereby reducing the calculation complexity over the prior art. However, the resulting performance is similar to that of prior art dual-H register systems.
A detailed description of the invention is set forth herein below, with reference to the accompanying block diagram of an echo canceller according to the preferred embodiment.
In the system of
A temporary register 9 is provided for storing default coefficients Ct and temporary values of ERLEt. Controller 6 enables transfer of coefficients Ca and Ct between the filter 4 and the register 9.
In operation, at the start of a call the ERLE=0 is written into the temporary register 9 as ERLE max. Once the convergence reaches an initial state (e.g. ERLE>16 dB), if the short term average of ERLE is greater than ERLE max then the coefficients of the adaptive filter Ca are transferred to the temporary register 9 and stored as Ct, and the ERLE is stored as ERLE max. In the event ERLE<ERLE max*ERLE_threshold1 (e.g. ERLE is less than ERLE max by 20 dB where ERLE_threshold1=0.1), the adaptive filter coefficients Ca are replaced by coefficients Ct from the temporary register 9. The Ct coefficients remain as Ca until and unless ERLE>ERLE max*ERLE_threshold2 (e.g. ERLE_threshold2=0.5), in which case ERLE max=ERLE, and the process of copying the adaptive coefficients Ca and the ERLE to the temporary register 9 continues, provided that ERLE>ERLE max.
When the coefficients Ca are replaced by Ct then a timing-counter 8 starts counting speech samples while the short term energy average of the Rin signal exceeds a predetermined Rin_threshold (i.e. while the Rin signal is above the noise floor). If the equation ERLE>ERLE max*ERLE_threshold2 is satisfied the timing-counter is set to zero. In the event that the timing counter exceeds a predetermined value of time_max (e.g. 3 seconds) then the low ERLE has been caused by a change of the echo path impulse response. Therefore, the adaptive coefficients Ca, temporary register coefficients Ct and ERLE max are set to zero. The adaptation process then re-starts from these initial conditions.
The echo canceller is disabled for in-band signals and the adaptive filter 4 is deactivated.
The following pseudo-code exemplifies the echo cancellation algorithm according to the present invention:
A person of skill in the art will appreciate that the principles of the invention may be used in many applications involving adaptive processes, such as acoustic echo cancellers used for full duplex handsfree speakerphones.
Modifications and alternative embodiments of the invention are possible without departing from the sphere and scope of the invention as set forth in the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
0212298.4 | May 2002 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
5631900 | McCaslin et al. | May 1997 | A |
5663955 | Ivengar | Sep 1997 | A |
5664011 | Crochiere et al. | Sep 1997 | A |
5867486 | Sugiyama | Feb 1999 | A |
6028929 | Laberteaux | Feb 2000 | A |
6031908 | Laberteaux et al. | Feb 2000 | A |
6088445 | Chadha et al. | Jul 2000 | A |
6163609 | Makinen et al. | Dec 2000 | A |
6181793 | Laberteaux et al. | Jan 2001 | B1 |
6219418 | Eriksson et al. | Apr 2001 | B1 |
6324170 | McClennon et al. | Nov 2001 | B1 |
6434110 | Hemkumar | Aug 2002 | B1 |
6445792 | Shiraki et al. | Sep 2002 | B1 |
6563803 | Lee | May 2003 | B1 |
6580696 | Chen et al. | Jun 2003 | B1 |
6718035 | Younce et al. | Apr 2004 | B2 |
6768723 | Popovic et al. | Jul 2004 | B1 |
6959167 | Dehandschutter | Oct 2005 | B1 |
Number | Date | Country |
---|---|---|
0 700 171 | Mar 1996 | EP |
1 093 284 | Apr 2001 | EP |
2 344 500 | Jun 2000 | GB |
WO9926399 | May 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030223382 A1 | Dec 2003 | US |