This application is a continuation-in-part of Indian patent application No. 2010/DEL/2007 filed on Sep. 24, 2007 and entitled “An Economical Solar Tracker for a Concentrating Reflective Dish”.
The invention relates to solar energy, and more specifically to methods for tracking the motion of the sun as it moves through the sky, enabling more efficient concentration and utilization of the energy coming from the sun.
In order to accurately track the motion of the sun through the sky, it's necessary to somehow replicate that motion. The majority of solar trackers deal with the sun's motion as if it were an arbitrary series of azimuth-elevation (az-el) coordinates. They generally depend on complex computer software to predict those coordinates, and/or a sophisticated, closed-loop, two-axis control system to move the tracker so that it accurately follows the motion of the sun. Such solar trackers are called az-el trackers, and two examples of them are illustrated in
One distinct disadvantage of az-el trackers is that difficulties arise when they are installed in tropical locations, that is, anywhere between the tropic of capricorn and the tropic of cancer; a huge belt around the planet from 23.5 degrees south to 23.5 degrees north. In this region, the sun can and will pass directly overhead, which means that the elevation at that moment will be 90 degrees and the azimuth will be briefly undefined. In this situation the best that an az-el tracker can do is a quick turn-around at noon, since there is a discontinuity of as much as 180 degrees between the data it was following as the sun rose in the east, in comparison to the data it must follow for the descent of the sun in the west. Simplistic tracking schemes could easily be confused to the point of no longer working when confronted with such an extreme discontinuity.
The problem is considerably simplified with a polar-axis tracker. Such a tracker works because in truth the motion of the sun is not at all arbitrary, rather it is very simple and predictable. The apparent motion of the sun is better understood as the earth's motion relative to the sun. The primary apparent motion of the sun is due to a constant rate rotation of the earth about its polar (rotational) axis. In order to accurately account for this motion with a tracker, a stable rotational axis must be created in accurate alignment with the earth's polar axis. Rotating the tracker's rotational axis at a rate which is equal but opposite to the rotational rate of the earth allows anything attached to that axis to stay at a fixed orientation relative to the sun. Solar trackers which take this approach are generally called polar-axis solar trackers, to better distinguish them from the previously mentioned az-el solar trackers.
a-2c show an illustrative sampling of polar-axis solar trackers. The tracker in
b (from U.S. Pat. No. 4,368,962, granted Jan. 18, 1983) shows a system of trackers driven by a common set of drive motors. The shared motor concept has the potential to reduce costs, but that potential is not fully realized in this case. The imbalanced weight of the dishes would require large torques in order to track the sun, as mentioned with prior trackers. When the system of imbalanced dishes are connected together, the torques accumulate rather than canceling each other out, so that a drive motor handling four dishes must be at least four times as powerful as the single motor was, and thus significantly more expensive. Another drawback of this design is the cumulative backlash that will be involved in the system of all of bevel gears. At each 90 degree junction between drive shafts, a small amount of play will be introduced between one gear and the next. Since there are four such junctions between the control motors and the dishes, that play will be quadrupled, significantly lowering the precision of the tracking.
Note also that in
c shows a tracker that brings together many of the best ideas mentioned above into a single and practical design. It was jointly developed by Dr. Wolfgang Scheffler of Austria and Dr. Deepak Gadhia of India. This picture was taken at an installation Dr. Gadhia constructed near Delhi. The polar axis trackers greatly simplify the daily motion, reducing it to a simple rotation. The weights of the dishes are more or less evenly balanced about the axis of rotation, so that smaller torques could be involved in moving the trackers, although in this case weights have been added to each dish to apply torque and thus keep tension on the control cable. The trackers are interconnected in a simple, accurate and practical manner so that they can be driven by a single drive mechanism, which in this case is a gearmotor from an automotive windshield-wiper mechanism, connected to the dishes through a steel control cable and some pulleys. At this installation fourteen dishes are accurately controlled by a single drive motor.
Note that the elliptical Scheffler reflective dishes in the tracker of
The elliptical Scheffler reflective dishes of
It is an objective of this invention to bring together all of the best qualities of the Scheffler/Gadhia solar tracker, and improve on them where possible, for circular reflective dishes rather than for elliptic Scheffler reflective dishes.
It is an objective of this invention to have the weights of the solar tracker balance each other out, minimizing the torques required to maneuver the reflective dish.
It is an objective of this invention to have a single control motor drive multiple reflective dishes, thus reducing the cost of the system.
It is an objective of this invention to minimize the size of the solar tracker relative to the size of the reflective dish, thus collecting the most possible sunlight with a minimum tracker cost.
It is an objective of this invention for the solar tracker to accommodate the seasonal motion of the sun in a manner which can be either manual or automatic, to permit a further cost reduction (by omitting the automatic drive system) in cases where it is possible and appropriate.
It is an objective of this invention to keep the reflective dish as close as possible to the ground, so as to improve the system's ability to withstand wind storms.
It is an objective of this invention to enable the complete inversion of the reflective dish, since that will reduce the dust build-up on the reflective surfaces, and further improve the system's ability to withstand wind storms.
a and 1b show two prior-art azimuth-elevation solar trackers.
a, 2b, and 2c show three prior-art polar axis solar trackers.
a and 3b are photographs of a working prototype of an embodiment of this invention.
a-5e show the preferred embodiment in various positions and configurations.
a-6d show embodiments of fine-tuning adjustment systems, and an automatic declination adjustment means.
Table 1 shows the declination of the sun for each day of the year.
Table 2 shows the daily changes in the declination of the sun for each day of the year.
In
The fundamental details of the preferred embodiment are shown schematically in
Leveling bolts 402 at each of the four corners help to bring the support base accurately into level. To better withstand high winds, these bolts can be made much longer and anchored firmly in cement. Clamping assembly 403 firmly grasps tracker frame 406 and holds it in place, pushing it against two fixed stops which form the other half of the clamping assembly, and which also hold the two halves of the support base together. These fixed stops are visible in
Tracker frame 406 is a novel and unique aspect of this invention. Because it is in the shape of a 180 degree arc, clamping assemblies 403 (and optionally 405) can hold it firm at virtually any angle. This allows polar axle 407, supported by tracker frame 406, to be held at an angle such that it will be in parallel with the earth's polar axis.
For higher latitudes which will require the tracker frame to be further tilted, optional triangular supports 404 hold an additional clamping assembly 405 which provides additional stability to tracker frame 406.
Note that all other known polar-axis trackers require a base or support system which either pivots and lifts the dish high in the air, or else is custom-built according to the latitude of the installation site, which complicates keeping the parts in stock for those trackers. In contrast, tracker frame 406 keeps the dish quite low to the ground, reducing exposure to winds, while simultaneously allowing a single set of tracker parts to work well at almost any installation site on earth.
In order to account for and follow the primary motion of the sun, the polar axle must be turned at a rate of 1 revolution per day by the polar axle rotation means. In this embodiment, the polar axle rotation means includes a gear motor connected through pulleys to polar axle drive pulley 408, which in turn rotates the polar axle. Bearings 409 firmly hold the ends of the polar axle in place and minimize the rotational friction, thus minimizing the torques involved. The dish assembly consisting of reflective dish 412, dish support member 411 and solar energy receiver 413 are very nearly balanced about pivot rod 410 and hence polar axle 407, which also helps to minimize the torques involved in the polar axle rotation. Note that solar energy receiver 413 can take a number of forms, as there are several types of technologies for converting solar energy into other useful forms. If electricity is immediately desired, it could take the form of concentrating photovoltaic (CPV) cells. Or if there are price breakthroughs in heat engines such as Stirling Engines, that could be used to create electricity. Alternatively, the heat could be absorbed with some kind of thermal transfer fluid, and transported and/or stored for later use, or later conversion into electric energy.
Besides the apparent daily motion of the sun, there is also a seasonal motion. In astronomical terms, the declination of the sun describes the apparent north-south motion of the sun as seen from the earth. A declination angle of zero means that the sun is in alignment with the equator, which occurs at particular times on March 21 st and September 23rd. The declination of the sun peaks on about June 22nd at an angle of 23.43 degrees north of the equator, and reaches its minimum on about December 22nd at an angle of 23.43 degrees south of the equator.
Within this document, the term declination angle is used not only for the declination of the sun above or below the equator, but also for the angle formed by the dish assembly of this tracker, which mimics that celestial angle. In
Note that in this embodiment, all components of the dish assembly are constructed such that they cannot collide with tracker frame 406 at any angle of motion about polar axle 407, nor at any declination angle between plus or minus 23.43 degrees. Circular reflective dish 412 is also illustrated in a side view, 414, to better illustrate the split-dish construction, and the all-around clearance that is another result of having the tracker frame shaped as a circular arc. The split in the dish is required in order to allow room for the polar axle as the dish pivots for variations in the declination angle.
Before moving on to other figures, note that
In
c illustrates this embodiment in an inverted storage position for the dish. Since dust settles downward 24 hours a day, some of that dust can be kept off the reflective side of the dish by inverting the dish during the night when it's not in use. In this way the required frequency of washings can be reduced for a given level of cleanliness. Another advantage of being able to invert the optics is to better protect them from damage caused by wind or hail storms. An incidental advantage has to do with the economics of scale, in that larger dishes are sometimes economically advantageous. If the reflective dish is to be used with a Stirling Engine, for example, then that dish must be sized to match the capacity of that engine. A 10 kw Stirling Engine will cost less than twice as much as a 5 kw Stirling Engine, so there is an economic advantage of using the largest possible engine, and hence the largest possible dish. The primary factor that limits the size of reflective dishes is their ability to withstand high winds, so being able to invert the dish incidentally allows larger dishes, which allows larger Stirling Engines, which can be economically advantageous.
d illustrates an embodiment of the tracker base without the triangular supports for near-equatorial latitudes. In this case there is no need for them, as all portions of the tracker are quite near the ground.
e illustrates an embodiment of the tracker assembled with the polar axle drive pulley on the top side, for extreme latitudes in which there's insufficient space to accommodate that on the lower side. This is a case in which the triangular supports play a much more important role in supporting the tracker against lateral winds. Here the tracker is configured for a latitude of 58.5°, which would correspond to parts of Canada, Alaska, Sweden and Russia.
Note that all of the other illustrations (excepting 5d and 5e) show an embodiment of the tracker configured for a latitude of 28.5°, corresponding to parts of India, China, Northern Africa, Mexico, Australia and many other locations. All of the configurations shown assume the same basic set of parts.
a through 6d are primarily related to fine-tuning adjustments, which serve to improve the tracking accuracy. In the realm of solar energy it is extremely important to minimize the costs involved. Often the precision involved in making a given part will play a substantial role in the cost of that part, so it is helpful if the highest possible precision can somehow be attained from a system that is built with components of only moderate (rather than high) precision. All of the following fine-tuning adjustments have the purpose of getting an embodiment of the tracker to track the sun as accurately as possible.
a shows the details of one embodiment of a polar axle rotational fine-tuning means. The assembly shown would alternately take the place of polar axle drive pulley 408, serving the same function, but adding the ability to fine tune the rotational position of the tracker. When multiple trackers are all driven by the same polar axle rotation means, that rotation means will at best be able to consider the position of one solar tracker, and keep it in good alignment with the sun. In order to maintain a comparable level of accuracy in all the other trackers being driven, it is essential that each of those trackers be aligned as closely as possible with the first tracker. One part of that alignment is served by having a good common reference, which is the sun, but a practical means must also be available to measure any misalignment with the sun. That means of measurement is the shadow cast by the solar energy receiver on the dish-mounting components at the center of the reflective dish. Using that as a reference, any misalignment angle with the sun is easy to see.
The second part of correcting that misalignment is having an easy method of making a fine-tuning adjustment, which is the purpose of the polar axle rotational fine-tuning means, one embodiment of which is shown in
In
c shows the details of one embodiment of a fine-tuning system for the vertical slant of the polar axle, which fine-tunes the selected latitude.
Another fine-tuning adjustment is shown in
If an automated declination adjustment is desired, one embodiment of such an adjustment means is also shown in
a already showed a photograph of multiple dishes being driven by a single drive motor, while
In this illustration embodiments of three solar trackers are shown, each of which has been configured slightly differently as the system of trackers was installed. The leftmost tracker is configured to be at the end of a string of trackers, thus there's only need for one pulley assembly 702. The middle tracker is configured to be in the middle of the string, with two pulley assemblies 702. For a string of 12 trackers, there would be 10 middle trackers configured like this one. The tracker on the right, finally, is configured to be driven directly from the drive motor, and all the associated drive circuitry (including sensors indicating the position of the trackers relative to the sun's position) would be installed on this tracker. The cables would be connected together as shown, with tensioning springs between them, in order to get all of the trackers in a string to track the sun in unison.
The configuration of optional tensioning springs shown here has two purposes. First, in locations where the system of trackers will undergo large deviations in temperature, the steel cables will alternately undergo thermal expansion and contraction. In the configuration shown, the thermal length shifting in the steel cables is balanced by compensating shifts in the lengths of the tensioning springs which are distributed throughout the length of the cable. This serves to minimize the net angular shifting of any tracker, insuring maximum tracking accuracy in every tracker. Second, in locations with high winds, a sudden gust of wind could act on one dish, or a few dishes, or all of the dishes nearly simultaneously. With the configuration of tensioning springs shown, some of the energy of such gusts is harmlessly absorbed and dissipated by the springs, which would then quickly bring the dishes back to their intended orientations. This energy might otherwise be absorbed by the reflective dish, causing distortions or greater damage. Thus the springs can help to minimize wind damage to the system, as well as reducing the possibility that such gusts would disorient any of the dishes due to cable slippage.
The friction between the steel drive cable 703 and the pulleys it interfaces with (701 & 708) must be sufficiently high to prevent slippage, so the tensioning springs must be adequately stretched via turnbuckle 710 to insure this, and a material with a high coefficient of friction should be used to cover the pulley surfaces. Exorbitant tension is not needed, since the design shown includes large angles of working contact on the drive pulleys, and friction increases exponentially with the coefficient of friction between the two materials and the angle through which there is working contact, in radians.
In
While the tracker described herein is intended primarily for countries in which labor is inexpensive and materials are expensive, it can be readily adapted for other countries, with the simple addition of an automatic declination adjustment, as in
To better understand and weigh this trade-off, tables 1 and 2 are included. Table 1 shows the declination angle of the sun for every day of the year, based on the data published online at: www.wsanford.com/˜wsanford/exo/sundials/DEC_Sun.html. Note that positive numbers indicate that the sun is above the Northern hemisphere, while negative numbers indicate that the sun is above the Southern hemisphere. Table 2 shows how the solar declination angle changes on each day of the year; it is based the data in Table 1.
While one embodiment of this invention with several options has been presented above, many changes can be made without departing from the spirit and scope of the invention. For example, there is no need for the support base to be flat or level, rather it might make sense to incorporate elements of a support base into a new structure which is already under construction for different purposes, but which would be well served by having solar energy collectors mounted on it. Any suitable solar energy receiver may be utilized with this invention, including Stirling engines, concentrating photovoltaic cells, solar-thermal collectors, or others as may be introduced in the future. The shape and size of the dish support member would naturally change so as to better accommodate the needs of those solar energy receivers. The various insights embodied in this invention enable the production of solar trackers for circular reflective dishes at significantly reduced costs, while still attaining tracking accuracies within small fractions of a degree. The scope of this invention should be determined by the appended claims and their legal equivalents, rather than by the explanations or illustrations here presented.
Number | Date | Country | Kind |
---|---|---|---|
2010/DEL/2007 | Sep 2007 | IN | national |