The invention relates to a fastener structure, in particular to an eco-friendly fastener structure with a lockable stainless steel screw pair capable of preventing loosening and reducing noise and environmental pollution.
Conventional screw made of steel to form a device fastening two objects is usually called screw structure or fastener, hereinafter referred to simply as screw structure. The screw bolt (or screw rod) and screw nut (commonly referred to as a screw cap, hereinafter referred to as a nut) of the screw structure assembly are manufactured separately. The screw rod without a screw bolt head fastens two adjacent objects by rotating two nuts from two ends of the screw rod, which is a screw combination utilizing in the first time according to the screw physical characteristics of spiral threads inside the nuts and spiral threads outside the screw rods to gradually fasten in a fine adjustment manner and avoiding loosening through the friction length to fasten two adjacent objects. After the screw assembly fastened the two objects, due to the fact that the stress strain of the fastened two objects is changed continuously, the screw structure is continuously and repeatedly stretched or vibrated, and the nut is loosened after a long time. Therefore, the occurrence of a disaster caused by the loosening of the nut is a first disadvantage of the conventional screw assembly structure.
In order to save one of the two nuts in the fastening screw rod, the screw with the bolt head is manufactured. The screw rod with one end provided with a fixed screw head is commonly referred to as a bolt (same as the following). The conventional bolt is manufactured by straightening and cutting one end of a circular steel bar by using a cold stamping and pressing wire rod, and a bolt head of a hexagon nut-like shape is manufactured, so that the bolt head is prefabricated. The stamping process generates huge impact noise, which is very unfavorable for field operators and the surrounding environment, and even causes environmental pollution problems. This is a second disadvantage of bolt manufacture.
Bolt manufacturing of screw assemblies often begins with a heat treatment process in which wire rod material is first heated to sphericize the lattice of the wire rod material and then annealed. This is to soften the rigidity of the wire rod for easily straightening and cutting, and for easily stamping out bolt heads and screw teeth. Then the formed bolt is subjected to heat treatment for hardening again, the repeated heat treatment process wastes huge energy, and it is a third disadvantage that the manufacturing process of the conventional bolt head is very complicated, high in energy consumption and disadvantageous in environmental protection.
The screw assembly can fasten two or more objects along the thread track by utilizing the friction principle that the circular surface of the screw assembly increases the rotating inclined surface of the screw assembly. Therefore, a pair of screw pairs formed by the external threads of the bolt and the internal threads of the nut bear great stress on the spiral rotating inclined plane; in order to withstand the corrosion caused by moisture so as to avoid the deformation and damage of the screw pair, a bolt and a nut for which a surface galvanizing antirust treatment is performed or which are made of an all-stainless steel material are adopted. In order to prevent the screw pair formed by the external screw thread of the bolt and the internal screw thread of the nut from collapsing due to rusting, it is known to prevent rust by zinc-chromium plating on the surface of the screw thread. In order to prevent rust with zinc-chromium plating, a large amount of capital for heavy metal pollution prevention equipment must be invested, so that the treatment of heavy metal polluted water is expensive. Therefore, the screw unit cost is increasing, which has caused the crisis of screw industry in global cost competitiveness. This is a fourth disadvantage of conventional screw pair rust protection processes.
Due to the four defects of the whole screw manufacturing process, it must be innovated in the screw manufacturing method or changed in the fastening technology of the product structure, so as to solve the problems of thread rust prevention, noise, water quality heavy metal pollution treatment cost, energy consumption and the like in the traditional manufacturing process at the same time, so that the advanced technology can meet the standard of industrial safety and environmental protection requirements.
The invention provides the fastening device with a lockable and stainless steel screw pair and the noise reduction environment-friendly manufacturing process of the fastening device, thereby solving the four disadvantages of the prior art. The fastening device with the lockable and stainless steel screw pair of the present invention is shown in
According to the eco-friendly fastener structure with the lockable stainless steel screw pair of the present invention, as shown in the perspective view of the screw structure with the thread and a single groove on an outer wall of
The device first rotates the head end nut 13 into the head end of the screw rod, align the single groove in the head end nut with the screw rod head end groove 1221, and then inserts the pin 18 into a common groove formed by the single groove in the head end nut and the screw rod head end groove 1221 from the head end nut side, such that a lockable screw rod head end screw pair is formed. The lockable screw rod head end screw pair can be fixed to support a force of rotating of the tail end screwing nut 14 to fasten the fastened object 151 and the fastened object 152. However, according to the Research Council on Structural Connections (RCSC) nut screwing standard, the device firstly screws tightly the tail end screwing nut 14, and then further screws the tail end screwing nut with three grooves 14 by 120±30 degrees after the spring gasket 17 snugged tightly, and the following two functions can be achieved simultaneously: the first function is to reach a predetermined tightening force value; and the second function is to simultaneously achieve the forming of the lockable stainless steel screw pair structure by rotating one groove of the three grooves of the tail end screwing nut until the one groove aligned to the screw rod head end groove to form the common groove and then extending and inserting the pin 18 into the common groove, as shown in the sectional view of the sectional view of the eco-friendly fastener structure with the lockable stainless steel screw pair in
Furthermore, the grooves of two stainless steel screw pairs such as the head end stainless steel screw pair and the tail end stainless steel screw pair can be injected with Graphyene to achieve the effect of dissipating the heat of strain changes in the two stainless steel screw pairs.
In the innovative screw structure, the device first rotates the head end nut 13 into the head end of the screw rod, align the single groove in the head end nut with the screw rod head end groove 1221, and then inserts the pin 18 into a common groove formed by the single groove in the head end nut and the screw rod head end groove 1221 from the head end nut side, such that a nut with the lockable screw rod head end screw pair is formed. The device can be considered as a substitution of the bolt head of a conventional bolt so as to fix the screwing action of the screw. The structure can solve the problem of huge impact noise generated by cold rolling and stamping of manufacturing bolt head of the conventional bolt. Therefore, the invention is beneficial to the health of field operators and the quiet effect of the surrounding environment, and solves the second disadvantage caused by the manufacture of the conventional screw component structure.
According to the two nuts with the lockable screw rod head end screw pair, one of the two nuts replaces the head end fixing nut at the bolt head end of a conventional bolt, and great impact noise generated by cold rolling stamping of the conventional bolt head is avoided; the biggest effect is to eliminate all the drawbacks of the wire rod process. Because the bolt manufacturing of conventional screw assemblies, especially the manufacture process of bolt having bolt head, often begins with a heat treatment process of firstly heating and annealing the wire rod material to sphericize the lattice of the wire rod material, straightening and cutting the wire rod material for easily stamping out bolt heads and screw teeth, and then hardening the formed bolt for another heat treatment, the repeated heat treatment process wastes huge energy. It is the third disadvantage that the manufacturing process of the conventional bolt head, and the use of a process starting from a wire rod has the following disadvantages: (1) the wire rod manufacturing process does not accord with a linear manufacturing logic, (2) the problem of space wastage of the storage space of the wire rod and the problem of outdoor corrosion of the wire rod, (3) the wire rod must be coiled into a circle before the steel bar is transported out of the factory so as to be conveyed to a screw factory, and (4) there are waste energy and huge equipment expenditures due to derusting, collimation and radius sizing before the bolt is manufactured, and (5) there are waste energy, processing time cost and the like of softening and re-hardening treatment of the rigid of the wire rod. Therefore, the problem of manufacturing a bolt head from a wire rod must be firstly solved. The aforementioned manufacture process of the head end nut with lockable screw pair combination does not need stamping a screw head; therefore it avoids the waste of the storage and transportation cost of the wire rod, the cost of the derusting and straightening of the wire rod, and the power consumption cost that the crystal lattice of the wire rod steel is sphericized to be easy to manufacture is avoided. Thus, the third disadvantage that the manufacturing process of the conventional bolt head is complicated and energy-consuming is wasted is solved.
According to the novel screw structure, the screw rod 12 with the thread and the single groove on the outer wall of the device is formed by inserting a circular steel column rod 121 into a stainless steel pipe sleeve 122 with a thread and a single groove on an outer wall for welding. Thus, the stainless steel pipe sleeve 122 with the thread and the single groove on the outer wall of the screw rod 12 is a stainless steel anti-rust material, and hence there is no wastewater treatment cost of heavy electroplating and environmental pollution. Therefore, the problems of water quality heavy metal pollution treatment cost and energy consumption of thread rust prevention and traditional manufacturing processes can be simultaneously solved. Furthermore, the screw rod 12 with the thread and the single groove on the outer wall of the present device is an anti-rust screw rod formed by inserting the circular steel column rod 121 made of a circular steel rod material with a larger weight ratio into the stainless steel pipe sleeve 122 with the thread and the single groove on the outer wall with a smaller weight ratio for welding, and also it can greatly reduce the cost of the whole conventional all-stainless steel bolt.
The eco-friendly fastener structure with the lockable stainless steel screw pair provided by the invention has the environmental-friendly contributions of saving energy, shortening the operation process, reducing noise, reducing environmental pollution, reducing the pollution of dirty oil to the operation air and the discharge water quality, reducing the waste of invalid space of the wire rod and the transportation energy, and the like. Thus, it can become the “eco-friendly” fastener structure with the lockable stainless steel screw pair.
In one embodiment, an eco-friendly fastener structure with a lockable stainless steel screw pair is described, which is an eco-friendly fastener structure with lockable stainless steel screw pairs at two ends.
The embodiment illustrates an eco-friendly fastener structure with lockable stainless steel screw pairs at two ends, wherein
According to the embodiment of the invention, in the eco-friendly fastener structure with lockable stainless steel screw pairs at two ends,
The head end stainless steel pipe sleeve 322 with the thread and the single groove on the outer wall is formed by rolling a thread of a screw on an outer wall of a stainless steel pipe, and cutting a screw rod head end groove 3221 on the outer wall in a direction parallel to a central axis of the stainless steel pipe; and the screw rod head end groove 3221 at the head end part of the screw rod 32 with the threads and the single grooves on the outer wall of the two ends is called the screw rod head end groove 3221. The tail end stainless steel pipe sleeve 323 with the thread and the single groove on the outer wall is made by rolling a thread of a screw on an outer wall of a stainless steel pipe, and cutting a screw rod tail end groove 3231 on the outer wall in a direction parallel to central axis of the stainless steel pipe; and the screw rod tail end groove 3231 at the tail end part of the screw rod 32 with the threads and the single grooves on the outer wall of the two ends is called the screw rod tail end groove 3231. The head end nut 13, as shown in
The device first rotates the head end nut 13 into the head end of the screw rod 32, align the single groove in the head end nut with the screw rod head end groove 3221, and then inserts the head end pin 381, such that a lockable screw rod head end screw pair is formed. The lockable screw rod head end screw pair can be fixed to support a force of rotating of the tail end screwing nut 14 to fasten the fastened object 151 and the fastened object 152. However, according to the Research Council on Structural Connections (RCSC) nut screwing standard, the device firstly screws the tail end screwing nut 14 tightly, and then further screws the tail end screwing nut 14 by 120±30 degrees after the spring gasket 17 snugged tightly, and the following two functions can be achieved simultaneously: the first function is to reach a predetermined tightening force value; and the second function is to simultaneously achieve the forming of the lockable stainless steel screw pairs at two ends structure by rotating one groove of the three grooves of the tail end screwing nut until the one groove aligned to the screw rod tail end groove 3231 to form the common groove and then extending and inserting the tail end pin 382 into the common groove.
In this embodiment, the three grooves of the tail end screwing nut are in parallel and are equally and mutually separated from each other at the inner wall of the nut at an angle of 120 degrees, and the three grooves on the inner wall are respectively parallel to the central axis of the tail end screwing nut 14. In one field embodiment, sometimes after screwing the tail end screwing nut with the three grooves by a range of 120±30 degrees, the predetermined tightening force value is not reached; therefore, a tail end screwing nut with six grooves is adapted as a replacement to reach the standard of screwing a range of 120±30 degrees. The six grooves of the tail end screwing nut with the six grooves are in parallel and are equally and mutually separated from each other at the inner wall of the nut at an angle of 60 degrees, and it can be fine-adjusted more flexibly to achieve the purpose of more accurate predetermined tightening force and never loosening. In other application, a tail end screwing nut with multiple grooves is adapted as a replacement to achieve the purpose of more accurate predetermined tightening force and never loosening. Two stainless steel screw pairs such as the head end stainless steel screw pair and the tail end stainless steel screw pair jointly form lockable stainless steel screw pairs, so that damage of stressed threads in the screw pair due to corrosion can be prevented, and the purpose of never loosening of fastening the fastener screw device can be achieved.
In the foregoing description and embodiments of the invention set forth, elements are involved with reference numbers in various details, all of which may be considered to be identical or functionally similar, and are intended to illustrate, by way of example, the principal features of implementation in a very simplified pictorial representation; thus, the drawings are not intended to depict all features of an actual embodiment, nor are they intended to depict the relative sizes and numbers of components depicted. Accordingly, the drawings are not drawn in accordance with scale, but are drawn in accordance with the various structures of components of the structure of the eco-friendly fastener structure with lockable stainless steel screw pair of the present invention, wherein the various structures can achieve to prevent corrosion damage, to fasten the fasten screw device, and to achieve the basic spirit components of the target structure of never loosen. In addition, the device is only used as a representative of the device for preventing corrosion damage and locking the fastening screw device to be never loosened by using a lossless stainless steel screw pair, and can be various forms which can play functions equivalently and be applied. For example, the stainless steel pipe sleeve 122 with the thread and the single groove on an outer wall shown in
Although the embodiments of the invention are described through the structure of the variation structures of every components and completely achieving the purposes of preventing corrosion damage and fastening the fastening screw device to be never loosened by the lockable stainless steel screw pair of the eco-friendly fastener structure with lockable stainless steel screw pairs at two ends, or the structure disclosed in the specification of the variation structures of every components and completely achieving the purposes of preventing corrosion damage and fastening the fastening screw device to be never loosened by the lockable stainless steel screw pair of the eco-friendly fastener structure with lockable stainless steel screw pair; it does not intend to limit the invention to the details shown in the figures. Since the embodiments of the invention may be changed by various modifications and structural and the invention may also be modified to various application or be modified by using other material to the invention by combining the prior art with current knowledge without departing from the spirit of the invention in any way thereof, such modifications should be and are intended to be included within the meaning and range of equivalents of the appended claims.