The present invention relates to non-destructive testing and inspection systems (NDT/NDI), and more particularly to Eddy Current Array technology (ECA), eddy current probes etched on printed circuit board and lift-off compensation.
Eddy current inspection is commonly used to non-destructively detect flaws in surfaces of manufactured components fabricated from a conductive material, such as bars, tubes, and special parts for automotive, aeronautic or energy industries. Over the years, eddy current sensors have been designed with different configurations and shapes.
Typical eddy current sensor configurations include impedance bridge, pitch-catch (alternatively called reflection or transmit-receive) and differential configurations, but can also include more complex combinations such as pitch-catch with differential receivers, multi-differential, etc. An even greater variety of probe shapes has been developed over the years, with a few of them being truly successful configurations, as known in the industry.
One such known first type of eddy current sensor, named orthogonal, cross-wound or plus point, is mounted on a cube or a cross-shaped core, with two coils wrapped orthogonally to each other. One of the coils is the driver and is wrapped perpendicularly to the other coil core axis, used as the receiver. On this particular orthogonal sensor, the driver and the receiver coils are positioned perpendicularly to the component to inspect. This feature decouples the driver magnetic field from the sensitive axis of the receiver, thereby reducing the sensitivity of the receiver to surface noise that does not represent a flaw.
With the advances of printed circuit board (PCB) technologies over the last decades, it is now possible to manufacture some eddy current sensor shapes and configurations on a thin flexible support. Even more interesting is the use of these manufacturing technologies to manufacture eddy current array probes, since the reduced cost, flexibility and reproducibility are critical factors for a successful array probe design. The present assignee's pending U.S. patent application Ser. No. 12/832,620 describes how to build an orthogonal probe with the printed circuit board technology. The contents of said Ser. No. 12/832,620 application are incorporated by reference herein.
Many eddy current sensors generate a very strong signal representative of variations in the distance (lift-off) between the sensor and inspected part. Such sensors referred to herein as being of a second type are commonly referred to as having an “absolute” response because they provide relatively direct information of the coupling between the sensor and the inspected component. On the other hand, a few configurations (including the orthogonal and some differential arrangements) only exhibit a reduction in sensitiveness with increasing lift-off. Such configurations are then ideal to conduct an inspection over irregular parts (such as welds or hot rolled bars) or when the inspection environment cannot provide a perfectly stable lift-off.
Still, even for orthogonal and differential sensors, the potential sensitivity variations related to corresponding lift-off variations are an important limiting factor for the detection capabilities of eddy current sensors. This problem is even more important for eddy current array probes which include several independent eddy current channels because it is easier to maintain a constant lift-off for a single sensor than for a sensor array. Various terms used herein have the following definitions:
(i) An eddy current sensor is a complete coil arrangement capable of generating eddy currents in the test part and receiving the magnetic field produced by those eddy currents;
(ii) An Eddy Current Array (ECA) probe is a complete assembly including several sensors; and
(iii) An Eddy Current Array (ECA) channel is a unique combination of sensor and test conditions (frequency, gain, etc), such that a thirty two sensor ECA probe driven with two test frequencies would generate, for example, sixty four channels.
U.S. Pat. No. 5,371,461 discloses a means for compensating the lift-off for an ECA probe made out of etched coils by combining differential sensors for defect detection and pitch-catch sensors for lift-off measurement in the same probe. In this patent, the added pitch-catch sensors require additional coils to be etched in the probe, which adds to the probe complexity and size. The contents of U.S. Pat. No. 5,371,461 are incorporated by reference herein.
The method presented in U.S. Pat. No. 5,371,461 also requires the use of a precise lift-off reference to calibrate the lift-off measurement channels. Such a reference may be very difficult to obtain for complex and/or irregular shaped parts. This lift-off reference also adds to the complexity of the solution regarding its day to day usage because of the additional calibration steps and the precision level involved.
Other methods found in the prior art (for example, in U.S. publication 20030071615 or U.S. Pat. No. 4,727,322) include the use of a pre-defined impedance plane relative to a set of measured variables, including lift-off. These methods require intensive calculation and/or experimental data to achieve results on very limited set of probe and part configurations.
Accordingly, it is an object of the disclosure to provide a means for compensating the lift-off sensitivity variations for either a differential or orthogonal eddy current probe array without the use of additional coils.
It is also an object of the disclosure to provide a means for compensating the lift off without the need to calibrate the probe on a fixed lift-off reference.
It is a further object of the disclosure to have a means for compensating the lift-off without the need for pre-generated tables specific to an application or probe.
A still further object of the disclosure is to reduce the number of interconnections in the probe, thus allowing a more compact probe design.
Yet another object of the disclosure is to enable conducting the lift-off compensation calibration and detection channel calibration simultaneously.
Still another object of the disclosure is to eliminate the need for pre-calculated lift-off tables which are typically dependent on the inspected material and sensor characteristics (test frequency, sensor size, etc).
The invention provides a method for compensating the sensitivity variations induced by corresponding lift-off variations for an eddy current array probe. The invention uses the eddy current array probe coils in two separate ways to produce a first set of detection channels and a second set of lift-off measurement channels without the need to add coils dedicated to the lift-off measurement operation. Another aspect of the invention provides an improved calibration process which combines the detection and lift-off measurement channel calibration on a simple calibration block including a reference defect without the need of a pre-defined lift-off condition.
In a preferred embodiment of the invention, an EC probe array system for detecting flaws in a test object is provided. That system includes:
(a) an EC coil arrangement including:
(b) a setup table comprising calibration values for said orthogonal EC sensors with corresponding lift-off compensation values for each of said channels based on said second signals; and
(c) a processor or acquisition unit responsive to said calibration and lift-off compensation values in said setup table and to the second signals and configured to convert said first signals obtained from said orthogonal EC sensors during actual testing of said test object, so as to obtain third signals which are representative of said Eddy Currents in said test object, said third signals being substantially independent of actual lift-off distances prevailing between said EC sensors and said test object at the time of obtaining said first signals during actual testing.
In further preferred embodiments, the EC coil arrangement is provided on a printed circuit board. The EC coil arrangement may comprise coils configured as overlapped coils and configured as driver and receiver coils. The processor may drive the orthogonal absolute channels sensors simultaneously and with a pitch-catch type configuration. Also, orthogonal and absolute channels may use the same sets of drive coils to enable faster acquisition and more stable signals.
In the method according to the present disclosure, the aforementioned EC coil arrangement is utilized to perform a probe array system setup including setting at least a gain value and preferably a phase rotation value on each orthogonal channel relative to a known calibration notch using the orthogonal EC sensors. Relative to each orthogonal channel, an amplitude vector is also obtained by using the absolute EC sensors and gain and absolute vector length values are stored in a setup table. Subsequent to preparing the setup table, actual testing is conducted by acquiring data for the orthogonal and absolute channels to obtain raw orthogonal data and raw absolute data for each channel. Amplitude vector lengths are calculated and the raw orthogonal data is compensated for the lift-off effects utilizing the absolute vector lengths and/or calibration gain values to obtain compensated data for the object being tested.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
Related patent application Ser. No. 12/832,620 describes how to build an ECA probe on a printed circuit board. The contents of patent application Ser. No. 12/832,620 and of Ser. No. 12/847,074 are incorporated by reference herein. The structure presented in application Ser. No. 12/832,620 is disposed on two PCB layers. A simplified representation of such structure is shown on
As first stated in paragraph [0035] of the mentioned application, it is also possible to use the multi-layer capabilities of the printed circuit boards to increase the resolution of the orthogonal ECA probe.
From the probe structure shown on
The newly created absolute channels are inherently very sensitive to lift off, because the proximity of the inspected part will directly impact the magnetic field flux in the shared area of the driver and receiver coils (11c and 13d for example) defining the sensitive area (30f for example) of the absolute channel (36 for example).
As further demonstrated on
It must be understood that the selection of coils to be used in the absolute channel construction was made in order to acquire the orthogonal and absolute channels simultaneously and with a pitch-catch type configuration which is naturally more stable than an impedance bridge. For example, orthogonal channel 16 and absolute channel 36 use the same set of two driver coils 11b and 11c. So, these two channels can be acquired simultaneously by the acquisition electronics. This configuration is advantageous because it allows a faster acquisition (through simultaneous operation) and a stable signal, but it is not a mandatory requirement so there will be other possible arrangements respecting the essence of the invention.
Connecting the driver coils as part of an impedance bridge to build the absolute channels, for example, is another method to obtain a valid set of absolute channels for lift-off monitoring without adding new coils in the probe structure. It is also possible to envision other ECA probe types respecting the scope of this invention. For example, in U.S. Pat. No. 5,371,461 FIG. 3, one could dispose of the compensation coil 52 of U.S. Pat. No. 5,371,461 by connecting driver coil 42 of said patent through an impedance bridge.
Now that we have described means for building channels for detection (orthogonal channels in the preferred embodiment) and lift-off monitoring (absolute channels made out from a pitch-catch sensor arrangement in the preferred embodiment), we describe how these signals are processed in order to obtain a lift-off compensated eddy current probe array without the use of a lift-off reference.
As shown on
We now turn our attention to
The information available at this point is first used to calibrate the orthogonal channels by applying a calibration GAIN and ROTATION on the raw signal (Step 1010), in order to reach a pre-defined value for the reference defect 51. This pre-defined value (which typically includes both an angular and amplitude target) is common to all orthogonal channels and thus makes it possible to obtain a uniform detection of the reference defect 51 for all orthogonal channels. The calibration GAIN and ROTATION for each orthogonal channel is saved in the setup (Step 1012).
Simultaneously, we use the information generated in [0046] on the absolute channels to calculate the vector length between AIR and the signal's baseline obtained on the calibration block 50 (Step 1014). A single absolute vector length value (which could in fact be the average between two absolute channels or other absolute channel combinations adapted to the probe and application) is saved in the setup and associated with its corresponding orthogonal channel. For example, in probe 10, if we use absolute channels at position 30a and 30b to compensate the lift-off for the orthogonal channel at position 15a we could average absolute channels at position 30a and 30b and save this pre-determined value in the setup with reference to the channel at position 15a. This value will be referenced here as “Absolute_RefLength(n,Cal_Lift)” where “n” is the orthogonal channel# identifier and “Cal_Lift” is the lift-off condition present during calibration (Step 1016).
Now looking at
Ortho_raw(n,Lift) is then processed with the following relationship to generate a lift-off compensated orthogonal channel reading; “Ortho_compensated(n, Cal_Lift)=(Ortho_raw(n,Lift)/Absolute_Vlength(n,Lift))*Absolute_RefLength(n)” (Step 1110). The generated “Ortho_compensated(n,Cal_Lift)” channel is then relatively independent of the current lift-off but is then dependent on the lift-off present during the system calibration. To remove this dependency and thus provide a completely lift off independent reading, the calibration GAIN and PHASE are applied to Ortho_compensated(n,Cal_Lift) (Step 1112), until all channels are so processed (Steps 1114, 1116 and 1118). As an end result, for a given flaw size, the system should generate a uniform defect signal amplitude no matter which orthogonal channel detects the flaw and without regard to the calibration and inspection lift-off.
It is important to point out that the described lift compensation method can easily be adapted to operate a multi-frequency inspection. This can be done either by generating absolute and orthogonal channels for each frequency or by using a unique set of absolute channels to compensate the multi-frequency orthogonal channels.
It is also important to mention that while the figures and description describes an ECA probe with eight orthogonal sensors, the method proposed in this invention is applicable as long as the coil configuration makes it possible to build at least one sensor for defect detection and one sensor for lift-off measurement.
In the foregoing embodiments, the EC sensors have been described and depicted as being coil windings. However, as will be recognized by one of skill in the art, other types of magnetic field sensors can be used, such as, for example, GMR (“Giant Magneto Resistance”), AMR (“Anisotropic Magneto Resistance”), or Hall Effect sensors.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.