The present invention relates to echogenic medical devices, and more particularly an echogenic needle assembly that may be used to more accurately place and position a cannula into a body.
Ultrasound scanners are used increasingly to help direct or check placement of catheters and other devices inserted in the body. Some of these devices are not normally very visible under ultrasound because of their shape, size or the fact that the material from which they are made has similar reflectance acoustic impedance to the tissue or body fluid within which they are inserted. Attempts have been made to increase the visibility of medico-surgical devices under ultrasound observation in various ways. Where the device, such as a needle, is of a metal, the usual way of increasing its visibility is by modifying its surface, such as by forming grooves or indentations in its surface. One such echogenic needle known is the Wallace Amniocentesis Needle(s) that is being sold by the assignee of the instant invention. Other methods of making echogenic needles include applying a reflective coating to the device, such as incorporating bubbles, as described in WO98/19713 and EP0624342. Where the device is of a plastics material, such as a catheter of the kind described in GB2379610, the wall may include gas bubbles or a bubble-containing material may be incorporated in a stripe occupying only a part of the circumference. GB2400804 describes a similar catheter with several layers. U.S. Pat. No. 7,258,669 describes a catheter with a helical, gas-filled lumen extending along its length. DE 102006051978 describes a bubble-filled rod inserted along the bore of a flexible plastics catheter to enhance visibility under ultrasound observation. U.S. Pat. No. 8,398,596, assigned to the assignee of the instant application, discloses a bubble-filled stylet rod inserted along the bore of a needle, as well as disclosing an ultrasound visible sleeve that extend along the outside of a needle.
Embodiments of the instant application are directed to improvements to the echogenic features of needles used in different surgical procedures including peripheral nerve block (PNB), epidural and others that require radiographic or ultrasound observation of the needle during the procedure.
Also disclosed in the instant application is a needle assembly that combines an echogenic needle, including any of the above disclosed enhanced echogenic needle embodiments, with an echogenic cannula so that the needle assembly thus formed is adapted to be readily guided during its placement into the body of a subject patient under ultrasound observation, and the positioning of the cannula in the body after the placement can readily be confirmed.
A first embodiment of an echogenic needle of the instant invention has at its distal portion adjacent its patient end at least one section that has a spiral V-shaped groove. The walls of the groove are orthogonal to each other. The groove is tilted at a given angle from its neutral position toward the proximal end of the needle. The embodiment needle is usually inserted into a subject patient at a desirable insertion angle. If the needle is under ultrasound imaging whereby an ultrasound wave is directed to the needle, at least one wall of the tilted groove would reflect the ultrasound wave back to the receiver of the transducer at substantially the reverse direction, i.e., at approximately 180°, to present an improved ultrasound image of the echogenic needle.
By forming the echogenic groove in a spiral fashion, while maintaining the preferred tilt angle to the groove, the echogenic needle of the instant invention may be made simply. Moreover, that the walls of the groove are orthogonal to each other means that the only angle that needs to be adjusted with regard to the production of the echogenic needle is the tilt angle, which may simply be done by adjusting either the angle of the needle shaft that is being cut, or the angle of the cutting wheel or tool used to cut the groove as the needle shaft is rotatably moved relative to the cutting wheel, which may also be rotating.
Instead of one spiral groove, the echogenic section of the needle may be made with two crisscrossing spiral grooves, i.e., one clockwise and one counter-clockwise relative to the sharp tip of the needle. Each of the V-shaped grooves has walls that are orthogonal to each other. Furthermore, the grooves each may be orientated or tilted at a predetermined angle relative to the proximal end of the needle to effect a substantially 180° reflection of the ultrasound wave from the transducer back to the transducer, when the needle is positioned at an insertion angle that facilitates the insertion of the needle into the subject patient.
A second embodiment of the needle of the invention has a spiral groove that does not have a tilt angle. Instead, the pitch between the tips of the walls of the V-shaped groove is decreased so that the number of turns for a given distance of the groove increases. It was determined that as a result of the increased pitch density, an enhanced ultrasound wave is reflected back to the receiver of the transducer to provide an improved image of the echogenic needle without the need to tilt the groove from its neutral position as is done in the first needle embodiment. Thus, for the second needle embodiment, the pitch of the groove is decreased such that the pitch density for the spiral groove is increased to a range that leads to an improved reflection of the ultrasound image without the need to tilt the groove.
As in the first needle embodiment, instead of one spiral groove, the echogenic section of the needle may have two crisscrossing spiral grooves, one having a clockwise rotation and the other having a counterclockwise rotation relative to the sharp tip of the needle. Since there is no tilting, the walls of the V-shaped grooves, in addition to being substantially orthogonal to each other, would have the same length or height from the bottom to the top of the walls, i.e., the lowest point or the valley in the groove to the uppermost tip or the apex of the V-shaped groove.
Instead of one echogenic section, the distal portion of the needle shaft may have a plurality of echogenic sections. For the exemplar needle embodiments, the needle shaft has two echogenic sections separated by a non-groove section, so that there are two sections of crisscrossing spiral grooves. As discussed above, each groove is adapted to either tilted at a predetermine angle, or remain at its neutral position relative to the longitudinal axis of the needle but has an increased pitch density.
The needle of the instant invention for viewing under ultrasound imaging therefore may comprise a shaft extending along a longitudinal axis having a proximal end and a distal end including a sharp tip, one and other grooves spirally formed clockwise and counterclockwise, respectively, from at least adjacent the sharp tip along a distal portion of the shaft so that the one and other grooves crisscross each other a predetermined distance along the distal portion, the one and other grooves each being at a neutral position relative to the longitudinal axis of the shaft, each of the one and other grooves has an increased pitch density in a range that enhances the reflection of the ultrasound wave from an ultrasound transducer directed to the shaft as an improved reflection image back to the transducer. The walls of each of the grooves are orthogonal to each other and have the same length.
Further disclosed herein is an echogenic needle assembly that combines an echogenic needle, including a needle with the echogenic features as described above, with an echogenic cannula to improve the accessing of a particular portion in a body, for example a blood vessel in a subject patient, and also to confirm that the cannula is correctly positioned in the body after the removal of the needle. Such echogenic needle assembly may be used for central venous catheter (CVC) procedure, epidural and other procedures that require the placement of a cannula or catheter in a subject patient, as well as possibly for percutaneous procedures whereby a tube is inserted into the trachea of the patient. To that end, an echogenic needle, for example either of the above described needle embodiments, is fittingly inserted into an echogenic cannula that may be either plastic or metal. The cannula is made echogenic by for example having gas bubbles or other gas interstices formed in the body of the cannula. The cannula and the needle have cooperating hubs, so that when the cannula and the needle are fully mounted to each other, the cannula and needle hubs are frictionally engaged to each other and the tip of the needle, which has the echogenic feature, extends beyond the distal end of the cannula. The echogenic tip may be used, under ultrasound observation, to guide the movement of the needle assembly into the body of the subject patient, so that the needle assembly may be moved to the desired location in the body, for example the appropriate blood vessel, to which the distal end of the cannula is to be located.
Upon the initial location of the desired location such as the appropriate blood vessel in the body of the subject patient with the echogenic tip of the needle, with the distal end of the cannula having been guided into the blood vessel, the needle is removed. Since the cannula is echogenic, whether the cannula has been correctly positioned within the body can further be confirmed under ultrasound.
Thus, the instant invention is directed to a method of confirming correct placement of a cannula in a body, comprising the steps of mounting an echogenic cannula with a needle having a sharp tip and at least an echogenic feature at or proximate to the tip; inserting the tip of the needle into the body; confirming the proper insertion of the tip of the needle in the body with an ultrasound instrument; confirming the placement of the cannula in the body with the ultrasound instrument; and removing the needle to leave the cannula in place.
The instant invention is further directed to a needle assembly, comprising: an echogenic cannula longitudinally mounted with a needle having a sharp tip with an echogenic feature at or proximate to the tip, the tip of the needle and the cannula being both visible under ultrasonic observation to guide the insertion movement of the needle assembly into a desired location in a body and to confirm the placement of the cannula in the body after removal of the needle.
The instant invention is moreover directed to a needle cannula arrangement comprising an echogenic cannula having a distal end and a coaxial bore, a needle having a sharp tip for insertion into a body removably inserted into the coaxial bore, the needle including at least one echogenic feature at or proximate to the tip, wherein when the needle is fully inserted into the cannula, the tip of the needle is exposed so that the tip of the needle and the cannula are both visible under ultrasound observation when the needle cannula arrangement is placed into a body, the tip guides the insertion movement of the arrangement in the body and the cannula confirms the placement thereof in the body after the removal of the needle.
The present invention will become apparent and the invention itself will be best understood with reference to the following description of the present invention taken in conjunction with the accompanying drawings, wherein:
An exemplar embodiment of the needle used, for example for peripheral nerve block procedures, is shown in
As shown in
As best shown in
The configuration of the groove of the needle is illustrated in
The inventors have found that, in use, a clinician usually positions a needle at an angle that facilitates the insertion of the needle into the subject. Thus, were the groove “tilted” at a given angle α toward the proximal end of the needle, an improved reflection of an ultrasound wave directed by an ultrasound transducer towards the needle may be obtained. By empirical studies, it was found that the a angle may range from approximately 5° to 25°, and preferably at 10° relative to the neutral position. Thus, instead of 45° for each of the walls of the V-shaped groove, the “tilted” groove would have its walls, as designed by lines 16w1′ and 16w2′, shifted together such that wall 16w1′ is at a β angle relative to the outside walls 4a of the needle shaft. Walls 16w1′ and 16w2′ remain orthogonal to each other when at the “tilted” position. For the exemplar embodiment where α=10°, β would be 35°. The depth of the groove may vary anywhere from 0.006 inch to 0.025 inch (0.1524 mm to 0.635 mm). It was further found that the pitch between grooves, as designated by reference number 24 in
The configuration of the exemplar embodiment of the echogenic needle of the instant invention is further shown in
As discussed above, with the exemplar illustration of
The neutral positioned spiral grooves are represented by the dotted wall lines 16w1 and 16w2 in
With the combination of clockwise and counter-clockwise spiral wound grooves, and with each of the grooves having a preferable pitch of approximately 0.02 inch (0.508 mm) for the tilted echogenic needle embodiment, an echogenic needle with improved echogeneity results. So, too, an improved echogenic needle adapted to provide improved echogeneity results may be achieved with non-tilted crisscrossing clockwise and counter-clockwise spiral grooves each having an increased pitch density or groove width having a range of 0.001 inch to 0.003 inch (0.025 mm to 0.075 mm), and preferably of approximately 0.0021 inch (0.053 mm). It should be appreciated that instead of a V-shaped groove, each of the grooves may be U-shaped or trapezoidal-shaped, so long as the walls of the groove are made to be substantially orthogonal to each other. Furthermore, one of the crisscrossing grooves may have a V-shape while the other groove may have a U-shape or some other shape including trapezoidal that clearly defines the orthogonal walls of the groove.
Although not disclosed above, it should be appreciated that the proximal end of the needle may be fixedly bonded or connected to a needle hub, so that the needle may be fluidly coupled to a medicament or fluid store, such as a syringe or a pump, to infuse medicament or fluid to the patient once the needle has been inserted into and appropriately positioned within the patient. The respective connectors of the needle hub and the fluid store may be configured to have complementary features or configurations that allow only those connectors to be coupled to each other, i.e., each of those connectors is not connectable to a counterpart conventional luer connector. Moreover, before use, the needle may be protected by a sleeve to prevent contamination and for shipping purposes. To prevent coring of the needle, a stylet may be concentrically fitted into the through passage of the needle when the needle is inserted into the patient, and removed thereafter.
The forming of the spiral grooves onto the outer circumferential wall of the needle shaft may be accomplished in substantially the same manner as is done for the above-noted Wallace Amniocentesis Needles. In the alternative, the spiral grooves may be formed substantially in accordance with the disclosure of JP2000051219, which was assigned to the assignee of the instant invention. In brief, the '219 publication discloses an edge of a spinning wheel is used to form a groove on a catheter that rotatably moves along a longitudinal direction relative to the wheel.
With reference to
Also shown in
As noted above, the shaft or cannula 44 of cannula assembly 42 may be made of metal including sintered metal having gas interstices so that bubbles may be formed along the cannula, or may be made from a flexible plastic material such as PEBA, nylon, PVC, polyethylene, polyprophelene, polyester or polyurethane to which a foaming agent is added to form gas interstices in the form of gas bubbles 53 along its entire length, or at least one portion thereof. As described in the above incorporated by reference '596 patent, the density of the gas bubbles are selected to ensure that the cannula shaft 44 is echogenic. Typically the gas bubbles 53 may have a size in the range of 0.1 μ to 300 μ, preferably having a size in the range of 1 μ to 50 μ and most preferably having a range of 5 μ to 10 μ. Other ways of forming the gas bubbles in the cannula are described in the above incorporated by reference patents.
With reference to
For the needle assembly embodiment shown in
In the case that the cannula is used to guide a guidewire into the body of the patient, after confirmation of the positioning of the cannula, the guidewire is threaded through the axial bore of cannula 44. Thereafter, cannula 44 is removed and the additional procedure of inserting a permanent catheter along the guidewire into the patient, as for example a central venous catheter (CVC) for a CVC procedure to infuse drugs for chemotherapy or nutrition, or medicament into an already implanted port in the patient, can be further carried out. The inventive echogenic needle assembly possibly may also be used for percutaneous tracheotomy, where the needle assembly may be used to effect the incision opening at the trachea of a patient under ultrasound observation. After the removal of the needle, a guidewire may be threaded through the cannula into the trachea of the patient. Thereafter, the cannula is removed, the guidewire may be used to guide a dilator to widen the incision opening at the trachea and the subsequent placement of a tracheostomy tube into the trachea of the patient after the removal of the dilator.
Inasmuch as the present invention is subject to many variations, modifications and changes in detail, it is intended that the matter described throughout this specification and shown in the accompanying drawings be interpreted as illustrative only, and not in a limiting sense. Accordingly, it is intended that the invention be limited only by the sprit and scope of the hereto appended claims.
This application is a divisional of U.S. application Ser. No. 15/297,767 filed Oct. 19, 2016 entitled “Echogenic Needle Assemblies And Method Of Use Thereof.” The '767 application claims priority to U.S. Provisional Application Ser. No. 62/246,222 filed Oct. 26, 2015 entitled “Echogenic Needle Assemblies And Method Of Use Thereof.” The '767 and '222 applications each are incorporated by reference in their entirety herein.
Number | Date | Country | |
---|---|---|---|
62246222 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15297767 | Oct 2016 | US |
Child | 18785260 | US |