In at least one aspect, the present invention relates to knitted fabrics, and in particular, knitted fabrics for use in hook-and-loop fasteners.
“Hook-and-loop” fasteners are used in diverse applications such as automotive trim. These fasteners typically include two generally flat components attachable and detachable to and from face abutting relation with one another. The loop or “female” fastener component is of a textile fabric construction, generally having a fabric ground layer with a plurality of relatively flexible pile-type loops extending outwardly from one face of the ground layer. The hook or “male” component may be of an extruded or molded plastic construction having any of various forms of relatively stiff, molded or extruded hook-shaped elements extending in upstanding relation from one face of a ground layer, or may also be of a textile fabric construction similarly having a fabric ground layer with a plurality of hook-shaped elements upstanding from one face of the ground layer. In use, the hook and loop faces of the fastener components grippingly engage one another when pressed together in face abutting relation by penetration of the hook-shaped elements of the hook component into the loops at the opposing face of the loop component. The engagement between the hook and loop faces of the two components resists separation thereof until a threshold force is exerted on one component in a peeling-like fashion.
In many applications, stiff backing layers are desired. For instance, in hook-and-loop” fasteners, the loop component includes a knitted layer having a series of protruding loops attached to a backing layer. The current practice to stiffen a backing layer involves the application of a coating that includes a number of precursor chemicals. Examples of such coatings include acrylic coatings, urethane coatings, and the like. Moreover, these coatings can include a variety of undesirable chemicals such as formaldehyde. While this prior art technique is effective, it creates a number of secondary issues. For example, coatings often result in a diminished fastening efficacy in hook-and-loop fasteners. The application of chemicals is difficult to control, not always uniform, and can lead to expensive waste stream management. From an environmental standpoint, alternative designs that do not use formaldehyde may be advantageous.
Accordingly, there is a need for improved fabrics used in hook-and-loop fasteners.
The present invention solves one or more problems of the prior art by providing in at least one embodiment a knitted textile fabric having increased stiffness. The knitted textile fabric includes a first knitted fabric layer including a first set of yarns. The first knitted fabric layer has outwardly extending pile underlap loops at one face adapted for mated engagement with hooking elements of a hook component of a hook-and-loop fastener. The knitted textile fabric also includes a second knitted fabric layer having a second set of yarns attached to the first knitted fabric layer. Characteristically, adjacent filaments are fused together and adjacent yarns in the second knitted fabric layer are fused together. Advantageously, the knitted fabric can be used as the loop component in a hook-and-loop fastener.
In another embodiment, a knitted textile fabric having increased stiffness is provided. The knitted textile fabric includes a first knitted fabric layer including a first set of yarns. The first knitted fabric layer has outwardly extending pile underlap loops at one face adapted for mated engagement with hooking elements of a hook component of a hook-and-loop fastener. The knitted textile fabric also includes a second knitted fabric layer having a second set of yarns attached to the first knitted layer. The second set of yarns including a plurality of filaments in which each filament includes a core region having a first melting point and a sheath region having a second melting point where the second melting point is lower than the first melting point. Characteristically, sheath regions of adjacent filaments are fused together and adjacent yarns in the second knitted fabric layer are fused together. Advantageously, the knitted fabric can be used as the loop component in a hook-and-loop fastener
In another refinement, a hook-and-loop fastener incorporating the knitted textile fabrics set forth above is provided. The hook-and-loop fastener includes a hook component having hooking elements, a first knitted fabric layer including a first set of yarns, and a second knitted fabric layer including a second set of yarns. The first knitted fabric layer includes outwardly extending pile underlap loops at one face which are adapted for mated engagement with the hooking elements. The second knitted fabric layer is attached to the first knitted fabric. Characteristically, sheath regions of adjacent filaments are fused together and adjacent yarns in the second knitted fabric layer are fused together.
In another embodiment, a method of making the knitted textile fabrics set forth above is provided. The method includes a step of forming a bilayer structure by placing the first knitted fabric layer over the second knitted fabric layer. A front surface of the first knitted fabric layer is heated to a first temperature while a back surface of the second knitted fabric layer is heated to a second temperature. Characteristically, the second temperature is higher than the first temperature.
Embodiments of the invention provide a number of advantages over the prior art. In particular, the method allows the preparation of a firm stiff backing without the introduction of undesirable chemicals such as formaldehyde. This is in contrast to the current practice in which a coating is applied to stiffen many materials. In the present invention, co-polymers can be used to provide uniform bonding thereby eliminating the need for a secondary finish.
Exemplary embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Reference will now be made in detail to presently preferred compositions, embodiments and methods of the present invention, which constitute the best modes of practicing the invention presently known to the inventors. The Figures are not necessarily to scale. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for any aspect of the invention and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except in the examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred. Also, unless expressly stated to the contrary: percent, “parts of,” and ratio values are by weight; the term “polymer” includes “oligomer,” “copolymer,” “terpolymer,” “block”, “random,” “segmented block,” and the like; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed; the first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation; and, unless expressly stated to the contrary, measurement of a property is determined by the same technique as previously or later referenced for the same property.
It is also to be understood that this invention is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the appended claims, the singular form “a,” “an,” and “the” comprise plural referents unless the context clearly indicates otherwise. For example, reference to a component in the singular is intended to comprise a plurality of components.
The term “denier” refers to a weight-per-unit-length measure of a linear material such as a yarn, fiber, or filament. Officially, it is the number of unit weights of 0.05 grams per 450-meter length. Typically, the denier is reported as weight in grams of 9,000 meters of the linear material.
The term “denier per filament” (dpf) is the denier of an individual continuous filament or an individual fiber if it were continuous. For filament yarns, the dpf is the yarn denier divided by the number of filaments.
The term “fiber” refers to a single filament of natural material (e.g., cotton, linen or wool) or of an artificial material (e.g., nylon, polyester).
The term “yarn” refers to a spun agglomeration of fibers used for knitting, weaving or sewing.
With reference to
With reference to
It should also be appreciated that the first set of yarns 16 and second set of yarns 22 are not limited to any particular weight density and denier. In a variation, yarns 16 and yarns 22 independently have a weight density of 1.0 oz/yd2 to 14 oz/yd2. The yarns 16 and yarns 22 are also characterized by the denier of the yarns. In the refinement, yarns 16 and yarns 22 independently have a dpf from about 1.25 to 3.75. In another refinement, yarns 16 and yarns 22 independently have a dpf of about 2.08 or 2.92. As set forth above, the second set of yarns 22 is also characterized by the melting points of the core regions and sheath regions of the constituent filaments. In a refinement, core region 26 has a melting point greater than or equal to about 250° C. and sheath region 28 has a melting point less than or equal to about 225° C. In another refinement, core region 26 has a melting point from 250° C. to 350° C. In still another refinement, core region 26 has a melting point from 250° C. to 300° C. In a further refinement, sheath region 28 has a melting point from about 150° C. to 225° C. In a further refinement, sheath region 28 has a melting point from about 150° C. to 220° C. In another refinement, sheath region 28 has a melting point from about 180° C. to 190° C.
With reference to
With reference to
In the variation where the filaments in the yarns of the second set of yarns 22 include a core region and a sheath region, the second temperature is sufficiently high to melt the sheath regions of yarns 22 so that adjacent filaments fusion together when cooled. Therefore, the second temperature is higher than or equal to the melting point of the sheath regions (i.e., second melting temperature set forth above). In a further refinement, the second temperature is higher than or equal to the melting point of the core regions (i.e., first melting temperature set forth above). In a refinement, the first temperature is lower than the melting point of the sheath regions. In a refinement, the first temperature is from about 130° C. to about 170° C. while the second temperature is from about 175° C. to about 210° C. In step c), the formed knitted textile fabric 10 is cooled or allowed to cool to room temperature (about 25° C.).
With reference to
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.