Referring more particularly to the drawings wherein similar reference characters designate like parts throughout the several views.
The Economy of Motion Machine, 10 of
An upper idler wheel 13 guides the displacement chain in a 180° arc, allowing the mass of the displacing elements 21 to force the displacement chain 20 down on one side of the upper idler wheel as the buoyancy of the displacing elements on the other side pulls the displacement chain around the lower idler wheel 14 and up through the water column 11. This goes on constantly or as long as desired.
Each displacing element 21 of the displacement chain 20 enters the bottom of the water column 11 by way of an airlock 30 and seal 40. This minimizes the force required to inject a displacing element into the bottom of the water column. The airlock is dimensioned relative to the displacing elements to minimize the amount of water that can be lost during airlock cycling. This lost water is recovered by the lower water tank 15 from where it is returned to the water column 11 by a pump 17 which is driven directly by the lower idler wheel 14 or linear escapement motor or indirectly by an electric motor powered by a generator driven by the upper or lower idler wheel shaft 18.
The mass of the water lost by a single cycle of the airlock chamber is minimized by the efficiency of the airlock chamber seal 40. In a preferred embodiment, the buoyant force, ωB, created by a displacing element is significantly greater than the forces, ωU and ωL, required to turn the upper and lower idler wheels, the force, ωP, required to drive the pump to lift the mass of water lost during a cycle to the top of the water column, and the force, ωS, required to regulate the seal pressure and pass the displacing element 21 into the water column 11, i.e., ωB is greater than ωU+ωL+ωP+ωS. The surplus force, ωT=ωB−(ωU+ωL+ωP+ωS), is the amount of useful work the system can preform. Thus ωT is a function of the density relative to the immersing liquid and size of a displacing element minus the various system losses.
The surplus force, ωT, may be extracted from the system via a mechanical coupling to either/or both drive shafts 18 which are extensions of the axles for the upper and lower idler wheels 13 and 14. The mechanical coupling may drive any form of mechanical device capable of operating from a rotary input or it may be an electric generator or alternator.
In the preferred embodiment, water lost by air chamber cycling is not recaptured and returned to the upper water tank 12. It is allowed to flow away from the system to be used for whatever purpose is most beneficial. Replacement water to the upper tank is provided by gravity feed from any available source located at an elevation higher than the upper water tank. Examples of such water sources are: elevated rainwater collecting cisterns, lakes, ponds, rivers, streams, etc. Using naturally occurring water sources to replenish the upper water column 11 eliminates ωP from the work force equation and thus maximizes the systems ability to preform useful work ωT.
In a typical reduction to practice, the invention uses displacing elements 21, each of which displace 800 gallons of water plus the volume of the material forming the displacer and therefore each provide a buoyant force ωB equal to the weight of the displaced water minus the weight of the displacer, assuming the liquid forming the column is water. The weight of the displacing elements 21 does not have to be considered further because, as can be seen in
When a displacer 21 enters the water column 11, it displaces a volume of water equal to the displacer's total volume, i.e., the volume inside the displacer plus the volume of the material forming the displacer. The mass (weight) of the of the displacer divided by the mass (weight) of the displaced water equals the specific gravity (Sp. gr.) of the displacer. The displacer's buoyancy in water is a function of the displacer's specific gravity. When this value is less than 1, the specific gravity of water, the displacer is positively buoyant. More simply, the buoyant force exerted by a displacer is equal to the weight of the displaced water minus the weight of the displacer. Assuming the displacer is made of common rolled steel with a density of 7,850 Kg/m3 or 0.58 lbs/in3 and it weighs 800 pounds, then the approximate volume of the material from which the displacer is made is 1,379 cubic inches. The volume of the displacer's interior is equal to 800 gallons water, which is equal to 184,800 cubic inches, so the approximate total volume of a displacer is 186,180 cubic inches or 806 gallons. Therefore the exemplary displacer 21 displaces 806 gallons of water which, at 8 pounds per gallon, weights 6,448 pounds. According to Archimedes' principle, the buoyant force exerted by water is equal to the mass of the displaced water minus the mass of the displacer. In the exemplary case, the buoyant force of a single displacer is the 6,448 lbs of water displaced minus the 800 pound displacer for a buoyant force of 5,648 pounds. The water column in the example holds 18 displacers of the displacer chain to generate a total force of 101,664 pounds. The foregoing assumes a constant temperature of 4° C., a temperature at which the specific gravity of water is unity.
In a preferred embodiment representing the best mode of practicing the invention, the average specific gravity of all of the elements and voids comprising a liquid displacer is less than unity. Thus the specific gravity of each liquid displacer is less than the specific gravity of the liquid in the column when the liquid is water. The liquid may be other than water, the only controlling criteria is that the specific gravity of each liquid displacer is less than the specific gravity of the liquid, i.e., the gross density of each liquid displacer is less than the density of the liquid of the column.
The means by which the chain of displacers 20 enter the water column is illustrated by
In the preferred embodiment the airlock seals, 40, 41, 42, are air pressure actuated, see
The end caps of the dispersers and links joining them in the disperser chain are designed to effect the maximum number of dispersers in a given length and allow free passage around the idler wheels. For instance, a simple dome shaped end cap embodiment is illustrated in
The airlock seals are extremely efficient, but they may allow a small amount of air to enter the upper tank as the disperser chain advances. This will cause a curtain of bubbles to surround the disperser chain. The bubbles will decrease the chain's buoyancy in the same way that a mass of methane gas bubbles have been shown to cancel the buoyancy of a ship at sea and cause it to sink. The occurrence of this phenomenon is eliminated in the preferred embodiment by a funnel shaped deflector 50 of
The deflector 50 is comprised of an inverted frustum of a cone 51 with a circle of inwardly directed fingers 52. The fingers form a scrubber which scrapes bubbles 53 from the surface of dispersers as the disperser chain moves upward through the deflector. The bubbles accompanying the disperser chain are forced away from the chain by the inverted cone shape of the deflector to eliminate any negating effect they may have on the buoyancy of the chain of dispersers. It has been demonstrated in “Bermuda Triangle” related experiments that a curtain of bubbles can significantly reduce the buoyancy of a floating object.
A comparison of
To start the Economy of Motion Machine, the water is pumped or allowed to flow into the tank 12 after air under sufficient pressure is forced into the seals of airlock 30, see
While preferred embodiments of this invention have been illustrated and described, variations and modifications may be apparent to those skilled in the art. Therefore, I do not wish to be limited thereto and ask that the scope and breadth of this invention be determined from the claims which follows rather than the preceding description.